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I. Introduction
Progress in the structural biology of proteins comes from both experimental and theoretical
efforts. Computational methods are capable of delivering fast structural information, ranging
from low-resolution protein structural class definition to high-quality information based on
homology modeling. Experimental methods that concentrate on obtaining high-resolution
information are hampered by inherent time cost, and lack the capacity to provide low-resolution
structural information expediently. We present a comprehensive overview of low-resolution
structural determinants to correlate NMR-based chemical shift data with protein structural data
in order to provide meaningful information expeditiously; i.e., prior to the intensive effort
required to perform complete resonance assignments and, from these, derive three-dimensional
structural information. With a historical synopsis of developments in the field, we present the
underlying concepts, placing emphasis on the nuclear chemical shift, protein secondary
structure, and the physical connection between them. Results from this effort have
demonstrated that fast, reliable protein structural information can be obtained directly from
NMR spectra prior to the complete determination of high-resolution three-dimensional
structures. These methods do not provide an alternative to traditional spectroscopy-based
techniques, but rather compliment them by providing low-resolution structural information
very quickly. We discuss the degree to which chemical shifts of a particular nuclear species in
the protein backbone can be used as a low-resolution structural parameter that correlates with
a variety of protein structural parameters.

The nuclear chemical shift, first observed in nuclear magnetic resonance (NMR) spectra in
1950 by Proctor and Yu for the 14N nuclei [1] and by Arnold et al in 1957 for the 1H nuclei
[2], is among the most reliable known indicators of biomolecular structure. The development
of most modern experimental pulse sequences is driven by the goal of increasing the resolution
and sensitivity with which chemical shifts can be measured. In addition to structural
information [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], chemical shifts provide detailed
information about hydrogen bonding interactions, ionization and oxidation states, the ring
current influence of aromatic residues, and the nature of hydrogen exchange dynamics[14].
Several excellent review articles describe a variety of experimental and computational methods
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to correlate chemical shifts with protein three-dimensional structural information [14], [15],
[16], [17], [18], [19], [20]. However, these methods rely on the determination of the chemical
shift of each atomic resonance in the molecule [21], which remains a challenging and time
consuming procedure, despite efforts to automate the process [22], [23], [24], [25], [26], [27],
[28], [29]. Moreover, it is not always possible to obtain complete assignments for a particular
data set, especially for proteins undergoing conformational changes.

In addition to advances in traditional NMR-based methods, recent efforts have engendered
important new approaches to investigating the structural biology of proteins. Two examples
are structural proteomics and empirical correlation methods. Structural proteomics seeks to
screen large numbers of proteins rapidly to identify new structural folds and to select specific
sets of molecules for complete structural investigation [30], [31]. Empirical correlation
methods, one example of which is homology modeling [32], [33], seek to define empirical
relationships between experimental structural information and other known physio-chemical
parameters in order to predict protein structure, function, and dynamics. The development of
correlation methods has been fueled over the past decade both by the need for high-throughput
strategies and by the advent of readily accessible, well-organized public repositories that make
possible the efficient querying and mining of an unprecedented quantity of experimental
information. The original, and perhaps best-known, repository of this kind is the Research
Collaboratory for Structural Bioinformatics (RCSB) [34], [35], [36], [37], originally developed
by Brookhaven National Laboratory, which became available to the public in 1971. Since that
time, web-based repositories have become increasingly sophisticated, and are now a
cornerstone of many structural biology researches.

Here, we present a comprehensive overview of empirical correlation methods whose aim is to
correlate NMR-based chemical shift data with protein structural data in order to provide
meaningful information expeditiously; i.e., prior to the intensive effort required to perform
complete resonance assignments and, from these, derive three-dimensional structural
information. We will begin with a historical synopsis of developments in the field, dating to
almost 20 years ago, that includes a general discussion of fundamental, underlying concepts,
placing emphasis on the nuclear chemical shift, protein secondary structure, and the physical
connection between them. We will then focus on a recent effort by us to develop methods that
establish and refine an empirical correlation between averaged chemical shift (ACS) and
protein secondary structure content (SSC) by extensively mining chemical shift information
from the BioMagResBank (BMRB) [38] and protein structural information from the PDB. We
also present an overview of empirical methods for a range of applications, such as prediction
of redox-state of the cystines or identification of cis-Prolines. Results from this effort have
demonstrated that fast, reliable protein structural information can be obtained directly from
NMR spectra prior to the complete determination of high-resolution three-dimensional
structures. These methods do not provide an alternative to traditional spectroscopy-based
techniques, but rather complement them by providing low-resolution structural information
very quickly. This makes possible the high-throughput characterization of protein secondary
structural content, and, thereby, the large-scale screening and integration of data required to
accelerate efforts in fields such as structural proteomics. Further development of such empirical
correlation methods for this purpose will potentially also lead to new experimental and
computational protocols.

2. Empirical methods for correlating nuclear chemical shifts with protein
structural data: Secondary structure index

NMR chemical shifts provide detailed information on the structure and electronic properties
of biological molecules in the solution, noncrystalline and crystalline states. Chemical shifts
are perhaps the most information-rich parameter obtainable from NMR; however, the physical
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basis for particular nuclei assuming specific chemical shift values based on the conformational
state of a biomolecule is not fully understood. Although, ab initio or density functional
calculations [39], [40], [41] for small peptide units provide some insight into the relevant
mechanisms, at present the tools of computational chemistry remain insufficient to determine
the high-resolution structure of a protein purely from chemical shifts. Consequently, we must
rely upon predictive models that determine whether there exist correlations between three-
dimensional structures and chemical parameters obtained from NMR. In the absence of a
reliable theory, predictive models must follow semi-empirical or empirical approaches.
Empirical methods use databases of previously assigned homologous molecules to predict
chemical shifts of new systems. This approach is promising, particularly because the number
of assigned spectra available in electronic databases continues to increase; however, it requires
a reasonable level of similarity between the target and reference molecules. New combinations
of semi-empirical methods have also been developed recently [42] thus paving ways to novel
methods of protein structure determination from chemical shifts [43], [44], [45]. Empirical and
semi-empirical methods are expected to play a significant role in NMR based structure
determination in the near future.

2.1. Secondary chemical shifts in proteins
One intuitive assessment that can be made with some reliability from the chemical shift
dispersion of an NMR spectrum (e.g., the 1H spectrum of a protein) is whether the associated
structure is folded or disordered. Making this determination continues to be the main goal of
research efforts concerned with correlating chemical shifts and protein structure. Researchers
soon learned that such straightforward and simple methods tend to predict and contribute to
the final high-resolution structures. Obtaining high-quality NMR spectra is a relatively easy
task, and a requisite first step toward reducing chemical shift values to a meaningful structural
parameter. The empirical-statistical approach capitalizes on the vast and rapidly increasing
amount of information contained in repositories of protein chemical shift data, combining these
data with three-dimensional structural information to establish empirical correlations. The
clear-cut trend between ‘1H chemical shifts and secondary structure in proteins,’ which led to
the definition of a ‘secondary structure shift,’ was initially recognized by Dalgarno et al. [6].
This term is also referred to as ‘conformation-dependent shift’ [46] or simply ‘secondary
chemical shift.’ The secondary chemical shift  of a particular protein nucleus ‘i’ is defined
as

[1]

Here,  is the observed chemical shift and  is the corresponding ‘random coil’ value.
Though alternate definitions include a correction for ring current shifts

( ), where  is the ring current contribution [12]), the general definition
expressed by Eq. [1] accounts through  for any other variations introduced by the protein.

2.2. Early efforts toward low-resolution structural information
Initial attempts to correlate chemical shift information with protein structure were carried out
in the 1960s by Jardetzky and co-workers [47]. Subsequently, several groups [6], [48], [49],
[50] explored the possibility of correlating protein chemical shift data with elements of regular
secondary structure (helices, sheets, and turns). Szilagyi, in his comprehensive historical
perspective of chemical shifts in proteins [14], credits Dalgarno et al. [6] for being the first to
observe a clear-cut trend relating chemical shifts and secondary structure in proteins. On the
basis of early chemical shift data from two proteins (bovine pancreatic trypsin inhibitor (BPTI)
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and partial assignments from hen-egg lysozyme), these authors noted that secondary chemical
shifts of α-carbon protons tend to be shifted up-field for α-helical and downfield for β-sheet
regions. However, progress in this area has been slow since 1987, when Jimenez et al., [51]
reported secondary structure shifts of − 0.35 ppm, on average, for Hα resonances in helices,
and + 0.40 ppm, on average, for Hα resonances in β-sheets based on chemical shift data from
the fully assigned (1H) spectra of five proteins. The work of Wishart and co-workers [13]
provided the first extensive compilation and statistical analysis of chemical shift data in
proteins, facilitating a resurgence of empirical methods for correlating chemical shifts to
various structural parameters of proteins, and forming the precursor to assignment-independent
NMR techniques to determine the secondary structure content of proteins. This “circular
dichroism-like” (CD-like) approach has been applied successfully to a number of proteins.

In the method developed by Wishart et al. [13], the normalized integration of amide resonances
in the region between 8.20 and 9.00 ppm in a 1D proton NMR spectrum (recorded H2O
solution) provides the number of residues in coil regions of the protein (Figure 1). The number
of residues in β-sheets is equal to twice the value of the normalized integral of low-field shifted
resonances between 4.85 and 5.90 ppm (Figure 1,). The number of residues in a helical
conformation is then obtained as the difference: = (number of β-sheet residues) − (number of
coil residues). The 2D method relies on counting cross-peaks in the fingerprint (HN/Hα) region
of a simple 1H COSY or DQF (double-quantum filtered)-COSY spectrum. The number of
cross-peaks (〈C〉) in the map region 8.2–9.00 ppm (ω2) and 3.0–6.00 ppm (ω1) is proportional
to the number of residues in the random coil state; Ncoil = 0.9 × 〈C〉. The number of cross peaks
(〈B〉) found in the 8.20–9.00 ppm (ω2) and 4.85–5.90 ppm (ω1) is equal to half the number of
residues in the β-sheet conformation; Nβ = 2.0 × 〈B〉. The number of residues in a helical
conformation can then be determined by counting cross-peaks (〈A〉) in the region 8.20–9.00
ppm (ω2) and 3.4–4.10 ppm (ω1). This number is to be corrected by the number of Gly residues;
Nα = 2.0 × [〈A〉 − 2.0 number of Gly]. These regions are indicated in Figure 1 by various
shades. It must be noted that the figure corrects for the double counting of peaks lying in overlap
regions. Estimates of secondary structure elements based on this method agree surprisingly
well with those from X-ray crystallography or from NOESY analysis, and it has been suggested
[13] that this simple NMR ‘rule of thumb’ gives significantly better estimates than does CD
or FT-IR. It is important to note that when this important work appeared in 1991, the field of
structural biology was rapidly evolving. In light of the structural biology tools available today,
we have reanalyzed the results of Wishart et al. [13], and present a summary of our findings
in Figure 2 and Table 1.

