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Abstract
The genotypes of individuals in replicate genetic association studies have some level of correlation
due to shared descent in the complete pedigree of all living humans. As a result of this
genealogical sharing, replicate studies that search for genotype-phenotype associations using
linkage disequilibrium between marker loci and disease-susceptibility loci can be considered
“pseudoreplicates” rather than true replicates. We examine the size of the pseudoreplication effect
in association studies simulated from evolutionary models of the history of a population,
evaluating the excess probability that both of a pair of studies detect a disease association
compared to the probability expected under the assumption that the two studies are independent.
Each of nine combinations of a demographic model and a penetrance model leads to a detectable
pseudoreplication effect, suggesting that the degree of support that can be attributed to a replicated
genetic association result is less than that which can be attributed to a replicated result in a context
of true independence.

INTRODUCTION
Genetic case-control association studies seek to identify statistical associations between
genotype and disease status in samples of unrelated individuals with and without a disease
phenotype. Recently, the case-control association design has become common as an
approach to the search for susceptibility loci that underlie complex genetic diseases.

As case-control genetic association studies proliferate, it is important to understand the
factors that affect the replicability of association results. General acceptance of the
importance of an observed association typically requires that the association be detected in
additional datasets beyond the one that provided the initial finding. However, many
associations identified in one study are not identified in subsequent studies (Ioannidis et al.,
2001; Hirschhorn et al., 2002; Lohmueller et al., 2003). While false positives in the initial
studies likely contribute to a large fraction of nonreplications, it is also likely that some
nonreplications represent true susceptibility loci that replication studies fail to detect
(Gorroochurn et al., 2007; Ioannidis, 2007; Zöllner & Pritchard, 2007; McCarthy et al.,
2008; Moonesinghe et al., 2008).

The typical difficulties involved in interpreting the replication or nonreplication of any type
of statistical finding are compounded in the genetic case-control context by the indirect
nature of many genetic association studies. Rather than searching directly for true causal
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loci, indirect association studies seek to identify markers whose genotypes are correlated
both with genotypes at (unknown) causal loci and with disease status (Kruglyak, 1999;
Pritchard & Przeworski, 2001; Neale & Sham, 2004; Zondervan & Cardon, 2004;
Hirschhorn & Daly, 2005). These studies derive their utility from the fact that due to shared
descent from a common ancestor, disease-affected individuals will often possess both a
disease mutation and neighboring marker alleles that were present in the ancestor in whom
the disease mutation originally occurred. Thus, identification of a marker associated with
disease status can indicate the likely presence on the genome of a nearby causal
susceptibility locus.

Indirect associations between a marker and a disease influenced by a nearby susceptibility
locus exist as the outcome of a complex stochastic process of mutations, recombinations,
and divergences of genealogical lineages that have occurred since the time of the first
individual who carried the causal variant (Ardlie et al., 2002; Nordborg & Tavaré, 2002;
Balding, 2006; Slatkin, 2008). Disease associations in a population are therefore influenced
by the properties of the genetic history of the population since the time of the disease
mutation. We argue that this history can also affect the relationship between the outcomes of
multiple association studies performed in the population.

Consider a hypothetical scenario illustrating the effect of history on the correlation of
outcomes of replicate studies in a single population. Suppose two similar association studies
are performed in the population. The samples in the two studies will likely have some
degree of shared genealogy, as many individuals from the history of the population are
likely to appear in the ancestries of members of both samples. Suppose further that a true
causal mutation has given rise to increased disease risk in the population. As a result, certain
mutations, recombinations, and divergences of genealogical lineages will occur in the
ancestries of many of the individuals who carry both the disease and the causal mutation.
Consequently, some of the same events that have led in one sample to the production of an
indirect association between a marker and the disease will also have led to an indirect
association in a second sample from the population. An example of this correlation in
outcomes due to shared genealogy is shown in Figure 1.

