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Abstract
Background—Monocyte chemoattractant proteins (MCPs) play an important role in mediating
inflammatory processes. Hypertension (HTN) is associated with inflammation as well as impaired
cardiac microcirculatory function and structure, but the contribution of MCPs to these alterations
remained unclear. This study tested the hypothesis that MCPs regulate cardiac microvascular function
and structure in an experimental HTN.

Methods and Results—Pigs (n=6/group) were studied after 10 weeks of normal, renovascular
HTN, or renovascular HTN+ bindarit (MCPs inhibitor, 50 mg/kg/day PO). Left ventricular (LV)
function, myocardial microvascular permeability, and fractional vascular volume were assessed by
fast computed tomography before and after adenosine infusion (400 μg/kg/min). Myocardial fibrosis,
inflammation, and microvascular remodeling were determined ex-vivo. Hypertension was not altered
by bindarit, but LV hypertrophy and diastolic function were improved. In response to adenosine,
myocardial microvascular permeability increased in HTN (from 0.0083±0.0009 to 0.0103±0.0011
AU, p=0.038 vs. baseline) and fractional vascular volume decreased, while both remained unchanged
in normal and HTN+bindarit pigs. HTN upregulated endothelin-1 expression, myocardial
inflammation and microvascular wall thickening, which were inhibited by bindarit.

Conclusions—MCPs partly mediate myocardial inflammation, fibrosis, vascular remodeling, and
impaired vascular integrity induced by hypertension. Inhibition of MCPs could potentially be a
therapeutic target in hypertensive cardiomyopathy.
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Hypertension (HTN) is a leading cause of congestive heart failure in the United States and
impairs left ventricular (LV) function, myocardial perfusion, and microvascular function.1, 2
Myocardial microvascular dysfunction is an important modulator of coronary resistance and
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myocardial blood flow,3 and often associated with changes in microvascular architecture like
rarefaction or thickening.4

Important attributes of microvascular function include microvascular permeability (MP) and
fractional vascular volume (FVV), key indices of microvascular structural integrity. MP, the
rate of leakage of plasma components to the extravascular tissue, reflects endothelial barrier
function.5, 6 FVV, the volume of myocardium occupied by microvessels, represents the number
and tone of functional microvessels and myocardial perfusion. 7, 8 MP and FVV are difficult
to assess in-vivo, but can be accurately and non-invasively assessed by fast CT.2, 7

The mechanism by which HTN leads to cardiomyopathy may involve inflammation.
Perivascular inflammation of intramyocardial arteries is an early response to pressure overload,
including induction of monocyte chemoattractant proteins (MCPs) and macrophage
infiltration, in particular MCP-1.9, 10 The expression of MCP-1 and its receptor (CCR2) in
HTN is regulated by mechanical strain and by release of reactive oxygen species. Furthermore,
MCPs mediate vascular inflammation and remodeling by facilitating the secretion of
vasoconstrictors like endothelin (ET)-1,11 cytokines and chemokines, and may contribute to
vascular endothelial dysfunction.12,13

However, the role of MCPs in HTN-induced alterations of myocardial microvascular structure
and function are poorly understood. The current study was designed to test the hypothesis that
MCPs contribute to the impairment of the myocardial microcirculation, and their blockade
would improve myocardial microvascular structure and function in swine renovascular HTN.

Methods
Animal procedures were approved by the Institutional Animal Care and Use Committee.
Female domestic pigs (initially weighing 25-35kg) were randomized into three groups: normal
(n=6), renovascular HTN (n=6), and HTN pigs supplemented with bindarit (Angelini Research
Center - ACRAF, Italy, 50 mg/kg/day P.O., n=6). Bindarit (2-Methyl-2-[[1-
(phenylmethyl)-1H-indazol-3yl]methoxy]propanoic acid) is a specific inhibitor of MCPs 1, 2,
and 3 synthesis,14, 15 and at this dose inhibits MCPs' synthesis and inflammation.16

Renovascular HTN was elicited by induction of renal artery stenosis, which increases arterial
pressure within 7-10 days.17, 18 Mean arterial pressure (MAP) was measured by a
PhysioTel® telemetry system (Data Sciences) implanted at baseline in the left femoral artery.