In 1991, it is indeed true that peak counting to determine protein secondary structure content
in the absence of resonance assignments was a superior method. Based on the original
estimation of secondary structure content from three-dimensional structures, a linear
correlation of 0.89 and 0.94 was obtained for determining the helical and sheet content,
respectively, from the peak counting method. However, using tools such as PROMOTIF
[52], a generally accepted standard for secondary structure estimates, we find the correlation
for estimating both helical and sheet structural contents is 0.74. Whilst the peak counting
method has demonstrated utility, it has not been widely adopted; primarily it utilizes
homonuclear spectra, which tend to get crowded for proteins of modest sizes. At the same time,
this procedure has led to one of the most widely used methods, the chemical shift index (CSI),
which utilizes both homonuclear and heteronuclear (13C) chemical shift information (vide
infra).

Recently, Moreau et al., [53] have presented a method similar to the above mentioned approach
using heteronuclear (13C and 15N) chemical shifts in addition to the 1H chemical shifts. This
method is called PASSNMR (Prediction of the Amount of Secondary Structure by Nuclear
Magnetic Resonance). The goal of this approach and many of the other methods discussed in
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this article is to predict the amount of secondary structure in proteins for structural genomics
applications. Overall reliability of the PASSNMR approach for helical, sheet and coiled
structures are 72%, 74% and 42%, respectively and the using only the 15N-1H data, these values
drop to 49% for helix and 50% for sheets [53].

2.3. The chemical shift index method
The chemical shift index (CSI) is the first user-friendly tool for converting secondary chemical
shifts to useful protein structural information [54], [55]. This method was introduced to identify
the secondary structural element of each residue in a sequence-dependent manner. Prior to CSI,
it was necessary to obtain the complete set of sequence-specific assignments to even get an
initial glimpse of the secondary structure. The original CSI method, based on the experimental
chemical shift values of a set of proteins, some empirical adjustment, and intuition, was used
to develop a reference table of chemical shifts. Table 2 reproduces the values reported in the
original references [55], [56]. The observed chemical shifts of the particular nuclei are then
compared with the respective reference values using a set of rules. The method assigns three
indices, −1, 0, or 1, depending on whether the observed chemical shift is near the average value,
or at one of the extremes. Consecutive occurrences of like indices are used to identify the
presence of secondary structure. To further increase accuracy, a jury system averages
assignments from multiple chemical shifts (1Hα, 13Cα, 13Cβ and 13C′) to arrive at a consensus
assignment.

For example, a 1Hα chemical shift that is greater or less than the CSI reference value ±0.1 ppm
(Table 2) is assigned an index value of + 1 or − 1, respectively. Chemical shifts within the
range ±0.1 ppm are assigned an index value of zero. Any group of four or more − 1 (not
necessarily consecutive) indices uninterrupted by a + 1 identifies a helix and, likewise, any
group of three or more consecutive + 1 indices identifies a β-strand. All other combinations
are designated as coil. In other words, the selection criterion for secondary structure
identification is set to exceed 70% of the ‘local density’ of CSIs over a window of five (for
helices, 4/5 = 80%) or four (for sheets, 3/4 = 75%) residues. Termination points of helices or
β– strands are defined as being either at the first appearance of a CSI value of opposite sign to
an adjacent, high ‘local density’ set of values, or at the first appearance of two consecutive
zero-valued CSIs. The procedure was claimed to be accurate to 90–95% after testing it on about
50 proteins [54]. Since its original description, the CSI method has been refined to account for
joint probability by defining ‘consensus’ CSI values according to a simple majority rule (two
out of three or three out of four) when more than two chemical shift indices are available
[56]. This improvement has substantially increased the predictive power of the method.

The reliability of predictions based on the CSI method critically depends on the threshold
values provided by the reference chemical shifts (Table 2). Though a quick comparison of these
values with their respective random coil values might suggest approximate agreement (vide
infra), some of the empirical adjustments made to provide a best fit to observed secondary
structure can highly skew the distribution of chemical shifts for some residues in some
structures.

2.4. Alternate methods to chemical shift index
CSI-based determination of residue-specific secondary structure is straightforward, and has
become routine. NMR data processing software, such as NMRView [57], [58], allows easy
implementation of these procedures following the chemical shift assignment process. In the
last few years, several alternative methods have been developed that use a range of novel
computational tools ranging from probability-based index identification to neural network
programming. These methods include, chronologically: (1) probability-based secondary
structure identification (PSSI) [59]; (2) secondary structure from chemical shift and sequence
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(PsiCSI) [60], (3) prediction algorithm for amino acid types with their ;secondary structure in
proteins (PLATON) [61]; (4) protein energetic conformational analysis from NMR chemical
shifts (PEACAN) [62], and (5) a two-dimensional cluster analysis method referred to as 2DCSi
[63]. Here, we briefly describe these methods in turn, and discuss some of the advantages they
offer relative to conventional CSI-based approaches.

2.4.1. Probability-based secondary structure identification (PSSI) [59]—PSSI
assigns the secondary structure type (β-strand, coil, or α-helix) to each amino acid on the basis
of the joint probability, derived from the observed 1HN, 15N, 1Hα, 13Cα, 13Cβ and 13C′
chemical shift data corresponding to each structure type. Based on their observed chemical
shifts, nuclei are associated with particular secondary structures in a two-step process. In the
first step, a joint probability is defined. Given δn, the chemical shift value of a particular nucleus
‘n’ in amino acid ‘i’, the secondary structure type of the amino acid is ascribed by evaluating
the joint probability of the three secondary structure types, Ps,i, given by

[2]

Where Fs,j represents the probability for amino acid i at the secondary structure type s (s= α-
helix (α), β-strand (β) or coil (C)). Gs,j is given by a Gaussian distribution

[3]

Where, δ̄n,s, j and σn,s,i are the center and width of the Gaussian distribution. A secondary
structure type is initially assigned based on the joint probability of each type (e.g., s=α-helix,
if Pα,i > PC,i and Pα,i > Pβ,i). The total probability is also set to 1 so that the residues will be in
one of the three secondary structures. In the second step, which is optional, the resulting
probability values are smoothed or filtered. For example, if a local density of either a β-strand
or a coil exceeds one-half for a five-residue window, its secondary structure type is adjusted;
ββCβC will be adjusted to βββββ (if the P value of the last residue > 0.35) or ββββC (if P <
0.35). Other rules for the end residues of a β-strand or α-helix, and short separated segments,
can also be employed [59]. Global assessment of the PSSI method has suggested a significant
improvement in both accuracy (~88%) and confidence over a set of 36 proteins. A JAVA
interface developed by one of the authors (Y.J. Wang) is also available
http://pronmr.com/yunjunwang_files/yjw_pssi.html).

2.4.2. Secondary structure from chemical shift and sequence (PsiCSI) [60]—
PsiCSI combines both chemical shift-based and sequence-based methods to further increase
the accuracy of secondary structure assignments [60]. In addition, it is designed to best utilize
all the available data. PsiCSI begins by refining the CSI methodology; it assigns three separate
potentials (scaling) ranging from 0 to 1 to reflect the relative likelihood of a given chemical
shift value being associated with a given state of secondary structure (CSI assigns three
indices). This approach is similar to the PSSI approach, though the actual method of calculating
the potential differs. Like CSI and PSSI, PsiCSI reduces noise by polling nearby shifts. PsiCSI
examines a small window of shifts (three residues) centered on the residue in question.
Potentials derived from these shifts, along with the estimated residue-dependent reliabilities
(i.e., probability of the assignment being correct) of these potentials, are fed into a first layer
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of neural networks to derive a second set of refined potentials. Multiple shifts are used to further
increase accuracy. Additional information from 15N shifts and from Psipred (secondary
structure prediction from protein sequence) [64], [65] predictions is also used. Rather than
utilizing a simple jury system, PsiCSI trains a second layer of neural networks. Every possible
combination of the available data for the residue (i.e., refined potentials from the first layer of
networks and Psipred potentials) is fed into separate neural nets. Reliabilities for each
combination are estimated, and the best-performing combination (for that residue type) is used
to provide potentials for the next layer of neural networks. Finally, as with Psipred, a last neural
net is used to take into account local interactions in a manner similar to that in which the first
layer of neural nets is used to average out chemical shift noise. However, because the accuracy
of the inputs at this stage is much higher, it is possible to utilize a much larger window (17 vs.
3 residues) to take into account more subtle interactions between distant residues. The most
reliable outputs from the second layer, along with the estimated reliabilities, are fed into this
final neural net to obtain the PsiCSI prediction.

PsiCSI achieves an accuracy of 89% (per residue), which is a significant improvement over
the 82.8% (z > 12) accuracy observed for CSI. A server to use PsiCSI with sequence and
chemical shift data is available from Samudrala’s group
(http://protinfo.compbio.washington.edu/psicsi/).

2.4.3. Prediction algorithm for amino acid types with their secondary structure
in proteins (PLATON) [61]—Prediction algorithm for amino acid types with their
secondary structure, or PLATON, uses a database query approach to predict the secondary
structure of a particular residue from its chemical shift values [61]. The method bases its
prediction on a database consisting of reference chemical shift patterns (CSP) from the assigned
chemical shifts of 51 proteins of known 3D structure. This reference CSP database is used for
extracting distributions of amino acid types, along with their most likely secondary structures,
for comparing single amino acid with query CSPs. The chemical shift pattern is a vector of
Booleans describing relative positions of chemical shifts, and is defined by an optional
combination of chemical shifts. The starting point for the definition of the CSP is the creation
of an N-dimensional chemical shift space. N is determined by the kind of nuclei for which
chemical shifts are available in the databases; for example, 13Cα, 13Cβ, 13C′, and 1Hα, or
subgroups of those. The CSP is assigned “+” or “−” elements, depending on the position of
the investigated chemical shift with respect to a reference value, for all nuclei considered. The
positions of the elements are defined by the axes of the chemical shift space; for example, CSP
(13Cα, 13Cβ, 13C′) = + − +. The chemical shift value of an amino acid is compared to the value
at this point. If the observed value is larger, a “+” is assigned, and if it is smaller, a “−” is
assigned. Hence, for all dots in this selection, the CSP (13Cα, 13Cβ, 13C′) = + + + is obtained.
The chemical shift space can be further subdivided by introducing reference points into the
two halves of each dimension to allow for a distinction of otherwise identical CSPs. The new
reference value defines another coordinate system in the upper right quadrant. Practically, the
second and higher-order reference points are chosen according to a statistical analysis of all
amino acid species having the same three-digit CSPs in the original coordinate.

Results obtained for the 10 investigated proteins indicate that the percentages of correct amino
acid species in the first three positions in the ranking list range from 71.4% to 93.2% for the
more favorable penalty function. According to the authors, the advantage of this method over
those that rely on averaged chemical shift values lies in its ability to increase database content
by incorporating newly derived CSPs, and therefore to improve PLATON’s performance over
time. The source code for PLATON is available from one of the authors (D. Laudde,
http://www.bioforscher.de/).
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2.4.4. Protein energetic conformational analysis from NMR chemical shifts
(PECAN) [62]—Protein energetic conformational analysis from NMR chemical shifts
(PECAN) is an energy model that predicts elements of secondary structure by optimizing a
combination of sequence information and residue-specific statistical energy functions to yield
energetic descriptions. The energetic model presents a framework for combining the
interdependent information from sequence and chemical shifts in a manner that optimizes their
joint predictive potential. PECAN uses a database containing ~37,000 residues from 310
protein sequences to construct a statistical potential that is used to predict the secondary
structure. An additional, non-overlapping database containing ~12,000 residues from 97
protein sequences is used to determine the model that is independent of the dataset. Equivalent
unbiased criteria were used in selecting the members of each dataset, which consists of proteins
with known structure and assigned chemical shifts. According to the authors, there is a marked
increase in accuracy in the predicated secondary structure. The reader is referred to the original
paper-describing PECAN (and supporting information) for details of the mathematical model.
A web server is available at: http://bija.nmrfam.wisc.edu.