We can compare the genetic association context to the scenario of a coin toss. Suppose an
unfair coin has probability p ≠ 0.5 of landing “heads.” We perform two separate
experiments, in each of which we flip the coin k times and test the null hypothesis that the
coin has a fair probability of 0.5. Because the two experiments are independent, the
probability that both experiments will reject the null hypothesis is the square of the
probability that the first of the studies will reject the null hypothesis. In the case-control
setting, however, because of shared ancestry of the individuals in two studies, the outcomes
of the studies are not strictly independent, and the probability that both studies will produce
a given outcome is greater than the square of the probability that the first study will produce
the outcome. Due to the dependence of multiple studies on the same past events, a
replication study in a genetic association context can be more accurately described as a form
of pseudoreplication study. This term is borrowed from the context of ecological field
experiments, in which one of its uses is for describing situations where treatment units
within an experiment are not truly independent but are viewed as such during statistical
analysis (Hurlbert, 1984; Heffner et al. 1996).

The issue of genetic pseudoreplication — the correlation of replicate association studies due
to shared genealogies — is important because if correlation among studies is considerable,
then it might be inappropriate to regard a replicated genetic association result as having the
same level of support as that attributed to a replication in a setting with true independence.
Although statistical properties of replication in genetic association studies have frequently
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been investigated (Clarke et al., 2007; Gorroochurn et al., 2007; Sullivan, 2007; Zöllner &
Pritchard, 2007; Moonesinghe et al., 2008), it has typically been assumed that separate
studies have independent outcomes, and the issue of pseudoreplication has not been included
in discussions about replication (Vieland, 2001; Hirschhorn & Altshuler, 2002; Hirschhorn
et al., 2002; Colhoun et al., 2003; Redden & Allison, 2003; Ott, 2004; Ioannidis, 2007; NCI-
NHGRI Working Group on Replication in Association Studies, 2007; McCarthy et al.,
2008). Note that the phenomenon that we term “pseudoreplication” is distinct from the
phenomenon termed by Gorroochurn et al. (2007) “pseudo-failures to replicate.” Whereas
Gorroochurn et al. (2007) studied replication failures that occurred due to underpowered
replication studies, our concern is with the way in which replication of an association result
is influenced by the shared descent of the individuals in replicate samples. Our interest is in
the relationship between the outcomes of separate studies of the same marker in different
sets of individuals, rather than on forms of replication that involve joint analysis of data
pooled across studies (Skol et al., 2006).

To quantitatively evaluate the phenomenon of pseudoreplication in simulated genetic
association studies, we consider pairs of indirect association studies performed in the same
simulated populations. This strategy is similar to that of Ewens et al. (2007), who examined
the relationship between estimates of the levels of genetic variation observed in two separate
samples from the same population. We use a coalescent method to simulate the pair of
studies conditional on assumptions about the demographic history of the population; our
approach is related to that of Sullivan (2007), who investigated replication using a data-
based simulation approach (Wright et al., 2007) rather than using an explicit evolutionary
model. Our focus is on pseudoreplication in pairs of studies that both have the same
underlying disease effect, and we evaluate the excess probability that both studies detect an
indirect association compared to the probability expected under the assumption that the two
studies are independent. Although we find that the outcomes of the two studies are often
close to independent, we also observe that under the conditions simulated, a
pseudoreplication effect does exist, in that replicate studies can have a noticeably higher
probability of finding a disease locus than is expected under independence. A consequence
of this pseudoreplication effect is that under the conditions simulated, “flip-flop”
associations, in which two studies find associations involving opposite variants at the same
marker (Lin et al., 2007, 2008; Zaykin & Shibata, 2008), are relatively unlikely to occur at a
marker closely linked to a true susceptibility locus.

METHODS
We simulated pairs of indirect association studies in simulated populations. Each pair of
association studies involved two loci — an unknown disease locus and a nearby marker
locus tested for association with disease status in both studies. For each pair of simulated
studies, we recorded whether both studies, one study, or neither study detected association
between the marker and disease status. Our simulation approach was designed to balance the
competing issues of providing generally reasonable parameter values, generating enough
acceptable simulations quickly, and satisfying the assumption of coalescent methods that
relatively few haplotypes are simulated compared to the population size. As the simulations
were intended to reflect a scenario of a complex disease with multiple underlying risk
factors, high-risk genotypes at the single disease locus simulated were given incomplete
penetrance, so that the remaining components of the disease risk due to other variables were
not explicitly modeled.

