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Abstract

We propose and study a unified procedure for variable selection in partially linear models. A new
type of double-penalized least squares is formulated, using the smoothing spline to estimate the
nonparametric part and applying a shrinkage penalty on parametric components to achieve model
parsimony. Theoretically we show that, with proper choices of the smoothing and regularization
parameters, the proposed procedure can be as efficient as the oracle estimator (Fan and Li, 2001).
We also study the asymptotic properties of the estimator when the number of parametric effects
diverges with the sample size. Frequentist and Bayesian estimates of the covariance and confidence
intervals are derived for the estimators. One great advantage of this procedure is its linear mixed
model (LMM) representation, which greatly facilitates its implementation by using standard
statistical software. Furthermore, the LMM framework enables one to treat the smoothing parameter
as a variance component and hence conveniently estimate it together with other regression
coefficients. Extensive numerical studies are conducted to demonstrate the effective performance of
the proposed procedure.
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1. Introduction

Partially linear models are popular semiparametric modeling techniques which assume the
mean response of interest to be linearly dependent on some covariates, whereas its relation to
other additional variables are characterized by nonparametric functions. In particular, we
consider a partially linear model Y = XT g + f(T) + &, where X are explanatory variables of
primary interest, # are regression parameters, f(-) is an unknown smooth function of the
auxiliary covariate T, and the errors are uncorrelated. This model is a special case of general
additive models (Hastie and Tibshirani, 1990). Estimation of # and f has been studied in various
contexts including kernel smoothing (Speckman, 1998), smoothing splines (Engle et al.,
1986; Heckman, 1986; Wahba, 1990; Green and Silverman, 1994; Gu, 2002), and penalized
splines (Ruppert et al., 2003; Liang, 2006).

Often times, the number of potential explanatory variables, d, is large, but only a subset of
them are predictive to the response. Variable selection is necessary to improve prediction
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accuracy and model interpretability of final models. In this paper, we treat f(T) as a nuisance
effect and mainly focus on automatic selection, estimation and inferences for important linear
effects in the presence of T. For linear models, numerous variable selection methods have been
developed such as stepwise selection, best subset selection, and shrinkage methods like
nonnegative garrote (Breiman, 1995), least absolute selection and shrinkage operator (LASSO;
Tibshirani, 1996), smoothly clipped absolute deviation (SCAD; Fan and Li, 2001), least angle
regression (Efron et al., 2004), adaptive lasso (Zou, 2006; Zhang and Lu, 2006). Information
criteriacommonly used for model comparison include Mallows C, (Mallows, 1973), Akaike’s
Information Criteria (Akaike, 1973) and Bayesian Information Criteria (BIC; Schwarz,
1978). A thorough review on variable selection for linear models is given in Linhart and
Zucchini (1986) and Miller (2002).

Though there is a vast amount of work on variable selection for linear models, limited work
has been done on model selection for partially linear models as noted in Fan and Li (2004).
Model selection for partially linear models is challenging, since it consists of several
interrelated estimation and selection problems: nonparametric estimation, smoothing
parameter selection, and variable selection and estimation for linear covariates. Fan and Li
(2004) has done some pioneering work in this area. In the framework of kernel smoothing,
Fan and Li (2004) proposed an effective kernel estimator for nonparametric function estimation
while using the SCAD penalty for variable selection; they were among the first to extend the
shrinkage selection idea to partially linear models. Bunea (2004) proposed a class of sieve
estimators based on penalized least squares for semiparametric model selection, and
established the consistency property of their estimator. Bunea and Wegkamp (2004) suggested
another two-stage estimation procedure and proved that the estimator is minimax adaptive
under some regularity conditions. Recently, variable selection for high dimensional data, either
d diverges with n or d > n, has been actively studied. Fan and Peng (2004) established
asymptotic properties of the nonconcave penalized likelihood estimators for linear model
variable selection when d increases with the sample size. Xie and Huang (2007) studied the
SCAD-penalized regression for partially linear models for high dimensional data, where
polynomial regression splines are employed for model estimation.

In this work, we propose a new regularization approach for model selection in the context of
partially smoothing spline models and study its theoretical and computational properties. As
we show in the paper, the elegant smoothing spline theory and formulation can be used to
develop a simple yet effective procedure for joint function estimation and variable selection.
Inspired by Fan and Li (2004), we adopt the SCAD penalty for model parsimony due to its
nice theoretical properties. We will show that the new estimator has the oracle property if both
smoothing and regularization parameters are chosen properly as n — oo, when the dimension
d is fixed. In the more challenging case when d, — o as n— oo, the estimator is shown to be