2.4.5. Two-dimensional cluster analysis method 2DCSi [63]—2D CSI (“two-
dimensional cluster analyses of chemical shifts to identify protein secondary structure”)
analyzes paired, two-dimensional scattering diagrams of six chemical shift data sets; i.e., six
different chemical shifts (1Hα, 1HN, 13Cα, 13Cβ, 13C′, and 15NH) are used to identify the
secondary structure of amino-acid residues in proteins. In a three-step approach, first the data
sets of chemical shifts and protein secondary structures are collected and cross-referenced.
Second, 15 cluster scattering diagrams are plotted for paired chemical shifts of the six data
sets, and the clusters as a function of the secondary structure are examined. Third, score
matrices created for each of 20 amino acids are used to determine the secondary structure of
the residues. The probability score is estimated based on two parameters: P r(ξ| χ1, χ2), the
probability of a ξ state for observed chemical shifts χ1 and χ2, and τ(χ), the sum of all 14-
probability scores. The pair, (χ1,χ2), can take values: χ2=cβ, χ1=cα, c′, nh, hα, or hn; χ2=cα, χ1=
c′, nh, hα, or hn; χ2=c′, χ1= nh, hα, or hn; χ2=nh, χ1= hα, or hn; and χ2= hα, χ1= hn. Here, cα, cβ,
c′, nh, hα and hn are the chemical shift values of 13Cα, 13Cβ, 13C′, 1HN, 1Hα, and 15NH,
respectively. In addition, ξ can be helix (H), extended In addition, ξ can be helix (H), extended
structure (E), or random coil (C), defined as neither helix nor extended structure. From the
two-dimensional cluster analysis, three situations of Pr (ξ| χ1,χ2) can arise: (i) (χ1,χ2) falls
outside all clustered elliptical areas; (ii) (χ1, χ2) falls onto one and only one elliptical area; (iii)
(χ1, χ2) falls onto an intersection area of two ellipses. A set of rules is then used to make the
prediction. These rules are: (a) add up probability scores of each column in the scoring matrix
to obtain the total score τ(χ) for secondary structure states, and (b) identify any secondary
structural state ζ if and only if τ(χ) ≥ 0.8×λ, where 0.8 represents the decision threshold (decided
based on the target data of 601 entries), λ is the total number of resonances used.

2DCSi uses a dataset containing ~40,706 residues from 336 non-redundant proteins. The
performance of 2DCSi is compared [63] with that of CSI and psiCSI using a set of 45 reference-
corrected proteins for the prediction accuracy of three secondary structure states. Though the
authors mention web-server (http://www.ncku.2dsci.idv.tw/) is available for using 2DCSi, it
is not possible to access the program.

2.4.6. Comparison of the methods—In order to compare the performance of the different
methods, we calculated the secondary structure index (+1, 0 and −1, to represent β-strand, coil
and α-helix, respectively) of a small protein (Protein G). Figure 3 shows the secondary structure
index calculated using: (a) CSI, (b) PSSI, (c) psiCSI and (d) PECAN. We are unable to make
a similar calculations using 2DCSi and PLATON as these codes were not available at the time
of this study at the URLs mentioned in the respective manuscripts. The chemical shift values
of protein G were obtained from the biological magnetic resonance bank (BMRB) (access
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number bmr5654.str). Figure 3 also shows the secondary structure estimated from an NMR-
determined three-dimensional structure (the average structure corresponding to PDB ID 1GB1)
using the Kabsch-Sanders algorithm in MOLMOL [66]. The secondary structures estimated
by these respective methods are also superimposed on the three-dimensional structure in Figure
3. The codes for the above-mentioned programs were used with no further modification. Protein
G is one of the most extensively studied proteins by either NMR or X-ray crystallography
[67], [68], [69], [70]. It has 56 residues and is classified as an alpha and beta (α+β) protein
[71], [72]. One important feature of the comparison is that no two methods give the same
results, likely because their criteria for secondary structure identification based on the chemical
shift data are inherently different. Therefore, it is important to be aware of how each method
determines the secondary structure, and to exercise caution when using this information as a
structural constraint upon 3D structural models. In general, the methods exhibit a broad
consensus as to the location of most helix and strand core segments in protein structures;
however, the termini of the segments are inconsistently defined.

In our experience, in addition to the choice of algorithm, the choice of reference chemical shift
(often referred to as the random coil chemical shift) used to determine the secondary chemical
shift itself can introduce significant variation in secondary structure estimations. This issue is
addressed in the following section.

2.5. Effect of reference chemical shifts on protein secondary structure estimation
Reference (random coil) chemical shifts are integral to defining the secondary chemical shifts
in proteins that translate into protein secondary structure information. As discussed previously,
though various techniques for estimating protein secondary structure from chemical shift data
are widely employed and seem fairly reliable, at least for folded proteins, the choice of reference
chemical shift values can significantly alter the outcome of secondary structure estimation.
Random coil chemical shifts are the characteristic chemical shifts of the nuclei constituting the
amino acid residues of disordered proteins. The effect of a particular secondary structure on
the observed chemical shift known as the secondary chemical shifts are predominantly
influenced by non-covalent interactions, such as secondary structural changes, hydrogen
bonds, and aromatic stackings.

The primary goal of the work presented by Mielke and Krishnan [73] was to evaluate the effect
on secondary structure prediction of using differing random coil chemical shift reference tables
in conjunction with the CSI algorithm or, in principle, any of the alternative methods. The
secondary structure content (the total percentage of helical and sheet content) of a set of 396
folded proteins was calculated using the consensus CSI method. Corresponding structural
information was calculated from the three-dimensional structural coordinates of the proteins.
A comparison of the results obtained using five different reference tables for CSI calculations
to those obtained using a structure-based method allows a critical evaluation of the reliability
of the standard protocol for evaluating secondary structure from chemical shift information
using CSI.

Here we highlight some of these findings based on five different reference random coil
chemical shift value sets and their respective use in estimating protein secondary structure. In
general, the results show that none of the reference random coil data sets chosen for evaluation
fully reproduces the actual secondary structures. Among the reference values generally
available to date, most tend to be good estimators only of helices. On the basis of this, we
recommend the experimental values measured by Schwarzinger et al. [74], and the statistical
values obtained by Lukin et al. [75], as good estimators of both helical and sheet content.

List of reference chemical shift values—There are several reference random coil
chemical shift tables in the literature, and these can be classified into two types: those measured
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experimentally, and those derived statistically. The complete details of these tables, including
a description of the experimental conditions under which they were obtained, and their
respective references, are given in Table 3. Of the various references listed in Table 3, only six
different random coil chemical shift values that follow the recommendations of Wishart and
Nip [20] are used for further analysis. In what follows, these five sets are identified by the
initials of the first and last authors of the references as KW, WS, SD, LH, WJ and WM; Wüthrich
et al. [21], [76], Wishart and Sykes [19], [77], [78], Schwarzinger et al. [74], Lukin et al.
[75], Wang and Jardetzky [79], and Wang et al. [80], respectively (shown as block letters in
Table 3). Of these six datasets, our study uses the first five for the analysis. Of the five chosen
data sets, three were experimentally derived, while two were obtained using statistics-based
approaches. We have re-referenced KW and WS, originally referenced to TMS/Dioxane, to
DSS. Since reference table LH does not derive 1Hα values, the 1Hα reference values of Wang
and Jardetzky [79] were used for structure estimation using LH. Though the experimental
values of Plaxco et al. [81] are relevant for the comparison, these were not considered for the
analysis due to lack of heteronuclear chemical shift values.

Figure 4 shows the results of estimating the percentage of helical (left panels) and sheet (right
panels) content determined from the random coil chemical shift tables, SD and LH,
respectively, using CSI, versus the same content calculated from relevant three-dimensional
structures. The dashed lines in the figures correspond to an ideal correlation, and the solid lines
to an unbiased linear regression analysis of the data. Table 4 lists the coefficients (slope and
intercept) of the fit, and the correlation coefficients of the regression analysis. Chemical shift
values corresponding to protein atoms were obtained from BMRB NMR-STAR files [38]. Only
proteins with 50 or more amino acid residues were considered, since these are expected to
contain a significant amount of secondary structure. Further, only proteins with at least 70%
of their residues assigned chemical shifts were considered. As nearly all recently submitted
BMRB chemical shifts are referenced using the widely accepted standard procedure
recommended by Wishart [77], no re-referencing was performed. The consensus chemical shift
index (CSI) of the proteins was calculated using the procedure outlined by Wishart and Sykes
[55], using nuclei that are known to be highly sensitive to secondary structural changes
(1Hα, 13Cα, 13Cβ and 13C′). Structure files were obtained from
RCSB( http://www.rcsb.org/pdb/) [35], [82]. Since most BMRB NMR- STAR files identify
several corresponding PDB structures, it was necessary to examine each entry and choose by
inspection the most appropriate PDB ID number. When possible, the PDB ID corresponding
to the “best” NMR structure was chosen, though in some cases it was necessary to choose the
best X-ray structure (resolution < 2.5 Å). A total of 396 proteins was found to be suitable, and
downloaded from the Protein Data Bank. The total percentage of sheet and helix (α and 310)
was determined using the program PROMOTIF
(http://www.biochem.ucl.ac.uk/~gail/promotif/promotif.html) [52], which uses the atomic
coordinate files obtained from the RCSB. Uncertainties in the former were obtained by a linear
model bootstrapping procedure using the R statistical package (www.cran.us.r-project.org)
with 512 bootstrap replicates. Based on this analysis, several distinct features are observed.

Figure 4 contains several significant outliers along both the abscissa and ordinate. Points along
the abscissa are primarily representative of poor quality chemical shift data (inappropriate
references and assignments), while points along the ordinate might represent large
discrepancies between the chemical shift data and corresponding three-dimensional structures.
Though removing these outliers might have affected the correlations (Table 4), they were left
in the data set in order that our results reflect as accurately as possible the quality of available
experimental information.