The simulations considered three demographic models of the history of a population. The
models were selected as representative among recent coalescent-based approaches to
demographic modeling of human population history (Marth et al., 2004; Schaffner et al.,

Rosenberg and VanLiere Page 3

Genet Epidemiol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2005; Voight et al., 2005; Plagnol & Wall, 2006; Fagundes et al., 2007). Each model
simulates mutation, recombination, and coalescence of genetic lineages backwards in time
from the present, conditional on assumptions about the history of the population size. Model
1 involved a constant-sized population of 10,000 diploid individuals, a value with similar
magnitude to that reported by studies of various subsets of the human population (Takahata,
1993; Harpending et al., 1998; Yu et al., 2001; Tenesa et al., 2007). Viewed forward in
time, Model 2, based on a study of European variation (Marth et al., 2004), involved a
population of constant size ~10,000 diploid individuals until ~2000 generations in the past,
at which point an instantaneous jump occurred to size 1.4 × 105; Model 3, based on African
variation (Plagnol & Wall, 2006), involved a constant size of ~10,000 diploid individuals
until 4280 generations in the past followed by exponential growth to a current size of 106.

For each demographic model, we considered three penetrance models for the disease locus
— recessive, additive, and dominant. For each of the nine combinations of a demographic
model and a penetrance model, we simulated 100,000 pairs of indirect association studies,
each with a disease locus and a nearby marker locus that was tested for disease association.
To simulate pairs of studies, we first independently selected a recombination rate per base
pair r, a mutation rate per base pair µ, a probability of disease pL for the low-risk
homozygous genotype at the disease locus, a probability of disease pH for the high-risk
homozygous genotype at the disease locus, and a population disease frequency pD. Values
for these parameters were selected uniformly within specified ranges: [5 × 10−9, 2.75 ×
10−8] for r, [1 × 10−9, 2 × 10−8] for µ, [0, 0.4] for pL, [0.4, 1] for pH, and [0.15, 0.4] for pD.

Given the demographic model, recombination rate, and mutation rate, we used the ms
coalescent simulator (Hudson, 2002) to simulate 4000 haplotypes, each of length s = 300,
001 base pairs. The ms approach simulates an infinitely-many-sites model in which µs is a
mutation rate for a whole sequence and in which recurrent mutations are not allowed at
individual sites. For the population mutation and recombination parameters, we used θ =
4Nµs and ρ = 4Nr(s – 1), where N was the present population size for the appropriate model
(104 for Model 1, 1.4 × 105 for Model 2, 106 for Model 3).

The ms command to generate one simulation of Model 1 was ms 4000 1 −t θ −r ρ 300001,
where θ and ρ were random values based on simulated choices of µ and r. The command for
Model 2 was ms 4000 1 −t θ −r ρ 300001 −eN 0.00357 0.07143; the value 0.00357
represents the time at which the population size changed (in units of 4N), and 0.07143
represents the ancient population size (in units of N). The command for Model 3 was ms
4000 1 −t θ −r ρ 300001 −G 4303.9 −eG 0.00107 0.0. The value 4303.9 represents the
exponential population growth rate (population size at time t measured in units of 4N
generations is given by Ne−(4303.9)t), 0.00107 represents the time of onset of growth in units
of 4N generations, and 0.0 indicates a constant size in the period prior to growth.

The 4000 simulated haplotypes were paired randomly to obtain 2000 diploid individuals.
Scanning from left to right, polymorphic sites were tested as potential disease loci, choosing
the derived allele as the high-risk allele. For a given site, treating the site as the disease
locus, disease status was simulated for each of the 2000 individuals based on the genotype
of the individual and the probabilities pL and pH, using the penetrance model to determine
the probability of disease for heterozygotes (pL for the recessive model, pL/2+pH/2 for the
additive model, and pH for the dominant model). If the fraction of affected individuals was
found to lie in the interval [pD − 0.01, pD + 0.01], then the site was chosen as the disease
locus. If no suitable disease locus was found in the simulated 300 kb region, then the
simulation was discarded and a new simulation was generated.

