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Abstract

More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process
termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT). In
most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent
selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 59
splice site (59ss), even in the presence of a stronger 59ss downstream. Deletion of this PPT shifted selection to the stronger
downstream 59ss. This enhancing effect depended on the strength of the downstream 59ss, on the efficiency of base-pairing
to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was
dependent on the distance between the PPT and the upstream 59ss. A wide-scale evolutionary analysis of introns across 22
eukaryotes revealed an enrichment in PPTs within ,20 nt downstream of the 59ss. For most metazoans, the strength of the
59ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we
found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly
conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing
recognition of exons, in general, and Alu exons, in particular.
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Introduction

Alternative splicing of mRNA precursors allows the synthesis of

multiple mRNA isoforms from a single primary transcript [1–4].

Recent analyses indicate that the majority of human genes are

alternatively spliced, thus contributing significantly to human

transcriptome diversity [5,6]. Accurate removal of introns occurs

by a two step reaction, conserved from yeast to mammals, that

takes place in a large macromolecular complex termed the

spliceosome. The spliceosome consists of five small nuclear RNAs

(snRNAs; U1, U2, U4, U5 and U6) and over 200 associated

proteins. Four degenerate sequences are recognized by the

spliceosome: the 59 and 39 splice sites (59ss and 39ss), located at

the 59 and the 39 end of each intron, the polypyrimidine tract

(PPT) and the branch point sequence (BPS) both located upstream

of the 39ss [7].

The 59ss consensus sequence in higher eukaryotes is comprised of

nine bases that bridge the exon-intron boundary; this region is

bound by a complementary region along the RNA component of

the U1 snRNP. In most pre-mRNAs the base pairing of U1 snRNP

and 59ss is not perfect. Increased complementarity between U1

snRNP and the 59ss strongly contributes to 59ss selection [8,9] and

can shift the splicing pattern from alternative to constitutive [10,11].

In metazoans, the four main splice signals are insufficient to

allow accurate splicing. It has been estimated that these splicing

signals provide, at most, half of the information required for

recognition by the splicing machinery [12]. Studies of the

molecular basis of splicing revealed the existence of exonic and

intronic cis-acting regulatory sequences (ESRs and ISRs, respec-

tively), which bind trans-acting factors and regulate the precise

excision of introns from within eukaryotic pre-mRNA. These cis-

acting elements are classified as exonic or intronic splicing

enhancers and silencers, which promote or inhibit splicing,

respectively. These sequences have been identified using a wide

array of experimental and computational methodologies [13–21]

and interact in a complex manner to allow precise splicing [22].

Aberrant regulation of splicing is linked with a wide array of

disease states, including cancer [23–25].

The ESRs and ISRs are recognized by trans-splicing factors,

which usually contain one or more RNA binding domains as well

as additional domains that are essential for recruitment of the

splicing apparatus and for splice site pairing. The TIA1 (T-cell

intracellular antigen 1) and TIAR (TIA1 related protein or TIAL)

proteins are examples for two such splicing factors. These proteins

contain an RNA-recognition motif (RRM) known as RRM2 that

specifically binds U-rich RNA sequences within introns [26]. The
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proteins are also characterized by two additional RRMs and a

glutamine rich carboxyl terminal region [26–28]. Binding of TIA1

protein to uridine-rich sequences downstream of weak 59splice

sites helps to recruit U1 snRNP to the 59ss through protein-protein

interactions involving the glutamine rich domain of TIA1 and the

U1-specific protein U1C [29–32]. TIAR can also recruit U6

snRNP to a pseudo-59ss that is followed by a U-rich sequence

located within a 200-bp element regulating alternative splicing of

the calcitonin/CGRP gene [33]. Because of their affinity for U-

rich sequences, TIA proteins are often antagonized by the

pyrimidine tract binding protein (PTB), a general repressor of

exon inclusion [34–37]. The functions of TIA1/TIAR proteins

and homologues have been demonstrated in several model

organisms. In yeast, NAM8, PUB1 and NGR1 are related to the

TIA proteins and have similar domain organizations. NAM8

stabilizes commitment complexes and facilitates weak 59ss

recognition by interacting with non-conserved sequences down-

stream of the 59ss [38,39]. The mouse homologs of the TIA

proteins were shown to be functional as well [29,40]. In

Drosophila, Rox8 was shown to be the functional homolog, based

on RNA interference experiments [41], and in plants, the related

proteins UBP1 and RBP45 were shown to interact with U-rich

elements and enhance splicing in [42–44]. Much less is known

about the TIA homologs among other eukaryotes.

More than 5% of alternatively spliced internal exons in the

human genome are derived from Alu elements. Throughout the

course of evolution, some intronic Alus have accumulated

mutations that led the splicing machinery to select them as

internal exons, a process called ‘‘exonization’’ [10,45–47]. The

majority of Alu-derived exons are alternatively spliced [46,48]

allowing the enrichment of the human transcriptome with new

isoforms without compromising its original repertoire [49]. Alus

originated from the 7SL RNA gene [50]. They belong to the short

interspersed elements (SINE) family of repetitive elements and are

unique to primates [51,52]. More than one million copies are

dispersed throughout the human genome with a majority located

in introns [46]. A typical Alu element is ,300 nucleotides long,

consisting of two arms (left and right) joined by an A-rich linker

and followed by a poly(A) tail. The right and left arms are highly

similar, sharing ,80% of their sequence. Both arms contain

potential splicing signals and both can undergo exonization,

although exonizations tend to occur from the right arm [53–55].