+/n/d,-consistent and be able to select important variables correctly with probability tending
to one. In addition to these desired asymptotic properties, the new approach also has advantages
in computation and parameter estimation. It naturally owns a linear mixed model (LMM)
representation, which allows one to take advantage of standard software and implement it
without much extra programming effort. This LMM framework further facilitates the process
of tuning multiple parameters: the smoothing parameter in the roughness penalty and the
regularization parameter associated with the shrinkage penalty. In our work, the smoothing
parameter is treated as an additional variance component and estimated jointly with the residual
variance using the restricted maximum likelihood (REML) approach, and therefore a two-
dimensional grid search can be avoided. We also show that the local quadratic approximation
(LQA; Fan and Li, 2001) technique used for computation provides us a convenient and robust
sandwich formula for standard errors of the resulting estimates.
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The rest of the article is organized as follows. In Section 2 we propose the double penalized
least squares method for joint variable selection and model estimation, and establish the
asymptotic properties of the resulting estimator . We further study the large-sample properties
of the estimator, such as the estimation consistency and variable selection consistency, in
situations when the input dimension increases with the sample size n. In Section 3 we suggest
a linear mixed model (LMM) representation for the proposed procedure, which leads to an
iterative algorithm with easy implementation. We also discuss how to select the tuning
parameters. In Section 4, we derive the covariance estimates for £ and T, from both Frequentist
and Bayesian perspectives. Sections 5 and 6 present simulation results and a real data
application. Section 7 concludes the article with a discussion.

2. Double-Penalized Least Squares Estimators and Their Asymptotics

2.1. Double-Penalized Least Squares Estimators

1 n . /l .
LapB.SCRY)=5 Y i = &l B FU) +5E [l @) dren
i=1

Suppose that the sample consists of n observations. For the ith observation, denote by y; the
response, by X; the covariate vector from which important covariates are to be selected, and by
tj the covariate whose effect cannot be adequately characterized by a parametric function. We
consider the following partially linear model:

yi=x; B+f(t)+e;, i=1,....n, @.1)

where gisadx1 vector of regression coefficients, f(t) is an arbitrary twice-differentiable smooth
function, and ¢;’s are assumed to be uncorrelated random variables with mean zero and a

common unknown variance o2. Define Y = (y1, -, yn)". Without loss of generality, we further
assume that t; €[0, 1] and f (t) is in the Sobolev space {f (t): f, " are absolutely continuous, and

T2(f) < oo}, where /()= [ o1/ ()} dt.

To simultaneously achieve the estimation of the nonparametric function f(t) and the selection
of important variables, we propose a double-penalized least squares (DPLS) approach by
minimizing

d
Py BjD.
-1

J (2.2)

The first penalty term in (2.2) penalizes the roughness of the nonparametric fit f(t) and the
second penalty p;, (|5j]) is the shrinkage penalty on ; *s. To our best knowledge, there has
been little work on the DPLS in literature. We call the minimizer of (2.2) double-penalized
least squares estimators (DPLSES). There are two tuning parameters in (2.2): 11 >0is a
smoothing parameter which balances smoothness of f(t) with fidelity to data, and 1, >0 is a
regularization parameter controlling the amount of shrinkage used in the variable selection.
Choices of tuning parameters are very important to assure effective model selection and
estimation, which will be discussed later. In the DPLS (2.2), we adopt the nonconcave SCAD
penalty proposed by Fan and Li (2001), which is a piecewise quadratic function and satisfies

P @)= {1<w < /12)+M1(w>/12)} for >0,
@- D,

(2.3)
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where a > 2 is also a tuning parameter. Fan and Li (2001) showed that the SCAD penalty
function results in consistent, sparse and continuous estimators in linear models.

2.2 Asymptotic Theory: d fixed
First we lay out regularity conditions on x;, tj and ¢ which are necessary for the theoretical

results. Denote the true coefficients as B,=(B10, - - - - Ba0)’ =(B1,, ﬂzTO)T, where B0 = 0 and f19
consists of all g nonzero components. Assume the uncorrelated random variables &;’s have
uniformly bounded absolute third moments. In addition, we assume that xy, ..., X, are
independently and identically distributed with mean zero, finite positive definite covariance
matrix R, and that the components of x; have finite third and fourth moments. As in Heckman

(1986), we assume that ¢/ s are distinct values in [0, 1] and satisfy fgu(W)dW=i/n, where u(-) is
a continuous and strictly positive function independent of n.

Define X = (X1, ..., Xn)|, € = (e1, ..., &) and f = (f(ty), ..., f(t,))T. The partially linear model
(2.1) can then be expressed as Y = X + f + &. It can be shown that for given 4, and 1,
minimizing the DPLS (2.2) leads to a smoothing spline estimate for f(:). Hence by theorem
(2.1) in Green and Silverman (1994), we can rewrite the DPLS (2.2) as

d
1 A
Lip(BEY)=5(¥ = XB~ D)/ (¥ = XB— D)+ LT KE+n )" p(1B))).

J=1 (2.4)

where K is the nonnegative definite smoothing matrix defined by Green and Silverman
(1994). Given A1, A2, and g, the DPLS minimizer of (2.4) is given by T(8) = (1 + n1,1K) (Y —
Xp), where A(J1) = (1 + n21K)1 is equivalent to the linear smoother matrix in Craven and
Wahba (1979) and Heckman (1986). Plugging T(8) into (2.4), we obtain a penalized profile
least squares only of g:

) d
0B)=5F - XB)" (I - A(DNY - Xﬂ)+n2p,lz(L3jl)-

J=1

We call the quadratic term in Q(p) as the profile least squares and denote it by L(8).

In the following, we establish the asymptotic theory for our estimator in terms of both
estimation and variable selection. Proofs of these results involve the second-order Taylor
expansion of p;, (|4]), and we will adapt the derivations of Fan and Li (2001) to our partially
linear model context. Compared to the linear models studied in Fan and Li (2001), the major
difficulty here is due to the appearance of the nonparametric component f in (2.1), which can
affect the linear estimate g through the smoother matrix A(41). In Lemma 1, we first establish
some theoretical properties of L(#), which are useful for the proofs of Lemma 2 and Theorems
1 and 2 later in this section.