After 10 weeks, pigs were anesthetized (ketamine 15.7 mg/kg/h and xylazine 2.3 mg/kg/h in
saline), intubated, and ventilated. A pigtail catheter in the right atrium served for contrast media
injection, and a side-arm for adenosine infusion. Blood samples were collected for
measurement of plasma renin activity (PRA), aldosterone, and ET-1 by enzyme immunoassay.
19 Fast CT studies were then performed to assess cardiac function and structure in-vivo, MP
and FVV (before and after adenosine), LV filling rate, and LV muscle mass (LVMM). A few
days later the pigs were euthanized using pentobarbital (100mg/kg), and hearts harvested for
in-vitro studies. LV myocardial segments were fresh-frozen or preserved in formalin, and
another segment prepared for micro-CT studies. Microvascular architecture was assessed by
evaluation of microvascular density and wall thickness, inflammation by the expression of
MCP-1, its receptor CCR2, cyclooxygenase (COX)-1, COX-2, IL-6, and macrophage
infiltration, and cardiac remodeling by myocardial expression of the angiotensin II receptor
type I (AT1R), ET-1, interstitial fibrosis, and myocyte hypertrophy. Vascular integrity was
also evaluated by Rho-kinase (ROCK) activity (tested by its downstream product phospho-
myosin phosphatase) and tight junction protein expression. Since HTN and inflammation can
increase oxidative stress, dihydroethidium (DHE) staining for superoxide production and the
expression of the p47 and p67 subunits of NAD(P)H oxidase were assessed20. To evaluate
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direct effects of MCP-1, cell culture studies were performed using human cardiac fibroblasts
(HCF) incubated with MCP-1 (For detail, see the online-only Data Supplement).

In-vivo CT Studies
Pigs were scanned by either electron beam (C-150, Imatron, South San Francisco, CA) or 64-
slice multidetector (SOMATOM Sensation-64, Siemens, Forchheim, Germany) fast CT, which
provide very similar assessments of MP and FVV7, and images analyzed with ANALYZE®
(Biomedical Imaging Resource, Mayo Clinic, Rochester, MN) (online Data-Supplement).

In-vitro Studies (For detail, see the online-only Data Supplement)
Micro-CT was used to evaluate myocardial microvascular density.21, 22 Myocardial
remodeling was evaluated by myocyte cross-sectional areas, and fibrosis with H&E and
trichrome staining. Microvascular remodeling was assessed by microvascular wall thickness
to lumen ratio using anti-human α-smooth muscle actin (SMA) (DakoCytomation) staining.
Immunohistochemistry assessed indices of inflammation and MP, with primary antibodies
against MCP-1, macrophage CD163, zonula occludens-1 (ZO-1), and phospho-myosin
phosphatase targeting subunit (Thr 696-pMYPT1). The tight junction protein ZO-1 regulates
endothelial barrier function and overexpresses in response to strain,23 while phospho-MYPT1
reflects ROCK activity, which also regulates endothelial barrier function by inactivation of
Myosin Phosphatase.24 Western Blotting was used for detecting MCP-1, CCR2, IL-6, COX1,
COX-2, AT1R, ET-1, endothelial nitric oxide synthase (eNOS), p47 and p67, and ZO-1.
GAPDH was used as loading control.

Statistical Analysis
Results are presented as mean±SEM. One-way ANOVA with the Bonferroni correction
evaluated differences among the groups followed by an unpaired t-test, and paired Student t
tests detected changes within groups; p<0.05 was considered significant.

Results
Cardiac and Microvascular Function

After a 10-week observation MAP was similarly increased in HTN and HTN+bindarit
compared to normal (Table 1, ANOVA p=0.01), indicating that bindarit did not influence blood
pressure. PRA was not significantly different among the groups, while aldosterone levels were
elevated in HTN (ANOVA p=0.03) and unaltered by bindarit (p=0.17 vs. HTN+bindarit),
suggesting no significant effect on the systemic renin-angiotensin- aldosterone system. In
response to adenosine, MAP significantly decreased in all groups (p<0.05, Table 1), while
heart rate remained unchanged. The degree of MAP response was greater in HTN+bindarit
compared to normal (p=0.001), but not different from HTN (p=0.68, Table 1). LVMM
increased in HTN (p=0.0001 vs. normal), suggesting LV hypertrophy, which was significantly
limited (p=0.01 vs. HTN) but not abolished by bindarit. There were no significant differences
in stroke volume, ejection fraction, and cardiac output among the groups (p>0.05 for all),
suggesting sustained cardiac systolic function. E/A ratio significantly decreased in HTN
compared to normal (p=0.0006, Figure 1A), suggesting diastolic dysfunction. Importantly, E/
A was increased in HTN+bindarit compared to HTN (Figure 1A, p=0.02), indicating that MCPs
inhibition protected cardiac diastolic function, and was not significantly lower than normal
(p=0.06).