The correlations (Figure 4 and Table 4) suggest that chemical shift-based methods for
predicting secondary structure content are better indicators of helical regions than sheet regions
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in proteins. This could be due to insufficient sensitivity of secondary chemical shifts for
identifying sheets. Ambiguity in the definition of a β-sheet, by contrast with that of an α-helix,
may also contribute to this error [83], [84]. In calculating the secondary structure content from
three-dimensional coordinates, we have used the program PROMOTIF, which uses the DSSP
(database of secondary structure assignments) algorithm of Kabsch and Sander [85].
Definitions of secondary structure by PROMOTIF [52] closely follow IUPAC convention rule
6.3, and have been widely accepted amongst crystallographers. Other commonly used
programs for secondary structure determination include STRIDE (secondary structure
assignment from atomic coordinates) and DEFINE (determine the secondary and first level
supersecondary structure) [85]. Cuff and Barton [86] have performed a comprehensive
comparison of these three methods (DSSP, STRIDE and DEFINE), and shown that DSSP and
STRIDE have an overall and segment-wise agreement of 95%. As the secondary structure
definitions are based on the coordinates of a model derived by X-ray crystallography or NMR,
any algorithm will be affected by the quality of the underlying data. The best estimation rate
varies widely depending on the choice of algorithm [86], [87], [88]. However, of the many
different methods of defining secondary structure proposed, DSSP has most successfully stood
the test of time, and is widely used in the field of structural biology. Consequently, using
PROMOTIF to perform NMR-based secondary structure calculations seems well justified.
Moreover, any variation in the secondary structure content determined from three-dimensional
coordinates, though it might alter correlations with secondary structure predicted from CSI
using a given reference set of random coil values, will not influence systematic variations
arising from the use of different reference sets.

2.6. Note on random coil chemical shifts
Variations in the random coil values—Reference (random coil) chemical shifts used in
many of the methods for secondary structure estimation vary widely (Figure 5 and Table 5).
The degree of variation in the estimated secondary structure contents using the various
reference random coil chemical shift sets suggests the importance of investigating the origin
of differences between the values they contain. Figure 5 shows a plot of the reference random
coil shifts of 13C′, 13Cα, 13Cβ and 1Hα in panels a, b, c and d, respectively, for all the amino
acids. Residue types are identified by their single-letter amino acid codes, with B and O
corresponding to reduced cystine and cis-proline, respectively. The largest differences in the
random coil values are seen for the 13C′ nuclei, more modest differences for the 13Cα
and 1Hα spins, and the least variability for the 13Cβ nuclei. Visual inspection of the 13C′
chemical shifts (Figure 5a and Table 5) shows that in general the experimental reference values
obtained in for an aqueous solution at 35 °C (reference shifts KW, marked as black circles) are
lowest, and the experimental values obtained in aqueous solution with 8M Urea (reference
shifts SD, marked as black squares) are the highest (see also Table 5). Values in the third
experimental reference shift set (WS, filled squares) tend to be close to those in SD, while those
in both statistical sets (LH and WJ, shown as stars and plus signs, respectively) fall mostly
between the limits of WH and SD. Figure 5 suggests that contributions from random coil
reference shifts corresponding to carbonyl nuclei, which are perhaps the most sensitive to
protein structural changes, introduce the largest variability.

Sequence-dependent effects—According to Flory [89], a “random coil” is independent
of influences from neighboring residues. However, sequence-dependent corrections of random
coil chemical shifts have recently been noted using experimental [77], [78], [90] and statistical
[79] methods. Schwarzinger et al. [90] have experimentally studied a subset of penta-peptides
to investigate the effect of neighboring residues on the observed chemical shift, and elegantly
utilized the results to determine the residual secondary structures in partially unfolded proteins.
Wang and Jardetzky [79] have recently determined a statistical distribution of nearest neighbor
effects from chemical shift data obtained from the BMRB. Though the nearest-neighbor effects
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determined by the statistical method bear a trend similar to that of the experimental results in
a solution of 8M urea for random coil chemical shifts, the former approach inherently assumes
that residues that are neither helical nor sheet must be “random coil.” In practice, however, it
would be necessary to collect experimental data on at least 8000 different tri-peptide samples
to determine nearest-neighbor effects completely. Since this would require a monumental
effort, and none of the available databases provide a complete set of experimental random coil
chemical shifts, we have not accounted for nearest neighbor effects.

One must be able to define what is a ‘random coil’ of a polypeptide, before addressing the
question of what is a ‘random coil chemical shift’? This issue seems to have attracted
considerable attention in recent literature, particularly with respect to proteins that are
‘intrinsically unstructured’ [91]. The original definition of Flory [89], corroborated by Tanford
[92], defines the random coil state of a peptide as one in which the backbone dihedral angles,
φ and ψ, of each amino acid residue are independent of the conformations of neighboring
residues. Alternatively, a random coil is sometimes defined as a reference state in which
sidechain-sidechain interactions are absent [93], which neglects the intrinsic folding
propensities of amino acids. In developing a probabilistic model to estimate the random coil
chemical shifts of carbon-13 chemical shifts from protein chemical shift databases (such as
BMRB), Wang et al. [80] adopt the following definition: a state in which the geometry of the
polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any
dominant stabilizing interactions.

To define a secondary chemical shift, one needs first to define a reference chemical shift. In
the absence of methods able ab initio to predict structural effects on measured chemical shifts,
the choice of reference chemical shift assumes an important role. According to Vila et al.
[94], NMR-based chemical shift methods to date have not focused on statistical coil peptides,
mainly because of the intrinsic difficulties associated with the characterization of unstructured
states; i.e., the experimentally-determined (NMR) chemical shift values for statistical coil
peptides are not associated with a unique set of canonical dihedral angles, making a theoretical
description of non-structured states difficult to achieve. Studies of the factors that affect the
chemical shift are very important, because NMR methods used to determine secondary
structure (e.g., CSI and others discussed earlier) rely heavily on a comparison with the chemical
shifts of the so-called statistical coil, which is frequently, but erroneously, referred to as a
random coil [94].

A considerable amount of effort has gone into determining random coil chemical shifts, but
the specific consequences of using a particular data set to determine protein secondary
structures have not been investigated in detail. Over a selected set of well-characterized protein
structures, it has been suggested that CSI-based secondary structure determination is 93%
accurate in comparison to X-ray structure-based determinations [19]. Our analysis of a
considerable amount of raw data from the BMRB and PDB shows that CSI estimates helical
and sheet structures to an accuracy of only 90% and 79%, respectively. These results do not
reflect the quality of the CSI method itself, but rather the sensitivity of the method to the choice
of reference chemical shifts, and the large variation inherent in chemical shift data. Our results
further suggest that secondary chemical shifts are more reliable for identifying helical regions
of proteins than strand regions. Sharman et al. [95] have recently proposed that long-range
effects from distant amino acids are one of the dominant factors in determining experimental
chemical shifts in β-sheets. The absence of a good correlation for β-sheets in the data presented
here is perhaps suggestive of this. Though rigorous experimental and statistical methods have
been able to estimate random coil shifts more accurately in the last decade, our findings indicate
that additional experimental and theoretical developments are mandatory for an explanation
of the observed deviations. The present analysis forms a critical evaluation of the current status
of the reliability of secondary chemical shifts as a direct refinement parameter in structure
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calculations. Though caution must be advised, since this work relies only on secondary
chemical shifts, it nevertheless suggests the importance of pursuing a combined experimental,
theoretical, and database-driven approach to secondary structure estimation that can provide a
better understanding of the factors governing both the chemical shift, and its relationship to
protein structure. From a practical point of view, one might want to know what is the best set
of reference (random coil or statistical coil) chemical shifts (or combination of sets) to estimate
the secondary or even tertiary structure in proteins. Evaluations of the different choices of
reference set have shown clear discrepancies, and suggested which choices are best for specific
sets of proteins [73], [80]. However, a complete understanding of the origin of these effects,
and of how well a ‘secondary chemical shift’ can be defined for purposes of accurate estimation
of secondary structure, remains a challenge.

2.7. Secondary chemical shifts in DNA and RNA
In contrast to the extensive development of empirical and semi-empirical chemical shift
methods for proteins, these methods are limited for DNA and, in particular, for RNAs. Though
a discussion on nucleic acids might sound anomalous in an article that focuses on proteins,
from the point of view of secondary chemical shifts in biopolymers in general, this section
makes it complete. Lam and co-workers have extensively contributed to the measurement and
categorization of random coil and B-form DNA chemical shifts [96], [97], [98], [99], while
work on RNA is essentially limited to work by Cromsigt et al. [100]. Chemical shift-structure
relationships in DNA can provide a quick reference guide for resonance assignments based on
conventional experiments, thus facilitating solution structure studies of DNAs. These results
can also provide useful information for studying structure–chemical shift relationships,
identifying unstructured or right-handed double helical regions, monitoring DNA–drug or
DNA–protein binding, and investigating conformational details of special features in DNA
structures [101], [102], [103], [104].

Chemical shift information in DNA contains a wealth of structural information that is seldom
used extensively. Over the last few years, methods have been established to predict chemical
shifts of DNAs in random coil form (single stranded) [96], [97], [99] and double-helical B-
form [105], [106]. These methods are based on sets of reference chemical shift values and
correction factors from experimental measurements, statistical analysis or semi-empirical
calculations. Shielding or deshielding contributions from nearest neighbor and/or next-nearest
neighbor nucleotides have been included in these prediction methods.

To automate these prediction methods, Lam has established a web server called ‘DSHIFT’ for
predicting random coil or double-helical B-DNA chemical shifts of any specific sequence
(http://www.chem.cuhk.edu.hk/DSHIFT,).

Random coil chemical shifts in DNA are more sensitive to the nearest neighboring residues
(contradicting the conventional definition of a ‘random coil’), and therefore a pentamer or
triplet model must be defined. In the case of a triplet model, for each residue (e.g., the base
‘C’), there are 16 possible chemical shift values. For random coil proton prediction, DSHIFT

uses a pentamer model: . Here the prediction is based on the triplet chemical

shift, , and a correction factor is invoked to account for the effects of second
nearest neighbors using the expression:

[4]
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Here,  and  are the 5′ and 3′ nearest neighbor thymine effects on the central residue

(X) and  and  are the corresponding effects on X in the predicted sequence.
Modifications for the terminal residues are accounted for separately in the prediction algorithm,
as the 5′ and 3′ phosphate groups at the termini are absent [98], [105]. For random coil carbon
chemical shifts, the prediction method is based on a trimer model, as only nearest neighbor
effect has been found to be significant [97].

For prediction of double-helical (B-form) DNA, DSHIFT can use either the methods
introduced by Altona et al., [105] or Wijmenga at al., [106]. In Altona’s method, proton
chemical shift prediction is based on a trimer model in which an incremental scheme and
statistical reference values from experimental results are used [105]. In Wijmenga’s method,
the proton chemical shift of a specific nucleotide is predicted based on a set of calculated
reference shift values (δref) plus the chemical shift effect induced by its own base (δib), as well
as its 3′ (δ3′b) and 5′ (δ5′b) neighboring bases [106]. As noted by Lam [98], the prediction
accuracy of the various methods depends mainly on DNA conformations. Since temperature
and solution conditions affect stabilities of DNA structures, it is expected that these factors
will also affect the prediction accuracy.

3. Empirical methods correlating averaged chemical shifts (ACS)
3.1. Basic concepts: averaged chemical shifts, protein secondary structure content, and
protein structural class

3.1.1. Averaged chemical shifts—The averaged chemical shift (ACS) of a nucleus, i, is
defined by:

[5]

where N is the total number of observed cross peaks (typically in a single bond-correlated
spectrum, such as a heteronuclear single quantum correlation, HSQC) and ωk is the
corresponding chemical shift of the kth resonance (referenced using recommended procedures
[78]). Averaged values of chemical shifts of random coil proteins were also calculated from
the respective amino acid sequences using recently published experimental values [74], [90].