When Alus insert into introns in the antisense orientation (relative

to the coding sequence), the poly(A) tail becomes a poly(U) in the

mRNA precursor and thus can serve as a PPT. This PPT

presumably leads the splicing machinery to select a downstream

AG as the 39ss and a further downstream GT or GC sequence as the

59ss [55]. Exonizations can occur either from the right Alu arm or

from the left arm. In the first case, both the 39ss and the 59ss are

selected from the right arm, whereas in the latter both signals are

selected within the left arm. Only few cases were known to us in

which the 39ss occurs in one arm, and the 59ss in the other, although

there are many cases in which potential splicing signals are present

[46,56]. We thus hypothesized that the second PPT sequence,

located within the Alu element and separating the two Alu arms from

each other, limits splice site selection and causes both splicing signals

to be selected from within the same arm.

To evaluate this hypothesis, we created an Alu-based model

system of two competing 59ss separated by a PPT. The PPT in this

system is not the classical PPT located upstream of the 39ss, but

rather is a pyrimidine-rich stretch located downstream of the 59ss.

We showed that the presence of the PPT sequence led to selection

of the upstream 59ss even in the presence of a stronger 59ss

downstream. Deletion of the PPT sequence shifted selection to the

stronger 59ss. We show that this enhancing effect depended on the

strength of the downstream 59ss and the efficiency of base pairing

to U1 snRNA. PPTs of 3-to-9 nucleotides modulated different

levels of 59ss usage. We also show that this enhancing effect is

mediated by the binding of TIA proteins to the Alu PPT and that

the function of these proteins is distance-dependent. To obtain a

wide-scale overview on the evolution of the TIA proteins and their

binding sites, we analyzed over 1 million introns from 22

eukaryotes and found that throughout eukaryotic evolution there

has been an increased tendency for PPTs to occur within ,20 nt

downstream of the 59ss. Among most metazoans, the strength of

the 59ss inversely correlates with the presence of a downstream

PPT, indicating the functional importance of this signal. Finally,

we searched for TIA homologs across evolution and found that

functional regions of these proteins are highly conserved. Taken

together, these findings indicate that throughout eukaryotic

evolution, the TIA proteins have served as key players that have

helped shape introns and that these proteins also mediate the

formation of new exons, as in the context of Alu exonizations.

Methods

Plasmid construction
The ADAR2 minigene, containing the human genomic

sequence of exons 7, 8 and 9 (2.2kb), was previously cloned

[45]. The PCR products were restriction digested and inserted

between the KpnI/BglII sites in the pEGFP-C3 plasmid (Clontech),

which contains the coding sequence for Green Fluorescent Protein

(GFP). The 350-nt intronic sequence originating from intron 11 of

the IMP gene was amplified by PCR using 59 phosphorylated

primers and inserted downstream of the PPT sequence of the

intronic left arm of the Alu element. For RNA pull-down assays,

three fragments containing the 59ss of the Alu exon and the PPT

downstream of it were amplified by PCR from WT, DPPT and

rep_PPT minigenes and cloned into the BamHI/EcoRI sites of

pBluescript KS+. The TIA1b and TIARb cDNAs (kind gifts from

Juan Valcárcel) were cloned into the pEGFP-C1 vector and the

U1 gene was cloned into the pCR vector. For the sequences of the

ADAR minigene insert and pBluescript KS+ inserts see Text S1.

Author Summary

Human genes are composed of functional regions, termed
exons, separated by non-functional regions, termed
introns. Intronic sequences may gradually accumulate
mutations and subsequently become recognized by the
splicing machinery as exons, a process termed exonization.
Alu elements are prone to undergo exonization: more than
5% of alternatively spliced internal exons in the human
genome originate from Alu elements. A typical Alu element
is ,300 nucleotides long, consisting of two arms
separated by a polypyrimdine tract (PPT). Interestingly, in
most cases, exonization occurs almost exclusively within
either the right arm or the left, not both. Here we found
that the PPT between the two arms serves as a binding site
for TIA proteins and prevents the exon selection process
from expanding into downstream regions. To obtain a
wider overview of TIA function, we performed a cross-
evolutionary analysis within 22 eukaryotes of this protein
and of U1C, a protein known to interact with it, and found
that functional regions of both these proteins were highly
conserved. These findings highlight the pivotal role of TIA
proteins in 59 splice-site selection of Alu exons and exon
recognition in general.

TIA Role in Exon Selection
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Minigene mutagenesis
Site-directed mutagenesis was carried out to introduce

mutations into the ADAR2 and U1 minigenes by PCR using

oligonucleotide primers containing the desired mutations. Muta-

tions creating deletions in wild-type minigenes were performed by

PCR using 59 phosphorylated primers flanking the sequence to be

deleted (see Supplementary Table 1 in Text S1 for list of primers).