Rosenberg and VanLiere Page 4

Genet Epidemiol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Once the disease status was specified for each individual, two disjoint case-control samples,
representing two association studies, were selected randomly from the individuals, without
replacement. Each sample included 100 cases and 100 controls (each simulation generated
enough cases and controls that two disjoint samples could always be selected). All sites with
minor allele frequency greater than or equal to 0.05 in the full set of 2000 simulated
individuals were then identified as potential marker loci (excluding the disease locus as a
possible marker locus). If more than 150 such loci were produced in a single simulation,
then 150 of the possible marker loci were selected at random (possibly fewer than 150 for
the last simulation, as a target number of pairs of association studies was reached). For each
marker locus, contingency tables involving the three possible marker genotypes and case/
control status were generated separately in both simulated studies. A 3 × 2 G test statistic for
association (Sokal & Rohlf, 1995) was then calculated for each study, and associations
significant at the 0.05 level were identified based on the chi-squared distribution with two
degrees of freedom (cutoff of 5.991, henceforth denoted c). Denoting the entries in the
contingency table by m00, m01, and m11 for the numbers of occurrences of the three
genotypes in cases (where “1” represents the derived allele at the marker locus and “0” is the
ancestral allele) and n00, n01, and n11 for the corresponding values in controls, we identified
marker allele 0 as disease-associated if we observed n00 +n01 < m00 + m01 and n01 + n11 >
m01 + m11, marker allele 1 as disease-associated if n00 + n01 > m00 + m01 and n01 + n11 <
m01 + m11, and neither allele as disease-associated otherwise. We recorded the parameters
for the simulated scenario, the allele more strongly associated with disease in each of the
two studies, and the G statistics for the two studies (G1 for one study arbitrarily labeled as
the first study, and G2 for the other study).

The process of simulating populations using ms, choosing a disease locus, sampling two sets
of cases and controls, and choosing one or more marker loci was repeated until 100,000
pairs of association studies — each pair involving the same population, the same disease
locus, and the same marker locus, but different individuals — were obtained. Under the
assumption that two studies of the same disease and marker locus in the same population are
independent, the probability that both studies produce significant associations is the product
of the probability that the first study produces a significant association and the probability
that the second study produces a significant association. Thus, under this hypothesis, our
simulations would be expected to produce Pr[G1 > c and G2 > c] = Pr[G1 > c] Pr[G2 > c],
and our primary interest was in evaluating the excess probability Pr[G1 > c and G2 > c] –
Pr[G1 > c] Pr[G2 > c] attributable to pseudoreplication. We also evaluated the excess using
Pr[G1 > c and G2 > c]/(Pr[G1 > c] Pr[G2 > c]), the ratio of the conditional probability Pr[G2
> c |G1 > c] to the unconditional Pr[G2 > c]. To assist in interpreting the pseudoreplication
effect, we also examined Pr[G1 > c], Pr[G1 > c and G2 > c], and Pr[G1 > c] Pr[G2 > c].

RESULTS
The nine models tended to produce similar results for Pr[G1 > c], the power to detect
association in a single study, though they varied in the distance over which power was
reasonably high (Figure 2). These differences among models in the distance over which
association was detectable likely result from the difference across models in the extent of
allelic association. As expected based on previous theoretical and simulation-based
predictions (Slatkin, 1994;Kruglyak, 1999;Zöllner & von Haeseler, 2000;McVean, 2002),
the constant model (Model 1) produced a greater extent of association along the genome
than did the instantaneous expansion and exponential expansion models (Models 2 and 3).