Patlak-derived (Figure 1B) myocardial MP and FVV in the LV anterior wall were similar
among the 3 groups at baseline (ANOVA p=0.60 and p=0.14, Figure 1C-D). In response to
adenosine, MP significantly increased in HTN (from 0.0083±0.0009 to 0.0103±0.0011 AU,
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p=0.038 vs. baseline) and achieved levels significantly higher than normal (0.0064±0.0011
AU, p=0.016 vs. HTN, Figure 1C). In contrast, in normal and HTN+bindarit pigs, MP remained
unaltered during adenosine. The degree of change in MP in response to adenosine was also
significantly greater in HTN compared to normal (+27±10 vs. -20±5%, p=0.003). Furthermore,
adenosine induced a significant decrease in FVV in HTN, which bindarit attenuated (Figure
1D). Hence, HTN-induced microvascular dysfunction was blunted by MCPs inhibition.

Microvascular Density
There was no difference among the groups in overall transmural density of microvessels
(diameters 20-500μm) (ANOVA p=0.90, Figure 1F). However, subepicardial and
subendocardial spatial density of larger microvessels (200-500 μm) was selectively decreased
in HTN (all p=0.002 vs. normal, Figure 1G), but preserved by MCPs inhibition (Figure 1G).

Inflammation and Remodeling
In HTN, myocardial MCP-1 expression significantly increased mainly in the intramyocardial
arterial wall, but was inhibited by bindarit (p=0.0004, Figure 2), as was perivascular
macrophage accumulation (p<0.0001, Figure 2), while IL-6 expression in HTN remained
elevated (Figure 2). COX-1 and COX-2 expression was similar among the groups. Myocardial
fibrosis in HTN (ANOVA p=0.003) was significantly ameliorated (p=0.04 HTN vs. HTN
+bindarit), but not abolished, by bindarit (Figure 3A, D). Myocyte cross-sectional area
increased in HTN (p=0.02 vs. normal) and HTN+bindarit (p=0.02 vs. normal) (Figure 3B, E)
but was not different between them (p=0.46 vs. HTN), indicating no significant effect of
bindarit on myocyte hypertrophy. Contrarily, microvascular media-to-lumen ratio increased
from 0.08±0.01 in normal to 0.15±0.01 in HTN (p=0.006) and decreased in HTN+bindarit (to
0.10±0.02, p<0.05 vs. HTN, Figure 3C, F), suggesting inhibition of microvascular wall
thickening.

The endothelial and perivascular expression of pMYPT1 increased in both HTN and HTN
+bindarit (p=0.02 and p=0.01 vs. normal, respectively), suggesting that bindarit may not
influence the ROCK pathway (online supplement, Figure 1SA, D). Endothelial ZO-1
expression was also upregulated in HTN and HTN+bindarit (online supplement, Figure 1SB,
E, p=0.04 and p=0.03 vs. normal, respectively), but significantly decreased in bindarit-treated
compared to untreated HTN pigs (p=0.04, online supplement, Figure 1SC, F).

In addition, HTN increased both systemic and myocardial ET-1 level, which was preserved by
bindarit (Table 1, Figure 3). AT1R expression was also elevated in HTN16, but unaffected by
bindarit (p=0.24, Figure 3). On the other hand, myocardial eNOS expression was slightly but
significantly decreased in both HTN and HTN+bindarit (p=0.04 and p=0.02, respectively).
Superoxide production by DHE was elevated in HTN (p=0.02 vs. normal) and unaltered by
bindarit (p=0.7 vs. HTN, online supplement, Figure 2S). NAD(P)H oxidase p67phox
expression was increased in both HTN (p=0.01) and HTN+bindarit (p=0.04), while p47phox
remained unchanged. Therefore, bindarit did not ameliorate NAD(P)H oxidase-dependent
oxidative stress (online supplement, Figure 2S).