PCR was performed using PfuTurbo DNA polymerase (Strata-

gene) with an elongation time corresponding to 2 min for each

kb. The PCR products were treated with DpnI (20 U, New

England BioLabs) at 37uC for 1 h. Plasmid mutants were ligated

using T4 DNA Ligase (New England BioLabs) at 37uC for 2 h.

The mutant DNA was transformed into E. coli XL1-competent

cells. DNA was extracted from selected colonies by mini-prep

extraction (Promega). All plasmid sequences were confirmed by

sequencing.

Transfection, RNA isolation, and RT–PCR amplification
293T cells were cultured in Dulbecco’s Modification of Eagle

medium, supplemented with 4.5 g/mL glucose (Biological Indus-

tries, Inc.), 10% fetal calf serum (FCS), 100 U/mL penicillin,

0.1 mg/mL streptomycin and 1 U/mL nystatin (Biological Indus-

tries, Inc.). Cells were cultured in 6-well plates under standard

conditions at 37uC in 5% CO2. Cells were grown to 50%

confluence and transfection was performed using 3 mL TransIT

LT1 (Mirus) with 1 mg of plasmid DNA. RNA was isolated and

harvested after 48 h. Total RNA was extracted using Trizol

Reagent (Sigma), followed by treatment with 1 U RNase-free

DNase (Ambion). Reverse transcription (RT) was preformed for 1 h

at 42uC using an oligo dT reverse primer and 2 U reverse

transcriptase of avian myeloblastosisvirus (AMV, Roche). The

spliced cDNA products derived from the expressed minigenes were

detected by PCR using an ADAR2 exon 7 forward primer

(59CCCAAGCTTTTGTATGTGGTCTTTCTGTTCTGAAG39)

and a pEGFP-specific reverse primer (59CGCTTCTAACATTCC-

TATCCAAGCGT39). Amplification was performed for 28 cycles

to maintain a linear relationship between the input RNA and

signal [18]. Each cycle consisted of 30 sec at 94uC, 45 sec at

61uC and 1.5 min at 72uC. The RT-PCR products were

separated on a 2% agarose gel and confirmed by sequencing.

The relative ratios of RNA products using 59ssA or 59ssB were

measured using ImageJ software (http://rsb.info.nih.gov/ij/

index.html), as we previously established that ImageJ quantifica-

tion for ADAR2 RT-PCR products correlates with real-time RT-

PCR quantification produced by the Roche LightCycler PCR

and detection system [45]. Semi-quantitative RT-PCR of three

independent biological replicates of three ADAR minigene

mutants revealed standard deviations of 0.6% to 5.3% of the

relative ratios of RNA products.

RNA pull-down assays
Linearized pBluescript KS+ plasmids were used as templates for

the synthesis of biotinylated RNAs by using T7 RNA polymerase

(Promega) and biotinylated-16-UTP (Roche) following manufac-

ture recommendations. Total cell extract from 1 mg of HeLa cells

was incubated with 1 mg of biotin-labeled RNA and rotated for

4 h at 4uC in binding buffer containing 10 mM HEPES, pH 7.5,

40 mM KCl, 3 mM MgCl2, 5% glycerol, supplemented with 40

units of RNasin (Promega) and 5 mg/ml heparin (Sigma). The

biotin-labeled RNA was isolated using streptavidin-conjugated

beads (Fluka) and was washed with binding buffer for four times.

The presence of TIA1/TIAR in the pull-down pellet was verified

by western blot analysis as described below.

Western blotting
Lysis buffer (50 mM Tris at pH 7.5, 1% NP40, 150 mM NaCl,

0.1% SDS, 0.5% deoxycholic acid, protease inhibitor cocktail and

phosphatase inhibitor cocktails I and II; Sigma) was used for

protein extraction. Lysates were centrifuged for 30 min at

14,000 rpm at 4uC. Total protein concentrations were measured

using BioRad Protein Assay (Bio-Rad). Proteins were separated in

12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and

then electroblotted onto a Protran membrane (Schleicher and

Schuell). The membranes were probed with anti-TIA1 (C-20,

Santa Cruz Biotechnology), anti-TIAR (C-18, Santa Cruz

Biotechnology), anti-HSC70 (B6, Santa Cruz Biotechnology),

anti-GFP (MBL) or anti-a-tubulin (Sigma), followed by the

appropriate secondary antibody. Immunoblots were visualized

by enhanced chemiluminescence (Lumi-Light Western Blotting

Substrate; Roche) and exposure to X-ray film.

Search for exonization events within Alu elements
To examine the prevalence of Alu exons with a 39ss selected

within the right arm and a 59ss within the left arm, we began by

querying the TranspoGene webserver [57] for cases of exons

overlapping Alu elements in the antisense orientation that were

supported by at least one EST. This query yielded 744 such exons.

Since we were interested only in cases in which both the 59ss and

the 39ss occurred within the Alu sequence, we next filtered out all

cases in which either of these signals occurred outside of the Alu

sequence; this yielded 548 sequences. To map the 39ss and the 59ss

of each exonization event to either the left or the right arm

performed pairwise alignments between each Alu and the Alu-Jo

consensus sequence based on the Needleman-Wunsch algorithm

for global alignment [58].