For each of the nine models, power Pr[G1 > c] depended in a sensible way on the various
parameters, as can be seen for the role of the distance between the marker and the disease
locus in Figure 2. The effects of the other parameters for a representative model,
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demographic Model 2 with a recessive disease effect, are shown in Figure 3. Lower
recombination rate led to increased power, reflecting the greater level of association
produced between the marker and the disease locus when their recombination distance was
smaller. Mutation rate had little impact on Pr[G1 > c], as the effect of mutation rate was
mainly to influence the speed at which suitable disease and marker loci were simulated,
rather than to substantially influence the properties of the scenarios that were ultimately
accepted. Disease frequency also had relatively little effect in most simulated models.
However, power increased with decreasing penetrance pL for the low-risk homozygous
genotype, with increasing penetrance pH for the high-risk homozygous genotype, and with
increasing relative risk pH/pL.

Considering Pr[G1 > c and G2 > c] and Pr[G1 > c] Pr[G2 > c], similar effects of the various
parameters are observed (Figure 4). However, comparing the top two rows of Figure 4, it is
apparent that Pr[G1 > c and G2 > c] is typically greater than Pr[G1 > c] Pr[G2 > c]. The
bottom two rows of Figure 4 demonstrate that Pr[G1 > c and G2 > c] – Pr[G1 > c] Pr[G2 >
c] is almost always positive and that Pr[G1 > c and G2 > c]/(Pr[G1 > c] Pr[G2 > c]) is
almost always greater than 1. Particularly for the scenarios with the highest power — small
r, small pL, large pH, large pH/pL, and small distance between the marker and the disease
locus — the pseudoreplication effect Pr[G1 > c and G2 > c] – Pr[G1 > c] Pr[G2 > c] is
noticeably greater than zero. Considering Pr[G1 > c and G2 > c]/(Pr[G1 > c] Pr[G2 > c]), the
power to detect association in the second study when conditioning on having detected
association in the first study is often magnified by a factor of 2 to 5 compared to the
unconditional power. A generally similar magnitude of the pseudoreplication effect is
observed in all nine models, extending over a longer distance in the constant-sized Model 1
compared to instantaneous expansion Model 2 and exponential expansion Model 3 (Figure
5).

Only a very small number of pairs of studies with G1 > c and G2 > c had the property that
opposite high-risk alleles were identified at the marker locus in the two studies. For each of
the nine models, the fraction of pairs of studies with G1 > c and G2 > c and opposite high-
risk alleles was less than 5 × 10−4; considering only those studies with G1 > c and G2 > c, in
each of the nine models the fraction of studies with opposite high-risk alleles was less than
1%. This result has the consequence that the excess observed in Figure 4 for Pr[G1 > c and
G2 > c] compared to Pr[G1 > c] Pr[G2 > c] is due to genuine pseudoreplication of
associations with the same marker allele, rather than to scenarios in which opposite alleles at
the marker locus were associated with disease in the two separate studies.

DISCUSSION
In simulations of pairs of association studies performed in the same population, we have
observed the existence of a noticeable “pseudoreplication” effect, in which the shared
ancestry of individuals in two different association studies of the same genomic region
induces a correlation in the outcomes of the two studies. We have found that the
pseudoreplication effect sometimes produces a considerable magnification of the power to
detect association in a second study when conditioning on having detected it in an initial
study, and that the excess probability that two studies identify a disease association is greater
in scenarios with higher power to detect true disease associations. The excess probability of
replication of a disease association was greatest at short distances between the marker tested
and the disease locus, and for disease alleles with high relative risk. Small populations have
more genealogical sharing among individuals than do large populations; thus, the
pseudoreplication effect was greatest for the scenario with the smallest population size
(Model 1), in which the set of cases included in the two replicate studies comprised a
substantial fraction of affected individuals in the full population.
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The occurrence of genealogical correlation between studies might have contributed to a low
probability for “flip-flop” associations when disease loci were truly present. As we have
observed, genealogical correlation leads to increased probability that two association studies
of the same marker and disease will produce the same outcome in the same population,
thereby decreasing the probability of divergent outcomes. Although recent studies have
shown that flip-flop associations can indeed occur in the presence of true disease
associations (Lin et al., 2007, 2008; Zaykin &Shibata, 2008), our simulations suggest that
the scenarios that produce such flip-flops near a disease locus might be quite rare.