Lemma 1—Let L'(Bg) and L"(Bg) be the gradient vector and Hessian matrix of L respectively,
evaluated at By. Assume that X are independent and identically distributed with finite fourth
moments. If A1, — 0 and n/l},/f — o0 asn — oo, then

2L/ (By) S N©,*R),

b. 'L By 5 R.
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From Lemma 1, we have n~Y2L'(8o) = Op(1), n"1L" (8g) = R + 0p(1) and

n! "”(:jTﬁj_O'zop(n”/z), n! ";jjj‘;‘ji)szk+op(l), where Rj is the (j, k)th element of R. Using these
results, we can prove the root-n consistency of the DPLSE f and its oracle properties. Since
the derivations of Theorems 1, 2, and Lemma 2 given in the following are similar to those in

Fan and Li (2001), they are omitted in the paper.

Theorem 1—Asn — o, if 135 —0, 14" — coand Azq — 0, then there exists a local minimizer
B of Q(B) such that ||B— Boll = Op(n~12).

Theorem 1 says that if we choose proper sequences of 11, and Ay, as N — oo, then the DPLSE
S is root-n consistent. In the following, we establish through Lemma 2 and Theorem 2 that §
can perform as well as the oracle procedure in variable selection.

Lemma 2—As N — oo, if A1y — 0,14}/ — c0, A9, — 0, and n¥/2Ay, — oo, then with probability

tending to 1, for any p; which satisfies ||p1 — B1ol|= O(n~/2) and any constant C > 0,

0B, 0}= min OB, B)}-
Boll<Cnt/2

Theorem 2—As n — oo, if Ayp —0, n/l},/,4 — 00, Ay — 0, and 2, — oo, then with
—_ g T
probability tending to 1, the local minimizer ﬁ:(ﬁf ,/35) in Theorem 1 must satisfy:

a. Sparsity: p, = 0.

Asymptotic normality: n'/?(8, - B,) 2 N0, o’R; |}, where Ry is the g x g upper-
left sub-matrix of R.

2.3 Asymptotic Theory: dy > ©asn — «

In this section, we study the sampling properties of the DPLSEs in the situation where the
number of linear predictors tends to <o as the sample size n goes to . Similar to Fan and Peng

(2004), we show that under certain regularity conditions, the DPLSES are +/n/d,-consistent
and also consistent in selecting important variables, where d, is the dimension of #to emphasize
its dependence on the sample size n. Similarly, we re-define the number of important parametric

effects as q,. We write the true regression coefficients as B,,Oz(,BTlO,OT)T and the DPLSE

n

—~ 1 T
estimator as ﬁ,,:(ﬁ,’,l ,ﬁf]z) . For any square matrix G, denote its smallest eigenvalue and largest
eigenvalue respectively by Anin(G) and Amax(G). The following are the regularity conditions
assumed to facilitate the technical derivations.

(C1) The elements {fn10, j}’s of fn10 satisfy

min{l,BnlO.jL 1 < j<qut/ A2 — 0.

(C2) There exist constants ¢4 and ¢, such that

0<c1<Amin(R) < Apax(R)<cp<co, Vn.
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Both conditions above are adopted from Fan and Peng (2004), which is the first work to study
the large-sample properties of the non-concave penalized estimators for linear models when
the dimension of data diverges with the sample size n. As pointed out by Fan and Peng
(2004), the condition (C1) gives the rate at which the penalized estimator can distinguish
nonvanishing parameters from 0. Condition (C2) assumes that the R is positive definite and
its eigenvalues are uniformly bounded.

Theorem 3—Under the conditions (C1) and (C2), as n — o, if A1y —0, 14;/* — 0, Ay —0,

and d,=o(n'’? /%), then there exists a local minimizer f, of Q(B,) such that

” En _Bn() ” :017( Vdn/n)-

Theorem 3 says that if we choose proper sequences of 11, and Ay, as N — oo, then the DPLSE

B is +/n/d,-consistent. This consistency rate is the same as the result of Fan and Peng
(2004), where the number of parameters diverges in linear models. It is also the same as the
result of the M-estimator studied by Huber (1973) in the diverging dimension situations. In the
next, Theorem 4 shows that £, is also consistent in variable selection, i.e, unimportant linear
predictors will be estimated as exactly zeros with probability tending to one. All the proofs are
given in the Appendix.

A nd

Theorem 4—Under the regularity conditions (C1) and (C2), as n — oo, if A1, —0,
njht = 00,090 =0, Vn/dy A, — oo, and dy=o(n'/> Ani})!

In

), then with probability tending to

- g T N
1, the local minimizer ﬁ”:(ﬂzl,ﬁfa) in Theorem 3 must satisfy pno = 0.

3. Computational Algorithm and Parameter Tuning

We reformulate the DPLS into a linear mixed model (LMM) representation for ease of
computation. The LMM allows us to treat the smoothing parameter as a variance component
and provides a unified estimation and inferential framework. An iterative algorithm is then
outlined.