Identification of PPTs downstream of the 59ss
To identify PPTs, we used the algorithm we previously

developed for identifying polypyrimidine tracts that is described

in detail in [54]. We set a minimum score threshold of 6, which

dictates that a PPT sequence must consist of at least six

consecutive pyrimidines. Notably, the identified stretch may also

be longer and may contain non-pyrimidines as long as the overall

enrichment score is $6.

For each intron of each organism, we first masked the 30

terminal nucleotides and then searched for pyrimidine-rich

stretches within the 300 first nucleotides of the intron or within

the entire remaining stretch of the intron in cases of introns shorter

than 330 nucleotides. The 30 terminal nucleotides were masked in

order to avoid contamination by PPT at the 39 end of the intron.

To derive the plots indicating the presence of PPTs for each

organism, we summarized for each of the first 100 intronic

positions the number of PPTs covering that position and divided

this number by the number of introns reaching that position.

59ss scoring
The 59ss of all introns were scored based on their adherence to a

position-specific scoring matrix (PSSM) for the 59ss consensus for

each organism. The 59ss was defined as 12 positions as in [54],

including four exonic and eight intronic positions. The 59ss score

was calculated as:

score~
X12

i~1

log2(fi,Ai
)

where A is the sequence to be scored and fi,Ai is the PSSM

frequency at position i of the ith nucleotide in sequence A.

TIA Role in Exon Selection
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Examination of PPTs flanking alternative 59 events
A dataset of 3634 alternative 59ss events, based on the AltSplice

track in University of California Santa Cruz (UCSC) Genome

Browser (http://genome.ucsc.edu/) was compiled. We discarded

all events in which the distance between the two alternative 59ss

was less than 12 nt, in order to allow the presence of a PPT. This

left 2,296 alternative 59ss events. PPTs within the first 25 nt (or

less) downstream of each of the two competing 59ss were found as

described above.

Identification of TIA homologs
We compiled a set of 684 known splicing factors with RNA

binding domains from multiple species. We then grouped these

proteins into 38 families (see Supplementary Table 3 in Text S1).

We grouped known TIA1/TIAR and polyuridylate binding

proteins (PUB1) proteins into the same family and known

NAM8 and NGR1 proteins into a different family. For each

family we built a hidden Markov model (HMM) for each of the

RNA binding domains (RRM or KH-type) using Hmmer [59]

(http://hmmer.janelia.org). We considered as candidate homologs

those proteins that had collinear hits for a multidomain protein in

the right order or a single hit for a single domain protein. For each

of the sets of homologous RRMs we built a maximum parsimony

tree using the close-neighbour-interchange algorithm with search

level 3. The initial trees were obtained with random addition of

sequences using 10 replicates. A candidate protein was labeled as

an ortholog of a known protein if its RRMs grouped consistently in

the trees with most of the known RRMs (see Dataset S1). Multiple

alignments were built using t-coffee [60] and phylogenetic analyses

were performed with MEGA4 [61].

In order to establish the conservation between proteins or

between domains we used two measures: the average pairwise

identity and the multiple alignment conservation score. For the

average pairwise identity we calculated, for each pair, the

proportion of identical amino acids over the gapless positions

and averaged over all pairs in the multiple sequence alignment

(MSA). To calculate the conservation score (MSA score), we first

calculated the score for each gapless column of the MSA by

determining the proportion of amino acid pairs M in the column

that were identical:

Column score~CA~
1

M

X

sequences i, j
ivj

d(Ai,Aj),

where d(Ai,Aj) is 1 if Ai = Aj and 0 otherwise. The MSA score was

then computed as the average of the column scores over all the

gapless columns N:

MSA score~
1

N

X

A

CA

Results

The Alu left arm PPT enhances 59ss selection in the right
arm Alu exon

The left and right arms of Alu elements are highly similar and

both contain potential splice sites [53]. However, in most cases

exonization occurs almost exclusively within either the right arm

or the left, but not both. We were interested in determining how

often exonizations overlapped both arms. We compiled a dataset

of Alus in the antisense orientation involved in exonization events,

based on a TranspoGene query [57]. We then used pairwise

alignments against an Alu consensus sequence to map each signal

to the right or the left arm. Of 548 cases of exonization events

within Alu elements, 405 (74%) occurred from within the right arm

only, 114 (21%) occurred from within the left arm only, and in

only 29 (5%) was the 39ss selected from within the right arm and

the 59ss from within the left.

In light of our finding that Alu exonization events do not tend to

cross the border between the two arms, we hypothesized that the

PPT sequence separating the two Alu arms prevents exonization

into downstream sequences. To examine this hypothesis, we used

a modified version of the ADAR2 minigene as a model system.

The original ADAR2 minigene contains exons 7 to 9 of the human

ADAR2 gene, along with the introns between them. Exon 8 is an

Alu exon that originated from the right arm of the Alu element and

is alternatively spliced. In order to investigate the effect of the PPT

in isolation of the pseudo-exon effect of the left arm [53], we began

by inserting a 350-nt sequence between the PPT and the potential

39ss of the left arm (Figure 1A). By separating the right arm from

the left by 350nt, we eliminated the effect of the intronic arm on

the Alu exon, thus shifting splicing of the Alu exon from alternative

to constitutive splicing [53]. We next generated a 59ss 68

nucleotides downstream of the PPT of the intronic left arm

(59ssB in Figure 1A). This 59ss is stronger in terms of Senapathy

score (http://ast.bioinfo.tau.ac.il/SpliceSiteFrame.htm) than the

59ss of the Alu exon (59ssA in Figure 1A). Thus, this system

contains two potential 59ss separated by a PPT sequence

(Figure 1A); we will henceforth refer to this minigene as ADAR

WT, and to the PPT following the Alu exon (originating from the

left arm) as PPT.