The pseudoreplication phenomenon has the consequence that the level of statistical support
provided by genetic association replications is less than that provided by truly independent
replicates, an important result for the practice of association meta-analyses. Thus, the
existence of pseudoreplication suggests that new strategies should be developed for
estimating the degree of correlation between pseudoreplicated genetic association
experiments, and for taking this correlation into account when agglomerating the results of
separate studies. To minimize the correlation, it may also be advisable to focus on larger
populations, for which the pseudoreplication effect is expected to be smallest.

It is worthwhile to note, however, that our simulations differed in various ways from
common practices in replication studies. To match our simulations to the typical setting in
which a derived disease allele arises on an existing haplotypic background, we chose the
derived allele for the disease variant, so that the results are not directly applicable to the
fraction of situations in which disease alleles are ancestral. Loci were simulated under
selective neutrality, so that potentially important scenarios with deleterious disease alleles
were not considered. To utilize the demographic models chosen with a coalescent simulation
approach, the sample size in our simulated studies was small compared to that of studies of
typical magnitude, as was the power to detect disease association. However, the main effect
of an increase in sample size is an increase in statistical power, and conditions that we have
simulated that have different power levels suggest that the pseudoreplication effect is most
easily observed when power is high.

An additional limitation is that we considered replication in the same population, whereas
replication studies are often performed in a separate population. Due to a smaller degree of
genealogical sharing for individuals from separate populations compared to individuals from
the same population, the degree of correlation between studies is likely to be smaller than
for pairs of studies in the same population. However, the use of different populations
introduces the possibility that the history of mutations, recombinations, and divergences of
genealogical lineages might differ between populations; for a true disease mutation in two
populations, the power to detect the mutation via indirect association studies might vary
between the two populations due to differences in their linkage disequilibrium histories
(Figure 6; Hirschhorn et al., 2002;Colhoun et al., 2003;Ioannidis, 2007).

Also unlike many situations in practice, the choice to perform a second study in our
simulations was not made conditional on the outcome of the first study. Thus, our
framework did not take into account issues such as the potential for overestimation of effect
size in the initial study and the consequent potential for overestimation of power in the
replication study — the “winner’s curse” (Gorroochurn et al., 2007; Yu et al., 2007; Zöllner
& Pritchard, 2007). Our simulations also only considered the genealogical aspects of the
properties of replication studies in unstructured populations; other factors — such as
population structure, difference in sample sizes, heterogeneity of mechanisms that produce
the same disease, differences in phenotyping, and gene-gene and gene-environment
interactions — also influence outcomes of replication studies, as do differences in markers
genotyped or other differences in the genotyping procedure. It remains to evaluate the
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comparative magnitude of the pseudoreplication phenomenon in conjunction with an
investigation of the effects of these various other factors.