3.1. Linear Mixed Model (LMM) Representation

Lett=(ty, ..., t,)" be the vector of distinct t;’s and f = (f (t1), ..., f(ty))T. In the case where there
are ties in tj’s, an incidence matrix can be used to cast the DPLS into a linear mixed model
framework as in Zhang et al. (1998). The partially linear model (2.1) can then be expressed as

Y:Xﬁ+f+8. 3.1)

If &;’s were normally distributed, then minimizing (2.4) with respect to (8, f) is equivalent to
maximizing the double-penalized likelihood

d
5 : P : n/ll T n
Lap(B. BY)=L(B.£:Y) — T KE - ;;pllxwm, .

where ¢(8, f; Y) = — (n/2) log 62 — (Y — X — )T (Y =Xp —)/(262). Following Green (1987),
we may write f via a one-to-one linear transformation as f = Té + Ba, where T =[1, t], 1 is the
vector of 1’s with length n, § and a are of length 2 and n — 2 respectively, and B = L(LTL)™?
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with L being an n x (n — 2) full rank matrix satisfying K = LLT and LT T = 0. It follows that
T Kf = a’a and yields an equivalent double-penalized log-likelihood

Lap(B. 8, a:Y)= — 4logo? — 555(Y - X.B, — Ba)' (Y - X.B, — Ba)

d
AL T
~thala— £ 3 p (8D,
j=1

20>

(3.3)

where X« = [T, X], f= = (67, gNT.

For fixed g« (and given 11,12,62), (3.3) can be treated as the joint log-likelihood for the following
linear mixed model (LMM) subject to the SCAD penalty on g

Y=X.B,+Ba+sg, (3.4)

where g« represent fixed effects, and a are random effects with a ~ N(0, zl), 7 = 26%/(n44), and
0 = (z, 62) are variance components. We then conduct variable selection by maximizing the
penalized log-likelihood of g+ subject to the SCAD penalty

d
1 iy n
lap(BY)= = 3V =X.B) V(¥ -X.B,) - ;;mw,n, s

where V = azln +7BBT is the variance of Y under mixed model representation (3.4). After
selecting important variables and obtaining estimates f, we can use & and the best linear
unbiased prediction (BLUP) estimate & to construct the smoothing spline fit f(t). This LMM
representation suggests that the inverse of the smoothing parameter z can be treated as a
variance component and hence can be jointly estimated with 62 using the maximum likelihood
or restricted maximum likelihood (REML) approach during the variable selection process
under the working distributional assumption that ;s were normal. However, it should be noted
that the above mixed model representation is merely a framework convenient for computation.
The asymptotic results in Section 2 do not depend on the normal error assumption. Simulation
results in Section 5 indicate that our procedure is quite robust to the distributional assumption
for &’s.

The SCAD penalty function defined by (2.3) is not differentiable at the origin, causing
difficulty in maximizing (3.5) with gradient based methods such as the Newton-Raphson.
Following Fan and Li (2001,2004), we use a local quadratic approximation (LQA) approach.

Assuming ﬁo is an initial value close to the maximizer of (3.5), we have the following local
approximation:

7 (TR0
, _ PO, B0 0 _
[ P4, (1B DI =P, (1Bs jDsign(B.) =~ Wﬁ*p forlB, ;| 2¢, j=3,

£

where £ is a pre-specified threshold.

Using Taylor expansions, we can approximate (3.5) by
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—~0 —~0
CapB.IB.) ~ —3(¥ = X. B VY - X.B,) - 558 ¥4, (B.)B.
d+2 '
" = 1 Py (B —~ z}
-2 LB D - 3—=—B.) ¢,
o {1’1_ B.,D -2 &) ®, (3.6)

where Z/b(ﬁ*):diag{o, 0, P, 1BID/IB1L, -, P, (BaD/1Ball, For fixed 0 = (z, 7)we apply the
Newton-Raphson method to maximize (3.6) and get the updating formula

. -1
ﬁ*:{va*(a)xﬁnzh(isf ) /(rz} X'v-(y. o

It is easy to recognize that (3.7) is equivalent to an iterative ridge regression algorithm.

We propose to alternately estimate (8, f) and (z, o2) iteratively. The initial values for fx, z and
o2 are obtained by the M XED procedure in SAS to fit the linear mixed model (3.4) with all the
covariates. We then use formula (3.7) to iteratively update fx. The LMM framework allows
us to treat 7 = o2/(nl1) as an extra variance component based on selected important linear
covariates, so that we can estimate it together with the error variance o2 using the restricted
maximum likelihood (REML). There is rich literature on the use of REML to estimate
smoothing parameters and variance components (e.g. Wahba, 1985;Speed, 1991;Zhang et al.,
1998). For example, Zhang et al. (1998) estimated the smoothing parameter via REML for
longitudinal data with a nonparametric baseline function and complex variance structures. The
partially linear model (3.1) has a similar form as (2) of Zhang et al. (1998), with only two
variance components (z, 62), and hence the estimation proceeds similarly.