The minigene was transfected into 293T cells, total cytoplasmic

RNA was extracted after 48 hours and 59ss selection was

examined by RT-PCR analysis using primers specific to the

minigene mRNA. Although 59ssA is weaker than site B, it was

almost exclusively selected (Figure 1B, lane 1). However, when the

PPT sequence was deleted or replaced by a sequence that did not

contain any splicing regulatory elements (see sequence in

Supplementary Methods in Text S1) there was a shift in 59ss

selection from site A to site B (Figure 1B, lanes 2 and 9,

respectively). These results indicated that the PPT enhances

selection of a weaker upstream 59ss in the presence of a stronger

59ss downstream.

To determine whether this enhancing effect of the PPT was

dependent on the strengths of the 59ss, we made mutations in

59ssB to strengthen it over a Senapathy score range of 79.87 to

100. Specifically, we inserted different combinations of TRA

mutations in positions 3 and 4, and a TRC mutation in position

23. As site B was strengthened, there was a gradual shift towards

selection of this site despite the presence of the PPT sequence

(Figure 1B, compare lane 1 to lanes 3–7). Strengthening of 59ssA in

combination with a deletion of the PPT sequence resulted in its

constitutive selection (Figure 1B, lane 8). These results imply that

there is a delicate interplay between the PPT and the strengths of

the splice sites flanking it. The presence of a PPT sequence enables

selection of a weak 59ss upstream, but only if the downstream 59ss

is weaker than a certain level. Once the competing 59ss is strong

enough, it is selected despite the presence of the PPT.

To determine the length of the PPT required for efficient

selection of site A, we shortened the 14-nt PPT sequence

separating site A from site B to nine, six and three consecutive

uridines. Shortening the PPT resulted in a shift from site A to B

(compare Figure 1C, lane 1 to lanes 3–5). When the two adenosine

bases within the PPT sequence in the WT minigene (see minigene

TIA Role in Exon Selection
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Figure 1. The effect of a PPT located between two putative 59ss on 59ss selection. (A) Illustration of the original (upper part) and modified
(lower part) ADAR2 minigenes (referred as ADAR WT in the manuscript). The original ADAR2 minigene contains exons 7 to 9 of the human ADAR2
gene (exons are indicated by boxes), along with the introns between them. Exon 8 is an Alu exon that originated from the right arm of the Alu
element and is alternatively spliced (the right and left arms of the Alu element are marked by horizontal brackets). A 350-bp sequence was inserted
downstream of the left arm PPT of the Alu element. The 59ss of the Alu exon is defined as 59ssA and the 59ss generated within the 350-bp insert is
defined as 59ssB. 59ssA and 59ssB are indicated by arrows and their sequences and Shapiro and Senapathy scores (http://ast.bioinfo.tau.ac.il/
SpliceSiteFrame.htm) are shown. The positions subjected to mutations are marked in blue. (B) ADAR2 minigenes containing the indicated mutants
were transfected into 293T cells. Total cytoplasmic RNA was extracted and splicing products were separated in 2% agarose gel after RT-PCR. Lane 1,
splicing products of wild-type ADAR2; lane 2, splicing of the product of a minigene with deletion of the PPT sequence downstream to 59ssA; lanes 3–
8, splicing products of mutants that strengthened 59ss A or B; lane 9, splicing products of a minigene with the 14-bp PPT sequence replaced with a
sequence that does not contain splicing regulatory elements. The PCR products were identified by sequencing and the two minigene mRNA isoforms
are shown on the right. The numbers above the lanes indicate the 59ssB usage. (C) Splicing assays were performed as described in (B). Lane 1, splicing
products of wild-type ADAR2. Lanes 3–6, effects of shortening of the PPT between the two competing 59ss.
doi:10.1371/journal.pgen.1000717.g001

TIA Role in Exon Selection
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sequence in Supplementary Methods in Text S1) were replaced

with uridines to obtain a PPT of 14 consecutive uridines, there was

little change in 59ss selection compared to the WT (Figure 1C, lane

2). These results indicated that a PPT with at least nine

consecutive uridines results in maximal selection of 59ssA.

We then set out to examine whether the competition between

the two putative 59ss is mediated through the binding to U1

snRNA. 293T cells were co-transfected with the ADAR WT

minigene and with a U1 gene containing mutations to enhance

complementarity to site B (Figure 2A). A schematic illustration of

the base pairing between site B and U1 is presented in Figure 2B.

Mutations were made at positions 5, 6 and 11 of U1 snRNA to

improve its base pairing to 59ssB (these U1 snRNA mutations are

complementary to positions 4, 3 and 23 in 59ssB, respectively).