Cell culture studies have shown that MCP-1 dose-dependently and significantly increased
collagen-I and collagen-III production and TIMP-1 expression in HCF (Online Supplement,
Figure 3S).

Discussion
The current study shows that specific inhibition of MCPs in hypertension ameliorated the
increase in microvascular permeability and decrease in fractional vascular volume in response
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to increased cardiac demand, suggesting preserved microvascular integrity and endothelial
barrier function. These were accompanied by attenuated microvascular remodeling and
myocardial fibrosis, and by improved cardiac diastolic function. These results suggest that the
myocardial and microvascular changes induced by hypertension are partly mediated by MCPs
and functionally consequential.

HTN is often associated with activation of the renin-angiotensin system, ET-1, oxidative stress,
and decreased nitric oxide (NO) bioavailability.25, 26 HTN is additionally characterized by
inflammation and overexpression of MCPs, predominantly MCP-127, a critical mediator of
macrophage accumulation.26 Activated macrophages, in turn, produce many cytokines,
chemokines, growth-factors, and proteases to promote inflammation and facilitate cell
proliferation, extracellular-matrix turnover, and angiogenesis. Our previous studies
demonstrated that renovascular HTN increased both cardiac and renal MCP-1 protein
expression and oxidative stress.17, 25, 28 Furthermore, HTN altered myocardial microvascular
function and impaired myocardial perfusion responses to challenge.2, 28, 29 In this study we
assessed several inflammatory pathways potentially activated in HTN. COX-1 and COX-2
expression remained unchanged, arguing against their involvement in myocardial alterations
in our model. IL-6 increased in HTN but remained elevated in HTN+bindarit, while MCP-1
expression decreased in HTN+bindarit in association with improvement of many aspects of
microvascular function and structure, suggesting that it might contribute to these alterations.

Hypertension induces myocyte hypertrophy, interstitial fibrosis, and consequent cardiac
stiffness, which are implicated in increased LVMM and impaired diastolic function (e.g.
decreased E/A). In this study MCPs synthesis inhibition improved cardiac diastolic function,
likely by ameliorating cardiac stiffness and increasing compliance. Interestingly, our HCF
study suggests that MCP-1 can directly increase myocardial matrix production and fibrosis,
thus its action is not necessarily mediated only by monocyte recruitment. Bindarit decreased
interstitial fibrosis, but not myocyte hypertrophy, likely because blood pressure remained
elevated, resulting in incomplete improvement of LVMM. Our observations are underscored
by previous studies in rodents, in which MCP-1 was inhibited with anti-MCP-1 neutralizing
antibody or indirectly reduced using ROCK inhibitor, antioxidants and inactivation of
CCR-2.30-33

Importantly, bindarit is able to modulate the levels and attenuate over-production of MCPs in
response to inflammation, without entirely blocking their physiological activity or
inadvertently increasing MCPs expression, as observed with anti-MCP-1 antibody.34 In line
with previous studies showing that bindarit dose-dependently inhibits MCP-1/CCL-2
production and is quite selective among chemokines14, 35, we found that in our model it did
not decrease the upregulated IL-6 expression.

Interestingly, we observed that HTN increased MP and decreased FVV in response to
adenosine, suggesting vascular dysfunction possibly mediated by inflammation. Hypertension
initially evokes coronary endothelial dysfunction and abnormal myocardial perfusion
regulation, and subsequently vascular remodeling and dysfunction.4 Endothelial barrier
function is important for maintaining vascular integrity and regulation of vascular tone. MCP-1
directly increases blood-brain barrier permeability in inflammation by regulating the
expression and rearranging endothelial tight junction proteins36, 37 that maintain endothelial
barrier integrity. We found increased expression of the endothelial tight junction component
ZO-1, a membrane protein that links the actin cytoskeleton and tight junctions.38 Its endothelial
overexpression in HTN may imply tight junction reassembly, a compensatory effect that may
reflect disruption of endothelial barrier integrity.39 Notably, subtle changes in barrier function
may be disclosed only during challenges like increased cardiac demand.40 ROCK also mediates
some of the effects of MCP-1 on brain MP37, but does not seem to be a major modulator of
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myocardial MP in our model, because bindarit improved MP without changing MYPT (and
hence ROCK activity). Nevertheless, other tight-junction proteins might contribute to loss of
endothelial integrity in HTN.