3.2. Choice of Tuning Parameters

Although the smoothing parameter 1, (or equivalently 7) is readily estimated in the LMM
framework, we still need to estimate the SCAD tuning parameters (1, a). To find their optimal
values, one common approach could be a two-dimensional grid search using some data-driven
criteria, such as CV and GCV (Craven and Wahba, 1979), which can be rather computationally
prohibitive. Fan and Li (2001) showed numerically that a = 3.7 minimizes the Bayesian risk
and recommended its use in practice. Thus we set a = 3.7 and only tune 2, in our
implementation.

Many selection criteria, such as cross validation (CV), generalized cross validation (GCV),
BIC and AIC selection can be used for parameter tuning. Wang et al. (2007) suggested using
the BIC for the SCAD estimator in linear models and partially linear models, and proved its
model selection consistency property, i.e. the optimal parameter chosen by the BIC can identify
the true model with probability tending to one. We will also use the BIC to select the optimal
Ao from a gridded range under working normal distributional assumption for ;.

Given 1y, suppose q variables are selected by the algorithm in Section 3. Let X; be the sub-
matrix of X for the q important variables and #; be the corresponding g x 1 regression
coefficient vector. Then we may use the estimation method of Zhang et al. (1998) to solve the
partially linear model (2.1). Consequently Y = SY, where S is a smoother matrix with gy =
trace(S). The BIC criterion is then computed as BIC(4,) = —2¢+ q; log n, where £ = —(n/2) log
(2752) — (Y=-X181 = DT (Y —X181 —D)/(202). For each grid point of 15, the iterative ridge
regression results in a model with a set of important covariates, and we compute the BIC for
this selected model. Based on our empirical evidence and the fact that BIC is consistent in

J Multivar Anal. Author manuscript; available in PMC 2010 October 1.
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selecting correct models under certain conditions (Schwarz, 1978), we chose BIC over GCV
for tuning 4, in our numerical analysis.

4. Frequentist and Bayesian Covariance Estimates

We derive the frequentist and Bayesian covariance formulas for £ and T parallel to Sections
3.4and 3.5 in Zhang et al. (1998), except that we also take into account the bias introduced by
the imposed penalty for the variable selection. Using these covariance estimates, we are able
to construct confidence intervals for the regression coefficients and the nonparametric function.
The proposed covariance estimates are evaluated via simulation in Section 5.

4.1. Frequentist Covariance Estimates
From frequentists’ point of view, cov(Y|t, x) = 621, and we can write fx = (87, f7)" as an

approximately linear function of Y: £« = QY. LetQ=(Q/, QZT)T, where Q and Q, are partitions
of Q with dimensions corresponding to (6T, gT)T, so that § = Q,Y, and #= Q,Y. The estimated
covariance matrix for £ is given by

cov, (Bit, x)=Qcov(Y)Q =72 Q,Q}, (41)

where 2 is the estimated error variance. It is easy to show that the empirical BLUP estimate

of ais &= A(Y — X«f«) = S,Y, where S;= A(I-X+Q) and A =(n1,01+B!B.) 'B. Therefore
T=Té+Ba=(TQq +BSy)Y and its covariance

cov, (Flt, x)=02(TQ +BS,)(TQ, +BS,)" . (4.2)

4.2. Bayesian Covariance Estimates
The LMM representation in Section 3.1 and (3.3) suggests a prior for f(t) of the form f=To +
Ba, with a ~ N(0, zI) and a flat prior for 4. As a prior for f, a reasonable choice appears to be

the one with kernel exp{— 48" Z B}, where ¥, is a diagonal matrix defined in Section 3.1.
The definition of the SCAD penalty function (2.3) implies that some diagonal elements of the
matrix X, can be zero, corresponding to those coefficients with || > al,. Assume after
reordering, X, = diag(0, X»;), where X5 has positive diagonal elelments. It follows that £ can

be partitioned into (,BlT, Bg)T, where #1 can be regarded as “fixed” effects and g, as “random”

-1
effects with B2 ~ N(0, 222 ). The matrix X is partitioned into [Xy, X,] accordingly. Now we
reformulate the mixed model (3. 4) as: Y =To+X 1 + Xoffp + Bra+g,0rasY =yy+Zb +

g, where y = [T, Xq], y=(6", ,31) Z = [Xy, B+] and b= (,B T is the new random effect

. -1
distributed as b ~ N(0, Zp) with a block diagonal covariance matrix szdlag(zzz, D). Under
the reformulated linear mixed model, g consists of both fixed and random effects. Therefore
the Bayesian covariances for (£1) are

. L, T
cov,(B)=cov{B;,(B,—B2) } , (4.3)
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covB(B:[T, B]cov{g’[,(a\— a)T}T[T,B]T. (4.4)

These Bayesian variance estimates can be viewed to account for the bias in £ and T due to
imposed penalties (Wahba, 1983).

5. Simulation Studies

We conduct Monte Carlo simulation studies to evaluate the finite sampling performance of the
proposed DPLS method in terms of both model estimation and variable selection. Furthermore,
we compare our procedure with the SCAD and LASSO methods proposed by Fan and Li
(2004). Inthe following, these three methods are respectively referred to as “DPLSE”, “SCAD”
and “LASSO”. When implementing Fan and Li (2004), we adopt their approach to choose the
kernel bandwidth: first compute the difference based estimator (DBE) for g and then select the
bandwidth using the plug-in method of Ruppert et al. (1995). To select the SCAD and LASSO
tuning parameters, we tried both BIC and GCV and found that BIC generally gave better
performance, so BIC was used for tuning in the SCAD and LASSO.