Improving the binding of U1 snRNA to 59ssB by insertion of all

three mutations enhanced its selection (Figure 2A, compare lane 1

to lane 6), indicating that complementarity to U1 snRNA is critical

to 59ss selection in this competitive situation. Notably, an

individual mutation at position 5 of U1 snRNA or the

combination of mutations in positions 5 and 11 did not improve

base pairing of U1 snRNA to 59ssB. This is presumably explained

by the fact that the mutation at position 5 enhances the ability of

U1 snRNA to base pair not only with 59ssB but also with 59ssA

(Figure 2B). The reciprocal experiment, in which a U1 snRNA

was designed with complementarity to 59ssA, caused activation of

a cryptic intronic site that resembles 59ssA (data not shown).

TIA proteins enhance 59ssA selection and their function is
distance-dependent

It has been previously shown that TIA proteins (TIA1 and

TIAR) activate weak 59ss that are located upstream of U-rich

sequences [29–33]. To test whether the enhancing effect of the

PPT sequence on the selection of the weak 59ssA is mediated by

the binding of TIA1/TIAR, we transfected 293T cells with three

mutant minigenes that contained 59ssB of different strengths and

thus exhibited different levels of site B selection. For variants

B(3A4A), B(3A) and B(4A), 59ssB was selected in 100%, 82% and

44% of the transcripts, respectively (Figure 1B). We also co-

transfected the cells with vectors containing TIA1 and TIAR. In

addition, we co-transfected the cells with a vector containing the

PTB cDNA, which is also known to bind pyrimidine rich

sequences [35]. As shown in Figure 3, co-transfection of the

indicated mutants with TIA1 and TIAR cDNA induced a shift of

splicing towards use of 59ssA. Western blot analysis revealed that

both proteins were expressed at the same level (see Supplemen-

tary Figure 1 in Text S1). However, co-transfection of the same

mutants with PTB did not affect the splicing pattern of any of

these ADAR mutants. We subsequently depleted levels of the

TIA proteins via siRNA experiments. In these experiments we

did not observe a shift in the 59ss selection, which may be

explained either by functionality of the residual levels following

depletion or by involvement of additional factors (data not

shown).

We then determined whether TIA1 and TIAR could bind to

the PPT sequence downstream of 59ssA. Three fragments

containing the 59ss of the Alu exon and the downstream PPT

were amplified by PCR from the WT ADAR minigene and from

the mutant minigenes in which the PPT sequence was deleted or

replaced (DPPT and rep_PPT minigenes, respectively, see

Figure 1B). The fragments were cloned into pBluescript KS+
plasmids (see insert sequences in Supplementary Methods in Text

S1) and in vitro transcription using T7 RNA polymerase and

biotinylated-16-UTP was performed. Biotinylated transcripts

were incubated with HeLa extracts, isolated by streptavidin-

conjugated beads and TIA1 and TIAR was detected using

western blot analysis. Our results indicate that TIA proteins

strongly interact with the RNA transcript corresponding to 59ssA

and the PPT sequence downstream of it: The anti-TIAR and

anti-TIA1 antibodies detected double bands at 40 and 44 kD,

corresponding to two different isoforms of TIAR and TIA1,

respectively [62], when the WT biotinylated RNA was used

(Figure 3D, lane 1). The TIA1 and TIAR bands were completely

absent when the PPT sequence was deleted or replaced

(Figure 3D, lanes 2 and 3, respectively).

Previous studies have experimentally demonstrated that the

splicing-enhancing function of U-rich sequences is observed when

they are located immediately downstream from the activated 59ss

[29,30]. In our model system the PPT is located 18 nt from 59ssA

yet still enhances selection of 59ssA. To examine whether

positioning of the PPT sequence in closer proximity to 59ssA

would enhance its selection further, we deleted five nucleotides

from the 18-nt sequence separating the PPT from 59ssA (indicated

as 25nt_PPT in Figure 4), using the B(3A), B(4A) and B(3A4A)

mutants. Deletion of five nucleotides from the 18-nt sequence

separating the PPT from 59ssA also shortened the distance

between 59ssA and B. Interestingly, deletion of five nucleotides

resulted in a shift of splicing from 59ssB to 59ssA (Figure 4,

compare lanes 1 and 2 in each panel). Deletion of five or ten

nucleotides of the sequence lying between the PPT sequence and

59ssA had the same effect on 59ss usage in mutants B(3A), B(4A)

and B(3A4A) ADAR mutants (Supplementary Figure 2A in Text

Figure 2. U1 snRNA affects selection of 59ssB. (A) A plasmid
containing the U1 snRNA cDNA with the indicated mutations was co-
transfected with the ADAR2 WT minigene into 293T cells. The U1 snRNA
mutations are numbered according to the positions indicated in (B).
Splicing assays were performed as described in Figure 1. Lane 1, splicing
products of wild-type ADAR2; lanes 2–6, splicing products of ADAR2
minigene co-transfected with U1 mutants. The two minigene mRNA
isoforms are shown on the right. The numbers above the lanes indicate
the 59ssB usage. (B) Schematic illustration of the base pairing between
59ssB and U1. Positions of 59ssB and U1 are numbered forward and
reverse, respectively. Mutations inserted in positions 5, 6, and 11 are
indicated by arrows. The mutation in position 5 of the U1 snRNA
(marked in gray) is complementary to both 59ssA and 59ssB. Watson-
Crick and non-Watson-Crick base pairing are marked by solid or dashed
lines, respectively.
doi:10.1371/journal.pgen.1000717.g002
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S1) and a negligible effect on the splicing pattern of the ADAR

WT minigene (Supplementary Figure 2B in Text S1). Further-

more, deletion of five nucleotides from the sequence separating the

PPT sequence and 59ssA in the presence of TIAR resulted in

predominant selection of 59ssA (Figure 4, compare lanes 1 and 4 in

each panel). Taken together, these results demonstrate that the

enhancing effect of TIAR on the selection of a weak 59ss decreases

with distance.