Myocardial FVV decreases during cardiac challenge in HTN also indicate microvascular
dysfunction, possibly consequent to microvascular wall remodeling and architectural
changes4. Indeed, microvascular rarefaction is commonly observed in HTN. We observed a
selective decrease in density of larger microvessels (200-500 μm).25 The unchanged total
myocardial microvascular density in HTN pigs may reflect an earlier increase in the number
of small microvessels needed to support developing LV hypertrophy.2, 4, 25, 28 Prevention of
microvascular rarefaction by bindarit in HTN is likely through decreased myocardial and
perivascular fibrosis.41 In addition, we observed in HTN increased media-to-lumen ratio,
which possibly precedes luminal narrowing.25 The improvement achieved by MCPs inhibition
implicates them in microvascular remodeling in HTN. Overall, MCPs inhibition decreased
inflammation-induced vascular remodeling, rarefaction, and dysfunction, and blunted the
reactive decrease of FVV in response to adenosine.

In addition to microvascular remodeling, myocardial vascular volume (FVV) could be affected
by changes in vascular tone. Adenosine normally induces vasodilatation that involves both
endothelial-dependent and –independent mechanisms.2 During endothelial dysfunction, a
decrease in NO and increased abundance of vasoconstrictors (e.g. ET-1) may lead to
paradoxical vasoconstriction.2, 29 By upregulating ET-111 MCPs might contribute to
endothelial dysfunction in HTN. This notion is underscored by our observation that MCPs
blockade decreased systemic and myocardial ET-1 levels and ameliorated the decrease in FVV
in response to cardiac demand. Notably, since FVV responses improved without altering eNOS
expression or oxidative stress, a decrease in NO availability was unlikely a critical factor.
Adenosine infusion may amplify a decrease in FVV by disclosing functional impairments, a
failure in capillary recruitment, or microvascular rarefaction in HTN.42

Systemic PRA increases shortly after induction of experimental renovascular HTN,17, 18 but
in the chronic phase returns to basal levels43 and may sustain HTN by activating secondary
mechanisms. However, the effects of bindarit in our model were not mediated by inhibition of
the renin-angiotensin-aldosterone system, which remained unchanged (PRA, myocardial
AT-1R, or circulating aldosterone levels). Because MCP inhibition did not significantly blunt
oxidative stress or the renin-angiotensin system, systemic hypertension remained unabated,
and the beneficial effects of bindarit on cardiac function were likely derived from direct
attenuation of cardiac remodeling (Figure 4). Further studies are needed to dissect the potential
interaction of MCPs with the renin-angiotensin system.