We simulate the data from a partially linear model y = xT g +f(t) + &. Adopting the configuration
in Tibshirani (1996) and Fan and Li (2001, 2004), we generate the correlated covariates x =
(X1, ..., Xg)" from a standard normal distribution with AR(1) corr(x;, X;) = 0.5/1l, and we set
the true coefficients = (3, 1.5, 0, 0, 2, 0, 0, 0)". Two types of non-normal errors are used to
demonstrate that the proposed normal likelihood based REML estimation is robust to the
distributional assumption of errors. We compare three methods in a 2 x 2 x 2 factorial
experiment. There are two combinations of (f, ¢): 1. f1(t) = 4 sin(2zt/4) with &1 ~ Cotg; 2. fo(t)

=5p(t/20, 11, 5) + 45(1/20, 5, 11) where (1, a, b)= rl(‘g;;f»l;),a*l( 1 — r)>~!, with a mixture normal
error &g ~ Co (0.5N (1, 1) + 0.5N (-1, 3)). The scale Cy is chosen such that the error variance
is 2 = 1 or 9. Consider two sample sizes n = 100 and n = 200. The number of observed unique

time points tj’s is chosen to be 50 in all the settings.

As in Fan and Li (2004), we use the mean squares error (MSE) for £ and f to respectively
evaluate goodness-of-fit for parametric and nonparametric estimation. They are defined as
— T, — 2
MSE(f) = E(If- BI12), and MSE(/)=E [f»,-l_{f(’) -/} d’]. In practice, we compute MSE(f)
by averaging over the design knots. Under each setting, we carry out 100 Monte Carlo (MC)
simulation runs and report the MC sample mean and standard deviation (given in the
parentheses) for the MSEs. To evaluate variable selection performance of each method, we
report the number of correct zero coefficients (denoted as “Corr.”), the number of coefficients
incorrectly set to 0 (denoted as “Inc.”), and the model size. In addition, we report the point
estimate, bias, and the 95% coverage probability of frequentist and Bayesian confidence
intervals for the DPLSE.

5.1. Overall Model Selection and Estimation Results

Table 5.1 compares three variable selection procedures when o2 = 1. The DPLSE outperforms
other methods in terms of both estimation and variable selection in all scenarios, and SCAD
performs better than LASSO. Overall, the DPLSE achieves a sparser model, with both “Corr.”
and “Inc.” closer to the oracle (5 & 0 respectively). In our implementation for the SCAD and
LASSO, the bandwidth selected using the plug-in method occasionally caused numerical
problems and failed to converge. Therefore, the results of SCAD and LASSO are only based
on converged cases.
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Table 5.2 presents the results for a high variance case ¢ = 9. We notice that, as o2 increases
from 1 to 9, although there is a substantial amount of increase in the MSEs, the DPLSE still
maintains very good performance in model selection. The MSEs of the DPLSE are consistently
smaller than those of SCAD and LASSO (not reported here to save space). The incidence of
incorrect zero coefficients occurs seldom for n = 100 and never occurs for n = 200.

5.2. Performance of DPLSE for Parametric Estimation

Table 5.3 presents the point estimate, relative bias, empirical standard error, model-based
frequentist and Bayesian standard errors of the estimate. To save space, we only report the
point estimation results for the parameters which are truly nonzero. The point estimate is the
MC sample average and the empirical standard error is computed by the MC standard deviation.
Relative bias is the ratio of the bias and the true value.

We report the results in four scenarios with varying n, o2 and f(t), and those in other scenarios
are similar and hence omitted. We observe that £ is roughly unbiased in all scenarios. Both
Bayesian and frequentist SEs of/?j’s obtained from (4.1) and (4.3) agree well with the empirical
SEs; all SEs decrease as n increases or o2 decreases. Bayesian SEs are slightly larger than their
frequentist counterparts, since they also account for bias in ,EJ The confidence intervals based
on either Bayesian or frequentist SEs achieve the nominal coverage probability, indicating the
accuracy of the SE formulas. Overall, the DPLSE works very well for estimating model
parameters.

5.3. Performance of f(t) and Pointwise Standard Errors

In Figure 5.1 we plot the pointwise estimates and biases for estimating f;(t) and f,(t) when n
=200 and ¢2 = 1 for all three methods.

In plots (a) and (c), the averaged fitted curves are almost indistinguishable from the true
nonparametric function, indicating small biases in f (t) for all three methods. Pointwise biases
are magnified in plots (b) and (d), which show that the DPLSE overall has smaller bias than
the other two methods. The SCAD and LASSO fits have slightly larger and rougher pointwise
biases, which indicates under-smoothing due to a small bandwidth selected by the plug-in
method. Our method is more advantageous in that it automatically estimates the smoothing
parameter and controls the amount of smoothing more appropriately by treating z = 1/(nA;) as
a variance component.

Figure 5.2 depicts the pointwise standard errors and pointwise coverage probabilities of
confidence intervals given by the covariance formulas (4.2) and (4.4). Here n = 200 and ¢2 =
1; (a) and (b) are for f; with tg errors, and (c) and (d) are for f, with mixture normal errors.