Figure 3. Effects of TIA1, TIAR, and PTB on alternative 59ss selection. Splicing assays were performed as described in Figure 1. (A) Lane 1,
splicing products of B(3A) ADAR2 mutant minigene in which 59ssB was strengthened at position 3 by mutation from T to A. Lanes 2–4, the B(3A)
mutant was co-transfected with plasmids that expressed TIA1, TIAR and PTB, respectively. (B) Lane 1, splicing products of B(4A) ADAR2 mutant
minigene in which 59ssB was strengthened at position 4 by mutation from T to A. Lanes 2–4, co-transfection of B(4A) with TIA1, TIAR and PTB,
respectively. (C) Lane 1, splicing products of B(3A;4A) ADAR2 mutant minigene in which 59ssB was mutated at both positions 3 and 4. Lanes 2–4, co-
transfection of B(3A;4A) with TIA1, TIAR, and PTB, respectively. The two minigene mRNA isoforms are shown on the right. The numbers above the
lanes indicate 59ssB usage. (D) TIA1 and TIAR bind to the PPT downstream of the Alu exon. A pull-down assay using biotinylated RNA probes was
performed following incubation with HeLa total cell extract. After RNA pull-down using streptavidin-conjugated beads, the samples were loaded
onto a 12% SDS-polyacrylamide gel and were analyzed by western blot for TIA1 and TIAR.
doi:10.1371/journal.pgen.1000717.g003

Figure 4. The effect of TIAR on 59ss selection in the ADAR2 minigene is distance-dependent. Splicing assays were performed as described
in Figure 1. (A) Lane 1, splicing products of B(3A) ADAR2 mutant minigene. Lane 2, splicing products of the B(3A) ADAR2 mutant minigene after
deletion of five nt between the 59ssA and the PPT. Lane 3, as in lane 1 but with co-transfection of TIAR. Lane 4, as in lane 2 except with co-transfection
of TIAR. (B) Splicing analysis of B(4A) ADAR2 mutant minigene in experiments analogous to that described in (A). (C) Splicing analysis of B(3A;4A)
ADAR2 mutant minigene in experiments analogous to that described in (A).
doi:10.1371/journal.pgen.1000717.g004
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PPTs downstream of the 59ss are enriched throughout
eukaryotic evolution

Our analyses thus far indicated that in our Alu model, the PPT

between the two Alu arms was bound by TIA proteins and

enhanced selection of the weaker, upstream 59ss. We were thus

interested in understanding the impact of TIA proteins across

evolution. Specifically, we focused on three components: the TIA

binding sites on pre-mRNA, the TIA proteins, and the protein

U1C, which serves as a link between the TIA proteins and the 59ss

[31]. It has been previously shown that the 59 end of human

introns are enriched in U-rich tracts [63], but other organisms

have not been analyzed for this phenomenon. To determine how

wide-spread this enrichment is, we determined the prevalence of

PPTs downstream of the 59ss in a dataset of over 1 million introns

from 22 organisms spanning all four major eukaryotic kingdoms:

plants, protozoans, fungi and metazoans (Figure 5A). Strikingly,

we found an enrichment of PPTs downstream of 59ss in almost all

organisms in the dataset (Figure 5C and Supplementary Figure 3A

in Text S1). PPTs were found in ,20 to 40% of the introns and, in

most cases, the center of the PPT was located between positions 15

and 25 downstream of the 59ss (see Supplementary Table 2 in

Text S1). The mean lengths of the PPTs ranged from 10 to 14

nucleotides depending on the organism (Supplementary Table 2 in

Text S1). Notably, among several fungi, including S. pombe, U.

maydis, Y. lipolytica and E. gossypi, as well as in the protozoan C.

parvum, the pyrimidine-rich peaks were less pronounced. This may

be indicative either of functional aspects, or may result from the

fact that these organisms have fewer introns, making our

measurements in these organisms less reliable.

Anti-correlation between 59ss strength and prevalence of
PPT downstream of the 59ss

We hypothesized that if the PPTs downstream of the 59ss are of

functional importance in the context of splicing, the presence of

these sequences would anti-correlate with the strength of the 59ss,

as they are expected to compensate for weak 59ss. To assess

whether such an anti-correlation exists, we divided all introns into

four equally-sized bins of increasing 59ss strengths. For each bin,

we calculated the prevalence of a PPT beginning within the first

20 nt of the intron. Our results demonstrate a clear inverse

correlation between 59ss strength and the presence of a

pyrimidine-rich stretch downstream of the 59ss among all

metazoans, excluding C. elegans (Figure 6A). Such an anti-

correlation was observed in the plant A. thaliana as well. These

correlations were all highly statistically significant (Supplementary

Table 2 in Text S1). However, these anti-correlations were not

observed among most fungi and protozoans (Supplementary

Figure 3B in Text S1). Thus, these results suggest that among

most metazoans and in the plant A. thaliana, a pyrimidine-rich

stretch downstream of the 59ss compensates for the presence of a

weak 59ss. This is in agreement with our results pertaining to the

Alu sequence and with previous molecular studies that found that

pyrimidine-rich stretches support the inclusion of weakly defined

exons [29,30,63].