Our study was limited by the use of a relatively small number of young pigs. We also used in
all groups two fast-CT scanners, which provide comparable assessments of MP and FVV.7 It
is possible that some of the tissue studies sampled some unbound circulating proteins, but
exanguinated myocardium contains little blood volume, and the preparation procedure was the
same for all the groups. Therefore, the fraction of retained unbound cytokines might be
negligible and comparable among the groups, and result in minimal interference with our result
interpretation. Bindarit inhibits MCPs 1, 2, and 3, but MCP-1 is the key member of the MCP
family that has been most commonly and directly linked to cardiovascular disease and
hypertension, so that the effects of the drug are likely attributable mainly to blockade of MCP-1.
Nevertheless, we cannot exclude the possibility that inhibition of MCPs 2 and 3 contributed
to these benefits. Additionally, the dose of bindarit may incompletely inhibit MCPs expression
and consequently introduce some variability.
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In summary, we observed that hypertension induces myocardial inflammation, fibrosis, and
vascular remodeling, and impairs vascular integrity. These effects are partly mediated by the
endogenous inflammatory mediator MCPs, and its inhibition attenuated LV hypertrophy and
improved cardiac diastolic function (Figure 4). Inhibition of MCPs could therefore be a
potential therapeutic target for the downstream end-organ damage induced by hypertension,
such as hypertensive cardiomyopathy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cardiac diastolic function evaluated by the ratio of left ventricular early (E) to late (A) filling
rates, myocardial microvascular permeability (MP) and fractional vascular volume (FVV)
assessed by the Patlak graphical analysis method using fast CT, and microvascular density
assessed by micro-CT. A. Cardiac diastolic function evaluated by E/A in normal, hypertension
(HTN), and HTN+bindarit pigs (n=6 each). E/A ratio significantly decreased in HTN compared
to normal and increased in HTN+bindarit compared to HTN. B. Representative Patlak plot
from which MP (slope) and FVV (y-axis intercept) are calculated. C, D. MP and FVV at
baseline (BL, black bars) and during adenosine (Ade, white bars) infusion. Basal anterior wall
myocardial MP and FVV were similar among the groups. Infusion of adenosine induced in
HTN a significant increase in MP and decrease in FVV compared to baseline, which were both
blunted by bindarit. E. Representative micro-CT images of myocardial microvessels. F, G.
Quantitation of microvascular density. There was no difference among the groups in overal
microvascular transmural density (from 20 to 500μm in diameter). However, the spatial density
of larger microvessels (200-500 μm) was selectively decreased in HTN compared to normal
in both the subepicardium and subendocardium, but was significantly preserved by bindarit. *
p<0.05 vs. normal, # p<0.05 vs. baseline (BL), † p<0.05 vs. HTN and Ұ p=0.06 vs. normal.
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Figure 2.
The expression of myocardial MCP-1, its receptor CCR2, cyclooxygenase (COX)-1, COX-2,
IL-6, and macrophage infiltration in normal, hypertension (HTN), and HTN+bindarit pigs
detected by immunohistochemistry. A. Representative images (magnification ×40) of MCP-1
and macrophage staining (brown, arrows), showing increase in HTN and decrease by bindarit.
B. Western blots, showing increased expression of MCP-1, CCR-2 and IL-6 in both HTN and
HTN+bindarit. COX-1 and COX-2 expression was similar among the groups. C. Quantitation
and densitometry normalized by GAPDH. * p<0.05 vs. normal and † p<0.05 vs. HTN.
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Figure 3.
Myocardial fibrosis (A), myocyte cross sectional area (B), and vessel wall to lumen ratio (C)
quantified in trichrome, H&E, and SMA stained slides (magnification ×40) and myocardial
expression of ET-1 and AT1R detected by western blotting from normal, hypertension (HTN),
and HTN+bindarit pigs. Myocardial fibrosis was increased in HTN compared to normal, and
significantly ameliorated, but not abolished, by bindarit (D). Myocyte cross sectional area was
increased in both HTN and HTN+bindarit compared to normal, but was not different between
the two groups (E), indicating that bindarit had no effect on myocyte hypertrophy.
Microvascular media-to-lumen ratio increased in HTN compared to normal and decreased in
HTN+bindarit compared to HTN, yet remained higher than normal (F). Myocardial tissue ET-1
level significantly increased in HTN, which was significantly preserved by bindarit; AT1R
expression was elevated in HTN, but unaffected by bindarit (G, H). * p<0.05 vs. normal
and † p<0.05 vs. HTN.
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Figure 4.
A schematic outlining the pathways blocked by bindarit that are likely responsible for its effects
to improve cardiac and myocardial microvascular function. However, MCP inhibition did not
substantially blunt oxidative stress or the renin-angiotensin system, which drive systemic
hypertension in this model.
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Table 1
Systemic and cardiac function and myocardial microvascular density (mean±SEM) assessed by micro-CT in normal,
hypertension (HTN), and HTN+bindarit pigs.

Normal
n=6

HTN
n=6

HTN+bindarit
n=6

Mean arterial pressure (mmHg) 101±4 120±5* 124±9*
Change post-adenosine (%) -6±1# -14±5# -17±2*#
Heart Rate (bpm) 75±7 67±4 74±3
Plasma Renin Activity (ng/ml/hour) 0.17±0.03 0.17±0.02 0.16±0.06
Systemic Aldosterone (pg/ml) 684±68 1194±156* 971±139*
Endothelin-1 (pg/ml) 5.6±0.2 7.9±0.8* 5.9±0.3†
Stroke Volume (ml) 54±5 46±3 47±5
Cardiac Output (Liter/min) 3.5±0.4 2.8±0.1 3.4±0.5
E/A Ratio 1.98±0.17 1.04±0.10* 1.47±0.15†
LV Muscle Mass / Body Weight (g/kg) 2.14±0.16 3.43±0.16* 2.79±0.16*†

*
p<0.05 vs. normal;

†
p<0.05 vs. HTN;

#
p<0.05 vs. baseline

MAP: mean arterial pressure; LV: left ventricle
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