We note that the frequentist pointwise SEs interlace with the empirical SEs, whereas the
Bayesian pointwise SEs are a little larger than the frequentist counterparts. Accordingly, as
shown in plots (b) and (d), the pointwise coverage probability rates for frequentist confidence
intervals are around the nominal level, whereas most of the Bayesian coverage probabilities
are higher than 95%.

6. Real Data Application

We apply the proposed DPLS method to the Ragweed Pollen Level data, which was analyzed
in Ruppert et al. (2003). The data was collected in Kalamazoo, Michigan during the 1993
ragweed season, and it consists of 87 daily observations of ragweed pollen level and relevant
information. The main interest is to develop accurate models to forecast daily ragweed pollen
level. The raw response ragweed is the daily ragweed pollen level (grains/m3). Among the
explanatory variables, x; is an indicator of significant rain, where x; = 1 if there is at least 3
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hour steady or brief but intense rain and x; = 0 otherwise; x, is temperature (°F); x3 is wind
speed (knots). The x-covariates are standardized first. Since the raw response is rather skewed,

Ruppert et al. (2003) suggested a square root transformation Y=V ragweed \arginal plots
suggest a strong nonlinear relationship between y and the day number in the current ragweed
pollen season. Consequently, a semiparametric regression model with a nonparametric baseline
f(day) is reasonable. Ruppert et al. (2003) fitted a semiparametric model with x1, Xo and xs,
whereas we add quadratic and interaction terms and consider a more complex model:

, 2 2
y=f(day)+B1 x1+B2x2+B83x3+B20x5+[33 X5 HB12 X1 X2 +B13 X1 X3+ 623 X2 X3 H€.

The tuning parameter selected by BIC is A, = 0.177. Table 6.1 gives the DPLSE for the
regression coefficients and their corresponding frequentist and Bayesian standard errors.

For comparison, we also fitted the full model via traditional partially splines with only
roughness penalty on f. Table 6.1 shows that the final fitted model is y = f (day) + f1xq +
foXo + P3x3, indicating that the linear main effect model suffices. All the estimated coefficients
are positive, suggesting that the ragweed pollen level increases as each of the covariates
increases. The shrinkage estimates have relatively smaller standard errors than those under the
full model. Figure 6.1 depicts the estimated nonparametric function f (day) and its frequentist
and Bayesian 95% pointwise confidence intervals. The plot indicates that the baseline f(day)
climbs rapidly to the peak on around day 25 and plunges until day 60, and decreases steadily
thereafter.

7. Discussion

We propose a new regularization method for simultaneous variable selection and model
estimation in partially linear models via double-penalized least squares. Under certain
regularity conditions, the DPLSE fis root-n consistent and has the oracle property. To facilitate
computation, we reformulate the problem into a linear mixed model (LMM) framework, which
allows us to estimate the smoothing parameter 14 as an additional variance component instead
of conducting the conventional two-dimensional grid search together with the other tuning
parameter 1,. Another advantage of the LMM representation is that standard software can be
used to implement the DPLS. Simulation studies show that the new method works effectively
in terms of both variable selection and model estimation. We have derived both frequentist and
Bayesian covariance formulas for the DPLSEs and empirical results favor the frequentist SE
formulas for f(t). Furthermore, our empirical results suggest that the DPLSE is robust to the
distributional assumption of errors, giving strong support for its application in general
situations.

In this paper, we have studied the large sample properties of the new estimators when the
dimension d satisfies: (i) d fixed, or (ii) d, — o0 as n — oo with dy, < n. In future research we
will investigate the properties and performance of our estimators for the more challenging
situation d > n. Our major challenges will be to study how the convergence rate and asymptotic
distributions of the linear components, in the presence of nuisance nonparametric components,
will be affected when d > n. Very recently, Ravikumar et al. (2008) and Meier et al. (2008)
consider the sparse estimation and function smoothing for additive models in high dimensional
data settings. We will see how these works can be adapted to tackle our challenges in the future.

The proposed DPLS method assumes that the errors are uncorrelated. In future research, we
will generalize it to model selection for correlated data such as longitudinal data. Another
interesting problem is model selection for generalized semiparametric models, e.g. E(Y) =g
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{Xp + f(t)}, where g is a link function. In that case we will consider the double-penalized
likelihood and investigate asymptotic properties for the resulting estimators.
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Appendix

Proofs

Proof of Lemma 1
Differentiating L(#) in Q(8) and evaluating at o, we get:

~L'(By)=X"{I - A(A)NY - XB,), (A1)

L' (By)=X"{1 - A())}X. (A2)

For the partially linear model, we have Y — Xf = f + . Substitution into (A1) yields

—n V2L (By)=n"12XT{I - A(A))}(E+e)
=n'2XT[{I - AQ))}f+€] — n ' 2XT A1) )e. (A3)

Now, the proof of Theorem 1 in Heckman (1986) and its four propositions can be used. Under

regularity conditions, we have that if A1, — 0 and n4;/* — oo, then
nV2XT (I - A()iE+e] S N(0,02R), (A4)
n'2XTAM)E B 0. (A5)

Parts (a) and (b) are obtained by applying Slutsky’s theorem to (A1) and (A2).

To prove Theorems 3 and 4, we need the following lemma. Its proof can be derived in the
similar fashion as Lemma 1 above and Theorem 1 of Heckman (1986). To save space, we only
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state the results below and omit the proof. For any vector v, we use[v]; to denote its ith
component. For any matrix G, we use [G];j to denote its (i, j)th element.