3.1.2. Protein secondary structure content—Protein secondary structure content refers
to the proportion of each secondary structure type constituting a given protein. Formally, it is
defined as the ratio of the number of residues in a certain secondary structure to the number of
total residues of a protein. According to the conventional classification by DSSP [107], there
are eight secondary structure types, namely, α-helix,β-strand, β-bridge, three-turn helix, π-
helix, hydrogen-bonded turn, bend, and random coil. Protein secondary structure provides
fundamental information about proteins, and knowing a protein’s secondary structure content
is often the first step towards more detailed knowledge of its structure and function.

Protein secondary structure content can be semi-empirically estimated using variants of
spectroscopic methods, such as UV-Raman [108], CD [109], FTIR [110] and NMR [111].
However, generally speaking, these experiment-based approaches have been of questionable
accuracy [112], [113]. For that reason, there have been many attempts to make ab initio
predictions of secondary structure content [114], [115], [116], [117], [118], [119], [120],
[121]. Among notable early attempts to do so are the multiple linear regression approach
[122], [123], [124], [125], [126], [127], [128], [129], the artificial neural network approach
[121], and the analytic vector decomposition approach [130], [131]. Of course, the validity of
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such approaches ultimately depends on the accuracy with which they predict the actual
secondary structure contents of proteins, so experimental methods continue to play a significant
role in these efforts.

3.1.3. Protein structural class—Classification and prediction of protein structure are
essential goals of protein science, and the structural class is an important attribute used to
characterize the overall folding type of a protein or its domains [132], [133], [134]. Nikashima
et al. were the first investigators to suggest that protein structural class is correlated with protein
secondary structural information and amino acid composition [132]. Subsequent efforts have
primarily focused on designating structural classes based on amino acid composition [116],
[117], [135], [136], [137], [138], [139], [140], from which folding pattern information can be
obtained without addressing the complicated issue of three-dimensional structure [133],
[134]. However, in the last decade, the designation of protein structural class based on
secondary structure content has proven to be extremely useful from both experimental and
theoretical points of view [133], [134], [140], [141], [142], [143], [144], [145], [146], [147],
[148]. In the following section, we discuss a chemical shift-based structural classification
method motivated by the success of secondary structure-based approaches.

3.2. Correlation between averaged chemical shift and protein structural class
This section summarizes the results of an empirical approach for estimating protein structural
class directly from NMR spectra, prior to resonance assignment [149]. For a detailed
discussion, see Ref. [149]. Briefly, the method seeks to correlate an empirical parameter, an
averaged chemical shift (ACS) obtained by mining the BioMagResBank (BMRB) [38], with
protein structural classes obtained from CATH [165,166] and SCOP [69,70,164]. This
correlation permits an estimation of the classes of proteins of unknown structure based solely
on the average of chemical shift values obtained from NMR.

3.2.1. Averaged chemical shifts are sensitive to protein structural class—Figures
6A and 6B plot, respectively, the 13Cα versus 1Hα and 15N versus 1HN ACS values reported
in Ref. [167]. Values indicated by red circles correspond to proteins deemed α-class according
to CATH, and values indicated by blue squares correspond to molecules deemed β-class. As
pointed out in Ref. [167], the figures are suggestive of a correlation between structural class
and ACS. This is borne out by ACS values calculated from 13C-HSQC spectra (see Figures
6a–d) from histidine kinase (PDB code 1A0B, BMRB number 4857) [150], a predominantly
α-helical protein, and from liver fatty acid binding protein (PDB code 1LFO, BMRB number
4098) [151], a predominantly β-sheet protein (the three-dimensional structures of these proteins
are shown above and below Figures 6A and 6B, respectively). These values are indicated by
circles for histidine kinase and squares for liver fatty acid binding protein. In both cases, the
ACS values are reproduced in Figures 6A and 6B, where they are seen to lie within the
appropriate cluster of α- or β-class proteins considered in Ref. [167].

3.2.2. Distribution of protein structural classes with respect to ACS values—
Figures 7 and 8 reproduce histograms of the protein distributions discussed in Ref. [167]. Figure
7 shows numbers of proteins, binned according to the ACS values of 1Hα (left panels)
and 1HN (right panels), classified by SCOP as α (panels a and d), αβ (panels b and e) and β
(panels c and f). Figure 8 shows the distributions resulting from classification by CATH.
Statistical information on these distributions is summarized in Table 6. As noted in Ref.
[167], because they are insufficiently resolved, the distributions based on 1HN ACS values
(Figures 7,8 (right panels) and Table 6) are able to discriminate only α and “αβ/β” structural
classes.
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3.2.3. Kolmogorov-Smirnov (K-S) tests—To check the statistical independence of the
distributions presented in Figures 7, 8 and Table 6, Kolmogorov-Smirnov (K-S) tests were
performed. Table 7 presents the results of these tests for all nuclei. As described in Ref.
[167], two distributions are considered independent if the significance of the D statistic is less
than or equal to 0.05. The comparisons for which this is the case are indicated by significance
values in boldface type in Table 7. Only the separation of 1Hα ACS values according to SCOP-
based classes leads to three independent distributions at a 5% level of significance.

3.3. Empirical correlation between averaged chemical shifts and protein secondary structure
content

It is possible to take an educated ‘guess’ by looking at the chemical shift dispersion of
an 15N-HSQC spectrum to say whether it contains predominantly helical or sheet secondary
structure. This is because helical proteins generally have narrow spectral dispersion in the 1H
dimension of the amide protein region, while proteins with β-sheets tend to be more dispersed.
The averaged chemical shift method essentially quantifies this observation. It is based on the
hypothesis that if one considers an NMR spectrum as a projection of the protein’s three-
dimensional structure on a chemical shift dimension (dimensions), the distribution of the points
represents some of the dominant features of the three-dimensional fold. For any distribution,
the mean value—in this case the ‘averaged chemical shift’—is the first statistical quantity that
distinguishes itself from other such quantities. Although the mean value in any given NMR
spectrum can be calculated in a straightforward manner, there is no simple translation from
this value to the three-dimensional structure. As a first step in the ‘reverse-engineering’ process
one can resort to examining empirical relationships between a set of known three-dimensional
structures and their respective chemical shift distributions.

In this section we address the correlation between protein secondary structure content and the
average chemical shift (ACS) value for a particular type of nucleus within the protein. By using
current NMR data processing software, it is fast and easy to obtain an experimentally-
determined ACS value compared with obtaining complete resonance assignments. We have
determined that the highest correlation with secondary structure content is found with
the 1Hα ACS value, followed by the 1HN ACS. The empirical correlation that is derived from
these relationships has been named ACSESS (averaged chemical shift to estimate secondary
structure content. The application of ACSESS to determine secondary structure (helix and
sheet) content under conditions where it is often difficult to obtain structural information, such
as denaturing conditions, is also demonstrated. Predictions of secondary structure content
obtained using ACSESS are better than those obtained using methods that rely on primary
sequence, because the latter do not provide any information about conformational changes that
result from different solvent conditions. Estimating changes in secondary structure content is
relevant to studies of proteins, such as prions, that undergo conformational rearrangements,
and to following major conformational changes of proteins in the presence of ligands or nucleic
acids. It is emphasized, however, that ACSESS does not provide an alternative to other
conventional NMR methods for secondary structure determination, such as the Chemical Shift
Index (CSI) [19], [54]; it only provides information about overall secondary structure content
prior to complete structural analysis, or in cases where it is difficult, if not impossible, to obtain
such information by other means. Thus, ACSESS has several important potential applications
in proteomics and protein folding studies.

3.3.1. Linear Correlations between ACS and SSC—The empirical correlation between
averaged chemical shift and secondary structure content is referred as “ACSESS”. Figures 9a–
d show plots of the ACS values of HN and Hα nuclei versus helix and sheet content. A total
of 426 proteins was used for both 1HN (Fig. 9a and c) and 1Hα (Fig. 9b and d) to establish a
correlation. Linear-regression analyses of the data in Figure 9 (helix and sheet structure content
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vs. ACS) are summarized in Table 6 (SSC = Slope × ACS + Intercept). Only ACS values
corresponding to HN and 1Hα nuclei were considered, since values associated with these nuclei
are in general much more indicative of overall secondary structure content than those associated
with the heavy backbone atoms [111], [152]. BMRB is the first public database to collect
chemical shift information from a large number of proteins. Though highly useful, BMRB is
new by comparison with three-dimensional structural databases, such as the PDB, and currently
lacks a rigorous strategy for quality control. RefDB is an even newer database, assembled by
Zhang et al. [153], in which chemical shift information obtained from BMRB is uniformly
referenced, and unassigned or missing resonances are predicted using other empirical
correlations. In addition to those obtained using BMRB data, we obtained similar correlations
with secondary structure content using RefDB data (similar to Fig. 9). Table 8 lists the results
of the linear correlation for both BMRB and RefDB chemical shift values. For BMRB-based
chemical shifts, the coefficients of correlation between HN ACS and helix or sheet content are
−0.67 and +0.71, respectively, while the corresponding Hα values are −0.84 and +0.84. It can
be seen from Table 8 that performing the analysis on the same set of proteins using RefDB-
based information produces values in close agreement with these BMRB-derived values;
omissions and nonstandard referencing in BMRB evidently have little impact on correlations
between ACS and SSC. On the other hand, comparison of these with our earlier results [152]
shows that increasing the number of proteins in the data set significantly improves the
correlation. For example, the coefficients of correlation between ACS and sheet content are
seen to increase from 0.75 to 0.84 for Hα, and from 0.66 to 0.71 for HN. We note that the
intercept values do not have any physical meaning, as this empirical approach is intended to
show a linear correlation over a subset of chemical shifts of folded proteins only. The present
results are consistent with our earlier findings that, for both Hα and HN, the relationship between
ACS and SSC are characterized by a positive correlation coefficient for sheet content and a
negative coefficient for helix content. A similar correlation for the heteronuclei (13Cα
and 15N) was also performed [152]. Correlation coefficients for the plots of 15N and 13Cα
versus percent sheet content are 0.44 for both, while the coefficients obtained in the plots versus
percent helix content are 0.40 and 0.58, respectively. Although 13Cα ACS values show a wider
dispersion with respect to helical content than the corresponding 15N data, the correlation
coefficients for the plots of heteronuclei are equally poor [152]. Overall, the best correlations
were obtained with the 1HN and 1Hα data.

A notable feature of these results is that the slopes of the lines for the ACS values versus helix
and sheet content are opposite in sign (most clearly seen in panels a and c of Figures 6 and 9).
The change in the sign of the slope indicates that changes in ACS values allow differentiation
of increasing or decreasing helical or sheet secondary structural elements upon changes in
environment. The ACS values increase with an increase in the total helical content and decrease
with an increase in the total sheet content.