Lastly, we note that our simulations focused only on pseudoreplication for marker loci
closely linked to true disease loci. What about pseudoreplication of false positives, at
markers not located near a causal locus? Suppose that a true disease mutation exists
somewhere in the genome. Because many affected individuals in the population possess the
disease mutation, “cryptic relatedness” (Devlin & Roeder, 1999; Voight & Pritchard, 2005)
might exist, in which pairs of affected individuals would share a greater degree of recent
ancestry compared to pairs in which one or both individuals was unaffected. As a result, a
second sample of cases might contain more individuals from a part of the population
pedigree that was overrrepresented in an initial sample. Because of shared ancestry between
the two sets of cases, alleles at sites distant from the disease locus that had high frequencies
in the first sample would be more likely to have high frequencies in the second sample.
Thus, in principle, a false positive finding might be replicated in a second study; similarly to
the scenario of pseudoreplication of true positives, shared genealogy might contribute to
pseudoreplication of false positives. It is therefore possible that because of pseudoreplication
resulting from cryptic relatedness across samples, false positive findings might recur in
separate studies more often than is generally appreciated. Simulations of distant markers or
whole genomes rather than the single short region considered here will be required for
quantitative examination of this potentially important phenomenon.
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Figure 1.
Schematic of two association studies performed in the same diploid population. Two loci are
considered, a disease-susceptibility locus with alleles A and a, and a marker locus with
alleles B and b. The genealogy of sampled copies of the susceptibility locus in two
association studies is shown. The most recent common ancestor of the sampled copies has
haplotype ab. Open diamonds represent recombinations, the closed diamond represents a
mutation, and distinct colors represent distinct two-locus haplotypes. The A allele is a true
disease-susceptibility allele; allele B is indirectly associated as it lies on the haplotype on
which the first A mutation occurred. Gray lines represent the pairing of haplotypes to form
diploid individuals. For the purpose of illustration with a small sample size as shown in the
figure, disease status is assigned to individuals according to a multiplicative model with
penetrance 1/6 for low-risk aa homozygotes and relative risk 2 for heterozygotes. The figure
shows that both association studies performed in the population reflect disease associations
with allele B.The genealogies at the bottom represent the subgenealogies for the individuals
included in the two separate studies. They display a high degree of correlation in the history
of events responsible for indirect associations between B and disease.
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Figure 2.
Pr[G1 > c] as a function of the distance between the marker and the disease locus. The plots
display nine combinations of demographic model (Models 1, 2, 3) and penetrance model
(recessive, additive, dominant). For each of the nine combinations, the 100,000 simulated
studies were binned into 100 groups each consisting of 1000 studies. The probability
evaluated from the studies in a bin is plotted at the mean of the 1000 values placed in the
bin.
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Figure 3.
Pr[G1 > c] as a function of recombination rate (r), mutation rate (µ), disease frequency (pD),
penetrance of the low-risk homozygous genotype (pL), penetrance of the high-risk
homozygous genotype (pH), and relative risk (pH/pL). For each of these variables, the
100,000 simulated studies were binned into 100 groups each consisting of 1000 studies. The
probability evaluated from the studies in a bin is plotted at the mean of the 1000 values
placed in the bin. The plots are based on demographic Model 2 with the recessive disease
model.
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Figure 4.
Pr[G1 > c and G2 > c], Pr[G1 > c] Pr[G2 > c], Pr[G1 > c and G2 > c] − Pr[G1 > c] Pr[G2 >
c], and Pr[G1 > c and G2 > c]/(Pr[G1 > c] Pr[G2 > c]) as functions of recombination rate (r),
penetrance of the low-risk homozygous genotype (pL), penetrance of the high-risk
homozygous genotype (pH), relative risk (pH/pL), and distance between the marker and the
disease locus. For each of these variables, the 100,000 simulated pairs of studies were
binned into 100 groups each consisting of 1000 pairs. The quantities evaluated from the
studies in a bin are plotted at the mean of the 1000 values placed in the bin. The plots are
based on demographic Model 2 with the recessive disease model.
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Figure 5.
Pr[G1 > c and G2 > c] ‒ Pr[G1 > c] Pr[G2 > c] and Pr[G1 > c and G2 > c]/(Pr[G1 > c]
Pr[G2 > c]) as functions of the distance between the marker and the disease locus. The plots
display nine combinations of demographic model (Models 1, 2, 3) and penetrance model
(recessive, additive, dominant). For each of the nine combinations, the 100,000 simulated
pairs of studies were binned into 100 groups each consisting of 1000 pairs. The quantity
evaluated from the studies in a bin is plotted at the mean of the 1000 values placed in the
bin.
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Figure 6.
Schematic of a possible pattern of linkage disequilibrium in two populations. A disease
mutation (orange) occurs on an ancestral chromosome that contains several marker alleles
(green, purple, blue, yellow). Over time, recombination events (open diamonds) break down
the correlations between the disease mutation and the marker alleles. However, the
recombination history is different for populations 1 and 2, separated by a barrier to gene
flow (brown vertical line). Consequently, if the purple or blue allele were examined in
population 1, then a disease association might be found, but it might not be replicated in
population 2. A similar situation applies for the yellow allele, with the roles of the
populations reversed.
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