Under the regularity conditions (C1) and (C2), if 21, — 0, then
a. [L'(Bro)li= Op(n1/2)7

O (L (B,0)1;;=nRi+0 (0" v 4711,

Proof of Theorem 3

Let ¢,=+/d,/n. We need to show that for any given ¢ > 0, there exists a large constant C such
that

P{i f +¢, > n . 1- :
{niﬂ‘ch(B”" cn™)> 0B} € (A6)

Let Ap(r) = Q(Bno + cnr) — Q(Bno)- Recall that the first g, components of 8, are nonzero,
Pion (0) = 0and p,, () is nonnegative. By Taylor’s expansion, we have

qn
A,,('I") > L(B,1(]+C11T) - L(B,,())"'n Zl{[)ﬂg,,(|ﬁnL0.j+Cnrj|) - pﬂ:,,(lﬁnl(lj')}
uf
. n )
> Cn'rTL,(ﬁnO)"'%C?_erL (ﬁnO)r"' Zl[ncnp,’b“(IﬂnlO.jl)Slgn(;BnlO.j)rj]
j=

©w o,
+2lncp 2, (B0 Dr3{1+0(1))]
=

= L +hL+13+1,.
By Lemma 3(a), we have
1= lear L' Buo)l < cu | L'Boo) I 7 1| =0 pcu Nndy) | 7 1| =Op(nc) |l 7 1 -
By Lemma 3(b), under the regularity condition (C2), we have

[ZZ%C%TTL”(BHO)T: %I’ZC%{'I’TR'I’«I—OP(C{,,I’!_I/:Z v d’7/11711/4)}
:%nc,zl{rTRrﬂ)p(l) Il 7%},

12 1/4

In

the last equation above is due to the dimension condition d,=o(n" '~ A nd

I3 and I4, we have

). With regard to

q”
. 2
II3] < ) Incaph,, (IBato,jDsign(Buto, )rjl < ney Il 7 I,
J=1

and
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qll
5 » " ) )
4] = § ncyp 4y, (Buo Dry{1+o(1)} < 2 [max Py, Bnio D) - ne; |l 7I°
j:l =J=Yn

Under the condition (C1), maxi<j<g, P}, (1Ba10./)=0 and maxlg_/gq,,PL"(lﬁnlo.jl)IO when n is
large enough and 45, — 0. So, both I3 and 14 are dominated by I,. Therefore, by allowing C to
be large enough, all terms 14, I3, 4 are dominated by I,, which is positive. This proves (A6)
and completes the proof.

Proof of Theorem 4

Let y,=C +/d,/n. It suffices to show that as n — <o with probability tending to 1, for any fn1
satisfying B, — Bnio=0(~d,/n)and j=qn + 1, ..., dp,

90(B) <0 forB,; € (=y»,0),
F) i (A7)

>0 for B, € (0,,). (A8)

By Taylor expansion and the fact that L(8,) is quadratic in S,, we get

908,) _ ILB,) =
0Pyj - Bnj +npflz”(lﬁnjl)mgn(ﬂnj)

d .
ILPBro) 9" L(B.p) 5
= 6[3,,/0 +k§1 3[51116/3:A (ﬂnk _ﬂrlk())"'npf]z”(IBIZj')SIgn(an)

= J1+Jh+J;5.

By Lemma 3 and the regularity conditions (C1) and (C2), we have

.1120[;(1’11/2):01)( V}’ld,,), J2:01)( Vndn)s
S0 J1+J2=0,(\nd,). Since \/d,,/n/ A5, — 0, from

2n

0 _p,7 Bnj)
—( Q(ﬂ”) :n,{zn {_%Sign(ﬁnj)'fop ( Vdn/”//bn)} s

we can see that the sign of ”DQ,;—‘QJ’ is totally determined by the sign of f;. Therefore, (A7) and
(A8) hold for j > gy, which leads to £, = 0. Combining with the result of Theorem 2, there is

- T
a+/n/d,-consistent local minimizer g, of Q(8,), and f,, has the form (ﬁ,fl ,07) . This completes
the proof.

J Multivar Anal. Author manuscript; available in PMC 2010 October 1.



1dudsnuely Joyiny vd-HIN 1dudsnuely Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Ni et al.

Estimated f(t)

Estimated f(t)

10 15 20 25 30

5

0

-5

(a)

- - - True curve
—— DPLSE
—— SCAD

(c)

- - - True curve
—— DPLSE
—— SCAD
---- LASSO

Figure 5.1.
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15

Plots of f (t) and pointwise biases (SCAD and LASSO are based on converged MC samples).
Plots (a) and (b) are for f;; plots (c) and (d) are for fy. Here n = 200 and o2 = 1. The horizontal
axis is t in all the four plots.
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Figure 5.2.
Plots of pointwise frequentist and Bayesian standard errors and coverage probability rates.
Plots (a) and (b) are for f1(t); plots (c) and (d) are for fo(t). The horizontal axis is t in all plots.
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Figure 6.1.
Plot of estimated f(day) and its frequentist and Bayesian 95% pointwise confidence intervals
for the Ragweed Pollen Level data.
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