The statistical analysis of the correlation between ACS and SSC is relatively good for
the 1Hα ACS values (84%), while a moderate correlation (67%) is obtained with the 1HN ACS
values. As the number of proteins that can be added into the correlations of ACS with secondary
structure increases, the correlation coefficients should improve significantly. However, certain
factors may result in lowering the correlation coefficient. ACS values were based on the total
number of cross-peaks that were observed, not on the total number of residues in the protein.
For example, an 15N-HSQC spectrum will not contain resonances from a proline residue, which
will consequently not be included in the ACS value, though it is present in the sequence.
Significant contributions in lowering the correlation are expected from the residues that are
present in the turns that will contribute to the ACS value as a sheet or helix. For example,
residues that are part of a β-turn will be considered as β-sheet when the average values are
calculated. The distribution of chemical shifts for each of the amino acids found in the BMRB
database suggests that no particular amino acid dominates the ACS values; hence, the chemical
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shifts for a particular type of amino acid are not expected to bias the correlation. Moreover,
Sharman et al. [95] have used rigorous statistical analyses of 1Hα chemical shifts to show that
there is no correlation between amino acid type and propensity to fall within helical or sheet
regions. However, it is possible that certain proteins will contain a large number of one type
of residue (or a preponderance of a few types of residues) that may skew the ACS value. The
relatively low correlation coefficients (0.64–0.8) for the ACS versus SSC correlations may
result from these and other factors.

3.4. Applications of empirical correlations of ACS
3.4.1. Identification of the protein class from ACS—Rigorous statistical analysis of
the data clearly suggests that only the 1Hα ACS values are capable of distinguishing the three
different structural classes of the proteins. Based on the results of K-S test for 1Hα chemical
shifts, it is possible to define the range of 1HαACS values corresponding to each class. For
protein structural classes, α, αβ, and β, defined by SCOP, the centers of the ACS values are
3.83 ± 0.072, 3.94 ± 0.093, and 4.05 ±0.076 ppm, respectively. The corresponding values for
the CATH-classified proteins are 3.79 ± 0.066, 3.93 ± 0.070, and 4.05 ± 0.086 ppm,
respectively. Following this criteria, the results for a total of 37 proteins, predicted using both
CATH- and SCOP-derived empirical relations, are summarized in Table 9. Only two proteins
could be classified using the CATH-, but not the SCOP-based, relation (noted as NP, no
prediction) and there is no cross prediction between α and β classes.

3.4.2. Estimation of secondary structure content from ACS—To determine the
effectiveness of the ACS in estimating the SSC, we have used an independent set of proteins
that are not part of the derived correlations. A set of 36 proteins obtained from the BMRB for
which complete assignments of the backbone atoms are known, but the structures have not yet
been determined, were used to estimate SSC by using the empirical correlation between SSC
and 1Hα or 1HN ACS values. SSC was also calculated using the consensus chemical shift
indices using the program PSSI using all the backbone atoms. In order to evaluate the secondary
structure content for a set of proteins, the program Probability-based protein secondary
structure identification (PSSI) was used [59] (discussed in section II.D.2). In this method,
chemical shift indices (CSI) of the set of backbone atoms are used to define the probability
with which the secondary structure (sheet or helix) is assigned. Secondary structure content in
percentage is then calculated with respect to the total number of residues in the sequence. The
list of all the proteins and their estimated SSC, using the correlation and CSI based methods
are given in Table 10. There is an overall agreement between the SSC estimated between these
two methods (Figure 10). Larger deviations were observed in the 1HN ACS values compared
to the 1Hα ACS values. To compare the predictions from 1HN and 1Hα ACS values, Figure
11 shows the comparison. For example, the BMRB numbers 4391 (candoxin) [154] and 4393
(N-terminal domain of human spectrin including one structural domain) [155], are predicted
to contain predominantly helical and sheet secondary structures, respectively. Figure 4 shows
a comparison of the estimates of helical (left panel) and sheet (right panel) content for these
proteins derived from either the 1HN or 1Hα ACS values Ideally, both ACS values should
provide exactly the same values, within experimental error.

3.4.3. Averaged chemical shifts and protein folding—The utility of ACSESS as a tool
to identify what structural changes occur in proteins under denaturing conditions has been
demonstrated for ubiquitin. Chemical shift data acquired under a variety of conditions are
available for this protein (see Table 11). Ubiquitin belongs to the αβ class according to CATH,
and both chemical shift information and structures are available for three variants: multiple
mutant (BMRB 4663, pdb 1C3T) [156], yeast (4769, 1UBI) [157] and core mutant (4493,
1UD7) [158]. Chemical shift information for the denatured state (BMRB 4375) is also available
[159]. ACSESS- predicted sheet and helix content obtained using both 1HN and 1Hα ACS
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values from the folded forms of ubiquitin are in close agreement with secondary structure
estimates obtained from their three-dimensional structures using PROMOTIF (Table 11). In
the case of denatured ubiquitin, the ACSESS method estimates a loss of helical structure of
approximately 6% and a gain in sheet content of the same amount, suggesting that even in the
denatured state, significant residual secondary structure is present in ubiquitin.

We have demonstrated that ACSESS provides information about the denatured state of
ubiquitin. Our results show that ubiquitin retains significant residual helical and sheet structure
in denaturing solvents, and that the β-strand content increases relative to that of the folded state.
This increase in sheet content can be attributed to the presence of additional turns in an extended
conformation. The retention of helical structure, though reduced, could be due to retention of
local secondary structural elements that are no longer folded into a three-dimensional
conformation. This idea is consistent with the original paper by Peti et al. [159] that reported
the chemical shifts of denatured ubiquitin, and compared them with chemical shifts of other
denatured proteins, by assuming that all interactions in the unfolded state are local.

3.5. Some important aspects of using ACS to obtain low-resolution structural information
NMR spectroscopy plays a vital role in determining the structures of proteins in the solution
state. In spite of advancement in the field during the past decade, determining the complete
three-dimensional structure of any given protein remains a time-consuming proposition.
Though the information content of a complete structure at atomic resolution is indisputable, in
recent times several groups have begun exploring alternative methods that are faster than
conventional experiments [160], [161]. Prior to collecting several days’ worth of NMR spectra
for structure determination, other biophysical methods are generally adopted to infer secondary
structural information about the protein of interest. In particular, circular dichroism (CD)
spectroscopy is extensively used to estimate the secondary structure content of medium-sized
proteins. In CD spectroscopy, deconvolution of the experimental molar ellipticity at 222 nm
is used to estimate secondary structure content. In the case of NMR, chemical shifts have been
used as regular indicators of a particular secondary structure. For example, an 1Hα resonance
that is shifted upfield with respect to the corresponding random coil value is considered to be
α-helical, while one shifted downfield to be β-strand. This is a widely accepted procedure, and
a large number of NMR studies have shown that such correlation is valid [5], [17]. However,
NMR spectral information has seldom been used to obtain relatively low-resolution structural
information, such as secondary structure content. In some cases, the results of CD are used to
determine whether it is feasible to obtain complete, three-dimensional structural information
for a particular protein, using NMR. This suggests the critical importance of evaluating whether
data obtained from NMR itself can be used to estimate secondary structure content. Lee and
Cao have addressed this question extensively in their comprehensive study [162], and have
shown that the correlation between NMR- and CD-based secondary structure estimation is
poor. Further, while CD spectroscopy is more suitable for studying relatively small proteins
and polypeptides, the characterization of larger molecules requires NMR.

Computational methods often play a primary role in initial predictions of protein structure; for
example, in predictions of protein structural class. These methods are typically invoked even
before a protein is expressed or extracted for any biophysical characterization. Secondary
structure estimations from CD are often inconsistent with such computational predictions from
NMR. On the other hand, to date, estimations from NMR have required the time-consuming
process of resonance assignment. A method such as that proposed here could essentially fulfill
the need for an empirical, NMR-based estimator of protein structural class that is both accurate
and efficient.

The results discussed above show that 1Hα and 1HN ACS values clearly distinguish the three
different protein classes, α, mixed αβ, and β, when the proteins are classified either by CATH

Mielke and Krishnan Page 19

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2010 April 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or SCOP, and can be used in estimating secondary structure content. The empirical correlations
provide a way to determine directly the structural information of proteins in the absence of
resonance assignments. They can be easily incorporated into any commercial or academic
software package that employs manual or automated peak picking routines to reduce an HSQC
spectrum into a single ACS value. ACS is expressed in the same unit as chemical shift (ppm).
Instead of using the absolute chemical shift values to determine the averages, we have also
explored definitions such as chemical shift index (CSI), which determines the relative change
in the chemical shift with respect to the corresponding random coil value. CSI may better
distinguish proteins that are comprised primarily of either helices or sheets; αβ proteins cannot
be identified by this method, because the values of α and β segments are opposite in sign, and
therefore cancel each other.

Determination of the structural classes of proteins with no available experimental three-
dimensional structure information (from NMR or X-ray), using 1Hα ACS values, provides an
internal test of the reliability factor (Tables 9–11). The secondary structures of these proteins
were also estimated using prediction algorithms that utilize only amino acid sequences. For
many of the proteins, the sequence-based class prediction approach provided similar results
for the mainly-α class, while larger differences were observed for mainly-β class proteins.
However, considering the variability and confidence limits associated with such predictions
(http://cubic.bioc.columbia.edu/eva/ and references therein), it is difficult to define a suitable
control set for comparison. In some cases, using the sequence-based prediction method
(http://www.bork.embl-heidelberg.de/SSCP/) [130], [131], we have observed large variations
in the estimation of sheet and helical classes for the same amino acid sequence (data not shown).

In general, the quality of structural predictions based on specific algorithms is examined either
by redistribution test or jack-knife test [163]. However, in the correlations presented here,
neither of these methods was considered, for the following reasons. First, our methods are not
algorithm-based; our results are strictly the outcome of an empirical correlation between known
protein structural classes or SSC and averaged chemical shifts. Second, in self-consistency
tests [163], it is necessary to define a training set of proteins that obey a particular criterion;
for example, the resolution of three-dimensional structure. Though it is possible to define such
criteria for protein classes, use of chemical shift information as the test criterion must be
considered premature, as there is currently no consensus definition of the “accuracy” of such
information [19].

Although we have shown that ACS values can be used to identify directly the structural classes
or SSC of proteins, thereby providing a first, low-resolution structural estimate from
experiments, critical questions still remain. For example, what is the reliability of the estimates?
As the number of proteins that we add into our correlations of ACS with protein class or SSC
increases, one can expect the reliability of the method to improve. In the empirical correlation
derived between secondary structure content and ACS values, we have determined a reliability
factor > 84% when 1Hα nuclei are used. Notwithstanding the limited number of proteins in the
current study, and that we have defined the relative regions of ACS values demarcating the
structural classes in a conservative manner, we suggest the reliability of this method is about
80%.

Another remaining question is whether it is possible that certain amino acids bias the current
estimates, since the method is based on an average of the chemical shifts. The distribution of
chemical shifts for each of the amino acids found in the BMRB database suggests that no
particular amino acid dominates the ACS values. In a recent paper, Sharman et al. [95] have
used rigorous statistical analyses of 1Hα chemical shifts to show that there is no correlation
between amino acid type and propensity to fall within helical or sheet regions. The exact nature
of the chemical shift dependence on secondary structure for a specific amino acid residue
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remains to be determined [95], [164]. In addition, long range and context-dependent effects on
protein structural class definition are still not clearly understood [164], and may also play
important roles in influencing chemical shifts.

