Table 1.
The algorithm for finding the fixed point estimate of the underlying signal intensity.
| The algorithm for finding the fixed point estimate of the underlying signal intensity The input variables are m̂, σ̂g, and N, and the out variable is η̂. |
| 1: Procedure FixedPointFinder(m̂, σ̂g, N) |
| 2: |
| 3: counter = 500 |
| 4: eps = 1.0 × 10 |
| 5: delta = βNσ̂g − m̂ |
| 6: |
| 8: if (delta == 0) {return 0} |
| 9: |
| 10: if (delta > 0) {m = βNσ̂g + delta} |
| 11: else {m = m̂} |
| 12: |
| 13: t0 = m |
| 14: t1 = K(t0 | m, σ̂g, N) |
| 15: while(| t0 − t1| > eps){ |
| 16: t0 = t1 |
| 17: t1 = K(t0 | m, σ̂g, N) |
| 18: counter = counter − 1 |
| 19: if(counter == 0) break |
| 20: } |
| 21: |
| 22: if (delta > 0) {return −t1} |
| 23: else {return t1} |