As the estimation of structural class from NMR is directly influenced by the quality of the data
used, the method is most useful in cases in which the resolution of the corresponding HSQC
spectrum is excellent. Experiments based on transverse relaxation optimized spectroscopy
(TROSY) [165] provide an additional advantage in applicability to large proteins. From a
practical point of view, the method would be most appropriate if a sufficient number of
individual cross-peaks are observed in an HSQC spectrum. Further, since calculated ACS
values are based on the total number of residues in a protein, and not on the total number of
crosspeaks observed, we recommend that a minimum of 70% of the total number of peaks
expected be present in a given spectrum for determination of a reliable ACS value. As a final
point, all amino acid residues have 1Hα resonances (glycine has two), so these will be fully
represented in any calculation of the 1Hα ACS. In contrast, proline residues lack an amide
proton resonance, and consequently are not observed in 15N-HSQC spectra; an abundance of
proline-rich proteins in a data set could conceivably lead to an underestimate of amide ACS
values.

It must be emphasized that ACS-based methods do not provide an alternative to conventional
NMR-based experiments, and should only be considered initial predictors of protein class or
secondary structure content. ACS methods might provide a novel technique for monitoring
protein structural changes in real time, such as in protein folding experiments. Such methods
might also be used to detect major structural changes that occur upon protein-protein, protein-
DNA/RNA, and other complex formations, to provide some direct experimental structural
information in situations in which other techniques are incapable of doing so (e.g., in studies
of large and/or highly disordered proteins), and to facilitate initial protein fold identification
in high throughput proteomics applications.

4. Other empirical correlations of chemical shift
Methods to elucidate empirical relationships between chemical shift and protein structure have
been under development for decades. Examples include magnetic anisotropy [166] and
methods that investigate electrostatic [167] and aromatic ring current effects [168]. In addition
to methods focused on estimating the secondary structure of individual residues from a
secondary structure index, and secondary structure content or structural classes from chemical
shifts, a few empirical correlations have been developed to address specific features of protein
structure, such as the redox state of cystines [11], [169] and Xaa-Pro peptide bond
conformations [170]. In this section, we briefly review some of these methods.

4.1. Semi-empirical methods for chemical shift estimation from 3D structure
One of the earliest methods extensively to use the empirical relationship between NMR
chemical shifts and protein structure is TALOS, developed by Cornilescu et al., [5]. This
method is based on the observation that homologous proteins have similar secondary chemical
shifts, because these correlate with local protein conformation. This relation provides a basis
for searching a database for triplets of adjacent residues with secondary chemical shifts and
sequence similarity that provide the best match to the query triplet of interest. Tests carried out
using proteins of known structure indicate that the root-mean-square difference (rmsd) between
the output of TALOS and the X-ray derived backbone angles is about 15°, and has an error
rate of ~3%. TALOS is freely available
(http://spin.niddk.nih.gov/bax/software/TALOS/index.html).
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A range of semi-empirical methods is available to predict protein chemical shifts from three-
dimensional structure and dynamics. These include: (a) SHIFTS: The first version of this
program was developed by Case and co-workers [171], and has seen several subsequent
improvements [18], [19], [171], [172], including a most recent version [173]. SHIFTS is
available from the authors’ group page (http://www.scripps.edu/mb/case/qshifts/qshifts.htm).
(b) SHIFTCALC: this method was developed by Williamson and his group, with details
presented in a number of papers in the 1990s [3], [4], [174], [175], [176], [177], [178], [179].
Source code and a web-server for SHIFTCALC are available
(http://nmr.group.shef.ac.uk/NMR/mainpage.html). (c) SHIFTX and SHIFTY: Wishart s
group provides a wide range of software tools for correlating chemical shift with protein
structure. These include: SHIFTX to predict 1H, 13C, and 15N protein chemical shifts from 3D
structure [180], [181] and SHIFTY to predict protein chemical shifts using only amino acid
sequence [182]. In particular, Neal et al. [180], [181] have shown that accuracy for predicting
chemical shifts (including amide proton shifts) can be improved by combining empirical
formulas for spatial interactions with ‘hyper-surfaces’ representing local covalent interactions.
(d) PROSHIFT: this neural network-based method, developed by Meiler [183], predicts
the 1H, 13C, and 15N chemical shifts of proteins from their three-dimensional structure as a
function experimental conditions as input parameters. A webserver for PROSHIFT is available
from Meiler’s group (http://www.meilerlab.org/view.php). A more recent program, Random
Coil Index (RCI), predicts protein flexibility from backbone chemical shifts
(13Cα, 13CO, 13Cβ, 15N, 1Hα), and estimates values of model-free order parameters as well as
per-residue RMSDs of NMR and MD ensembles [184], [185]. All these programs are either
available to download or on a webserver at Wishart’s group
(http://redpoll.pharmacy.ualberta.ca/).

Figure 12 shows a straightforward comparison of the experimental chemical shifts of protein
G (BMRB 5875), represented by filled circles, with chemical shifts calculated using SHIFTX
(open circles), SHIFTS (filled triangles) and PROSHIFT (open triangles). A dashed line
connects the experimental points to show a visual trend. Panels (a), (b), (c) and (d) show plots
of chemical shift values of the nuclei, 1HN, 15N, 13Cα and 1Hα, respectively. We were unable
to perform a similar calculation with SHIFTCALC due to technical issues with the webserver.
Overall, we find that all the calculations follow the experimental values, but exhibit differences
with respect to specific nuclei and residues. This area sees continuing development by several
groups in recent time [173], [186].

4.2. Prediction of redox states of cysteines from chemical shifts
Disulfide bonds play a pivotal role in protein structure, function, folding, and stability. The
importance of disulfide bonds has been extensively studied, but invariably involves either
breaking or forming a disulfide bond. Further, it is not the disulfide bond but the effect of the
disulfide bond on the rest of the structure that has been studied. Two groups have developed
empirical relationship to predict the redox state; Sharma and Rajarathnam provided the first
such correlation [11] and recently Wang et al., [63], [169] have developed a two-dimensional
cluster approach for a similar purpose.

These results in general show that that the Cβ shift is extremely sensitive to the redox state,
and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy
distinct groups in a XY plots of Cα, Cβ chemical shifts. The redox state chemical shifts of
cysteines also sensitive to the secondary structural state of the protein. The results of Sharma
and Rajarathnam are summarized in Table 12. The rules to define the empirical state with
confirmed chemical shifts assignments are given in the original reference [11]. Wang et al.,
[169] have performed a two-dimensional cluster analysis, while the earlier method looked only
Cα, Cβ correlations. This analysis showed that different clusters of (Cα, Cβ), (C′, Cβ), (HN,
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Cβ) and (Hα, Cβ) are helpful in distinguishing the redox state of cysteine residues. Similar to
the first approach, the authors derived rules using a score matrix to predict the redox state of
cysteines using their chemical shifts. The score matrix predicts the redox state of cysteine
residues in proteins with 90% accuracy. Table 12 also lists the summary of the results of the
most sensitive nuclei for redox state, Cβ. Table 12 shows that the results from the two methods
are similar.

4.3. Prediction of Xaa-Pro peptide bond conformations
In peptides and proteins, the planar peptide bond occurs predominantly in the trans
conformation [187]. In general the cis form is energetically less favorable due to the steric
repulsion of the Cα/Hα atoms of the two sequential amino acids. However, in peptide bonds
preceding prolines (Xaa-Pro), the Cδ/Hδ in the pyrolidine ring and the Cα/Hα atoms of the
preceding residue experience a comparable repulsion and the energy difference between the
cis and the trans conformation is reduced. Therefore an appreciable fraction of the Xaa-Pro
peptide bonds occur in the cis form. A survey of a non-redundant database of 571 high
resolution protein structures found 5.2% of all Xaa-Pro peptide bonds occur in the cis
conformation, as compared to only 0.03% of all Xaa-nonPro peptide bonds [188], [189]. Earlier
studies on small peptides containing prolines observed signature features of the cis
conformation include an upfield change in the 13Cγ chemical shift and a downfield change in
the 13Cβ chemical shift [190]. Therefore, the chemical shift difference between them, Δβγ…
(δ [13Cβ]− δ[13Cγ]) is expected to be an indicator for cis or trans conformation [191]. These
observations lead Schubert et al [170] to develop a chemical shift based empirical relationship.
This method, also referred as POP (Prediction of Proline) conformation 304 protein entries in
the BMRB, representing an overall number of 1033 prolines for the analysis.

The chemical shift difference Δβγ is a reference-independent indicator of the Xaa-Pro peptide
bond conformation. Based on a statistical analysis of the 13C chemical shifts, a software tool
was created to predict the probabilities for cis or transconformations of Xaa-Pro peptide bonds.
Using this approach, the conformation at a given Xaa-Pro bond can be identified in a simple
NOE-independent way immediately after obtaining its NMR resonance assignments. Table 13
lists of the results of the analysis [170]. Distribution of Δβγ were fitted a single Gaussian and
the fitted parameters (average, variance and standard deviation) are used for the prediction
(also listed in Table 13)). For Δβγ ιn the range from 0.0 ppm to 4.8 ppm the peptide bond
conformation is predicted to be 100% trans, whereas from 9.15 ppm to 14.4 ppm it is 100%
cis. In the range from 4.8 ppm to 9.15 ppm, the prediction is ambiguous and only probabilities
can be given for both conformers and the results must be confirmed using the conventional
NOE-based method [21].

5. Summary
Progress in the structural biology of proteins comes from both experimental and theoretical
efforts. Computational methods are capable of delivering fast structural information, ranging
from low-resolution protein structural class definition to high-quality information based on
homology modeling. Experimental methods that concentrate on obtaining high-resolution
information are hampered by inherent time cost, and lack the capacity to provide low-resolution
structural information expediently. NMR spectroscopy is a powerful tool for obtaining high-
resolution structural and dynamical details of molecules in the solution state. In order to explore
new experimental methods for the fast identification of protein structures using NMR, we have
presented the degree to which chemical shifts of a particular nuclear species in the protein
backbone can be used as a low-resolution structural parameter that correlates with a variety of
protein structural parameters.
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Glossary of abbreviations

ACS Averaged Chemical Shift

ACSESS Averaged chemical shifts to secondary structure

BMRB BioMagResBank

CATH Class, Architecture, topology and homologous super family

CD Circular Dichroism

COSY Correlated Spectroscopy

CSI Chemical shift index

CSP Chemical shift pattern

DEFINE Determine the secondary and first level supersecondary structure

DSSP Database of secondary structure Predictions

HSQC Heteronucelar single quantum correlation

K-S test Kolmogorov-Smirnov test

PDB Protein data bank

POP Prediction of Proline

RCSB Research collaboratory for structural bioinformatics

RefDB Referenced database

SCOP Structural classification of proteins

SSC Secondary structure content

STRIDE Secondary structure assignment from atomic coordinates
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Figure 1.
Schematic description of the peak counting method developed to determine protein secondary
structure content. A typical double quantum filter COSY (DQFC) spectrum is shaded to
highlight the regions of important structural information. The two hatched blocks marked by
β-sheet and α-helix, correspond to the areas used to estimate the β-strand and α-helix,
respectively. The hatched region marked Coil (1D) used to estimate the random coil content.
Coil information is also obtained from one-dimensional NMR spectra. Some peaks appear in
overlapping regions and hence are counted twice when making secondary structure estimates.
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Figure 2.
Comparison of the empirical correlations derived to estimate secondary structure content from
proteins by peak counting method. Filled and open circles show the secondary structure content
estimated from the three-dimensional structures originally and using recent structural biology
tools, respectively. The dashed lines show the ideal linear correlation.
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Figure 3.
Plot of the secondary structure indices calculated for Protein G using four different methods,
(a) CSI, (b) PSSI, (c) psiCSI and (d) PECAN. Secondary structure indices, +1, 0 and −1
correspond to α-helix, coil and β-strand, respectively. The chemical shift information is
obtained from BMRB (bmr5664.str) and the programs CSI, PSSI, psiCSI and PECAN are used
with their default setup. The arrows and the bar at the top of the figure are the secondary
structure determined from the ensemble averaged NMR structures (RCSB file 1GB1) and the
respective secondary structures are also superimposed on the 3D structure, using the molecular
rendering program MOLMOL [66].
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Figure 4.
Plots of secondary structure content (SSC) in percentage determined from chemical shifts and
three-dimensional coordinates. Panels (a) helical and (b) sheet content for the original SD
[74], [90] random coil reference values correspond to (Table 3), while (c) and (d) show the
corresponding correlations for using the random coil chemical shifts of LH [75]. The dashed
line corresponds to an ideal correlation, while the solid line represents the linear regression
analysis results (Table 5).
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Figure 5.
Plots of the variation in the reference random coil values as a function of amino acid type.
Panels (a), (b), (c) and (d) correspond to random coil values of 13C′ (carbonyl
carbon), 13Cα, 13Cβ and 1Hα, respectively. The six different reference value sets are
represented by symbols: black circles (KW) [21], [76], grey triangles (WS) [77], [199], black
squares (SD) [74], [90], grey diamonds (LH) [75], black triangles (WJ) and grey circles (WM)
[59], [80]. Plots (b) and (c) have all the six sets and plots (a) and (b) have only 5 and 4 sets,
respectively (Table 5). Amino acids along the X-axis are given in single letter codes, with ‘B’
and ‘O’ representing oxidized cystine and cis-proline, respectively.
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Figure 6.
Representative examples to show that averaged chemical shift (ACS) is a structural parameter
directly obtainable from NMR spectra. (a) and (c): simulated 13C and 15N-HSQC spectra of
an α-helical protein (Histidine kinase, PDB code 1A0B, BMRB number 4857), respectively.
(b) and (d): simulated 13C and 15N-HSQC spectra of a β-sheet protein (Liver fatty acid binding
protein, PDB code 1LFO, BMRB number 4098). The ACS calculated from each spectrum is
noted by a black circle (helical protein) and square (sheet protein). (A) and (B): representative
examples of the ACS values calculated from 13Cα-1Hα and 15N-1HN correlations, respectively,
for a set of proteins for which chemical shift information is obtained from BioMagResBank.
The red circles and blue squares correspond to proteins that are classified as mainly-α and
mainly–β, respectively, under the CATH classification scheme. ACS values from (a) and (b),
and (c) and (d), are reproduced in (A) and (B), respectively. Reproduced with permission from
Ref. [149].
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Figure 7.
ACS values vs. number of proteins in the three major structural classes defined according to
the SCOP method. (a), (b), and (c) display the 1Hα ACS values for proteins that are mainly-
α, mainly-β, and a mixture of α and β (αβ) (both α/β and α+β), respectively. (d), (e), and (f)
display the corresponding 1HN values for mainly-α, mainly-β, and αβ (both α/β and α+β),
respectively. Reproduced with permission from Ref. [149].
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Figure 8.
ACS values vs. number of proteins in the three major structural classes defined according to
the CATH method. (a), (b), and (c) display the 1Hα ACS values for proteins that are α, β, and
αβ (both α/β and α+β), respectively. (d), (e), and (f) display the corresponding 1HN values for
α, β, and αβ (both α/β and α+β), respectively. Reproduced with permission from Ref. [149].
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Figure 9.
Plots of the averaged chemical shift (ACS) values from experimental data versus the secondary
structure content (SSC) estimated from three-dimensional structures. (a) and (c) show percent
helix (circles) and sheet (squares) versus ACS for HN, whereas (b) and (d) show the
corresponding plots for Hα. The continuous lines show the a linear regression analysis of the
data. Reproduced with permission from Ref. [111].
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Figure 10.
Comparison of helical and sheet content percent calculated using 1Hα or 1HN ACS values to
that obtained using a consensus chemical shift index based method for a set of proteins for
which no three dimensional structures are available. (a) and (b) correspond to the helical content
using the 1Hα and 1HN ACS values, respectively, while (c) and (d) are the corresponding sheet
content using the same ACS values. The dashed lines correspond to a perfect correlation
between these two methods.
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Figure 11.
Comparison of helical (LEFT) and sheet (RIGHT) content calculated using ACSESS with
either 1Hα or 1HN ACS values for a set of proteins for which no three dimensional structure
are available. The numbers for two proteins are their identification codes in the BMRB database
(see Table 10).
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Figure 12.
Comparison of semi-empirical methods to calculate the chemical shifts of an example proteins,
protein G. Panels (a), (b), (c) and (d) show the plots of chemical shifts values of the
nuclei, 1HN, 15N, 13Cα and 1Hα, respectively. Experimental chemical shifts of protein G
(bmr5875) in filled circles to that chemical shifts calculated using SHIFTX (open circles),
SHIFTS (filled triangles) and PROSHIFT (open triangles). A dashed line is connected through
a experimental points to show a visual trend.
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Table 2

Chemical shift reference values used for the CSI methoda

Residue 1Hα±0.1 ppm 13Cα±0.7 ppm 13Cβ±0.7 ppm 13C′±0.5 ppm

Ala 4.4 52.5 19.0 177.1

Cys(red) 4.7 58.8 28.6 174.8

CYS(ox) 58.0 41.8 175.1

Asp 4.8 54.1 40.8 177.2

Glu 4.3 56.7 29.7 176.1

Phe 4.7 57.9 39.3 175.8

Gly 4.0 45.0 173.6

His 4.6 55.8 32.0 175.1

Ile 4.0 62.6 37.5 176.8

Lys 4.4 56.7 32.3 176.5

Leu 4.2 55.7 41.9 177.1

Met 4.5 56.6 32.8 175.5

Asn 4.8 53.6 39.0 175.5

Pro 4.4 62.9 31.7 176.0

Gln 4.4 56.2 30.1 176.3

Arg 4.4 56.3 30.3 176.5

Ser 4.5 58.3 62.7 173.7

Thr 4.4 63.1 68.1 175.2

Val 4.0 63.0 31.7 177.1

Trp 4.7 57.8 28.3 175.8

Tyr 4.6 58.6 38.7 175.7

a
Adopted from references [55], [56]
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Table 7

Results of Kolmogorov-Smirnov test

Classes Compared

SCOPa CATHb

K-S D Statisticc Significanced K-S D Statisticc Significanced

1Hα

α ↔ αβ 0.24 0.0039 0.32 0.00042

α ↔ β 0.41 0.0000060 0.41 0.000042

αβ ↔ β 0.24 0.018 0.23 0.058

13Cα

α ↔ αβ 0.29 0.00030 0.29 0.0021

α ↔ β 0.41 0.0000090 0.34 0.0015

αβ ↔ β 0.18 0.15 0.21 0.11

1HN

α ↔ αβ 0.22 0.012 0.28 0.0029

α ↔ β 0.26 0.015 0.27 0.021

αβ ↔ β 0.11 0.65 0.092 0.94

15N

α ↔ αβ 0.082 0.88 0.10 0.79

α ↔ β 0.11 0.77 0.14 0.59

αβ ↔ β 0.13 0.47 0.13 0.65

a
Proteins classified using SCOP,

b
Proteins classified using CATH,

c
Maximum value of absolute difference between cumulative distribution functions,

d
Significance: values less than/equal to 0.05 are considered significant (numbers in bold print).
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Table 9

Prediction of structural class from NMR data for proteins of undetermined three-dimensional structure

BMRBa ACS (1Hα)b Protein Name

Structural Class (using
CATH-based
correlation)c

Structural Class (using
SCOP-based
correlation)d

4664 3.818 Lipocalin Q83 α α

4688 3.899 L18 αβ α/αβ

4698 3.846 Transforming Growth Factor β type II receptor α α/αβ

4722 3.823 Shikimate Kinase α α

4752 3.819 Gpnu1-E68 α α

4771 3.726 Tola3 α NP

4791 3.808 HCV NS3 RNA helicase α α

4792 3.778 ParD dimer α α

4829 3.841 Interleukin enhancer binding factor α α

4834 3.766 S. aureus peptide deformylase α α

4908 3.769 α′-domain of ERp57 α α

5014 3.724 MyBP-C cC5 α NP

5040 3.778 I1(I29T) monomer α α

5093 3.881 RbfADelta25 αβ α/αβ

5107 3.826 Sensor & Substrate Binding Domain from Lon (La)
Protease

α α

5316 3.781 Gag α α

4113 3.931 Vaccinia Glutaredoxin-1 αβ αβ

4132 4.015 Human ubiquitin-conjugating enzyme β αβ/β

4719 3.922 Ras binding domain of rat AF6 αβ αβ

4802 3.968 N-terminal domain of H-NS αβ/β αβ

4881 3.983 Azotobacter vinelandii C69A holoflavodoxin II αβ αβ

4901 3.991 p62 N-terminal domain αβ αβ

4940 3.933 Antennal Specific Protein 1 αβ αβ

4965 3.925 L11 αβ αβ

5030 3.937 Honeybee antennal specific Protein 2 αβ αβ

5093 3.881 RbfADelta25 αβ αβ

4302 4.010 Protein disulfide isomerase a′ domain β αβ/β

4720 4.066 Inhibitor-2 monomer β β

4870 4.094 region 4.2 of sigma70 of E. coli RNA polymerase
holoenzyme

β β

4881 3.983 Azotobacter vinelandii C69A holoflavodoxin II β β

4901 3.991 p62 N-terminal domain β β

4913 4.046 cAMP-regulated phosphoprotein-19 monomer β β

4929 4.090 Tctex1 dimer β β

4956 4.013 YajQ from E. coli β αβ/β

4973 4.100 Saratin β β

4999 3.979 Nucleocapsid binding domain of the sendai virus
phosphoprotein

β β
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BMRBa ACS (1Hα)b Protein Name

Structural Class (using
CATH-based
correlation)c

Structural Class (using
SCOP-based
correlation)d

5049 4.053 Extracellular domain of subunit 2 of the human receptor β β

a
BioMagResBank (BMRB) accession number (http://www.bmrb.wisc.edu/),

b
Averaged chemical shift (ACS) calculated for the 1Hα nuclei,

c
Structural class estimation based on the empirical distribution obtained by CATH classification,

d
Structural class estimation based on the empirical distribution obtained by SCOP classification.
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