TIA proteins are conserved throughout eukaryotic
evolution

Given our observation that PPTs downstream of the 59ss are

prevalent throughout evolution, we were next interested in

obtaining an evolutionary perspective regarding the TIA proteins,

which potentially bind this signal. TIA1 and TIAR proteins are

quite similar (81% identity), each contains three RNA-recognition

motifs (RRMs) and a glutamine (Q) rich C-terminus [27,28] and

were shown to have redundant activities in splicing [34,37,64].

Additionally, we considered two proteins in S. cerevisiae that have

high similarity to TIA1/TIAR, namely PUB1 and NAM8. Both

bind RNA [38,65,66] and also have three RRMs. NAM8, which is

a constitutive component of the U1 snRNP, binds in a non-specific

manner downstream of the 59ss and affects 59ss selection [38] and

has no counterpart in the mammalian U1 snRNP. As negative

controls we included proteins that share high sequence similarity

and have similar domain configurations, like the Negative Growth

Regulatory protein (NGR1) from S. cerevisiae and additional protein

families with RNA binding domains (Supplementary Table 3 in

Text S1).

Using a combination of hidden Markov models (HMMs) and

construction of phylogenetic trees for the candidates (Supplemen-

tary Figure 4 in Text S1), we found homologs for TIA1/TIAR in

all analyzed metazoans (Figure 5B). In addition, we found that A.

thaliana and all fungi, except for S. pombe, have homologs of PUB1

(Figure 5B). We also found that all fungi, except for C. neoformans

and U. maydis, have homologs of NAM8, whereas its close relative,

NGR1, is only present in the group of the Saccharomycetaceae (D.

hansenii, A. gossypii, K. lactis, C. glabrata and S. cerevisiae). Finally, we

could not detect any clear homologs of TIA1/TIAR, NAM8 or

PUB1 in the protozoa D. discoideum or C. parvum. These results

highlight several points. First, among all analyzed organisms

excluding protozoa, at least one TIA1/TIAR or PUB1 homolog

was found. Second, most organisms for which we demonstrated an

anti-correlation between PPT prevalence and 59ss strength have

either TIA1 or TIAR. One exception to this is C. elegans, in which

there is a TIA1/TIAR homolog, but not a PPT/59ss anti-

correlation, and another is A. thaliana, in which an anticorrelation

was observed but we found no TIA1/TIAR homologs (see

Discussion). Finally, S. pombe is an exception among fungi since it

lacks any TIA1/TIAR or PUB1 homologs; it also lacks a clear

pyrimidine-rich peak downstream of the 59ss.

RRM2, responsible for binding U-rich motifs, is the most
conserved RRM among TIA homologs

The N-terminal RRM domain in TIA1/TIAR (RRM1) is

important for TIA1 activity and enhances the interaction of the Q-

rich C-terminal domain with the U1 snRNP [31]. The other two

RRMs, RRM2 and RRM3, contact the pre-mRNA, although

only RRM2 binds specifically to uridine-rich motifs [31]. RRM2 is

the most conserved domain across all homologous proteins (TIA1/

TIAR, NAM8 and PUB1), with multiple alignment conservation

score of 0.65, as opposed to 0.37 and 0.4 for RRM1 and RRM3,

respectively (Figure 5B), and 47% average pairwise identity, as

opposed to 37% and 41% for RRM1 and RRM3, respectively. A

multiple alignment depicting the conservation of RRM2 across

TIA homologs is presented in Figure 6C and alignments for

RRM1 and RRM3 are presented in Supplementary Figures 5 and

6 in Text S1, respectively. This conservation underscores the

evolutionary importance of the TIA proteins and implies that the

mechanism by which TIA homologs bind to RNA has remained

conserved throughout evolution.

The N-terminal region of U1C and the Q-rich C terminus
of the TIA proteins are conserved

The recruitment of the U1 snRNP by TIA1 takes place through

the interaction of the glutamine-rich (Q-rich) C-terminus of TIA1

with N-terminus of U1C, a protein component of U1 snRNP [31].

We therefore examined U1C conservation. We found U1C

homologs in all species analyzed and observed a high degree of

conservation among N-terminal regions (Figure 6D) with an

TIA Role in Exon Selection
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Figure 5. Evolutionary analysis of TIA binding sites and proteins across 22 organisms. (A) Phylogenetic tree of the 22 organisms analyzed
in this study. (B) A heat chart is presented depicting the presence/absence of TIA1/TIAR, PUB1, NAM8, and NGR1 homologs. Presence and absence of
a homolog is indicated by dark or light green, respectively. (C) Plots portraying the prevalence of PPTs within the first 100 nt of the introns. The y-axis
indicates the proportion of introns in which a given position is covered by a PPT, following normalization to intron length. Results for additional
organisms are shown in Supplementary Figure 3A in Text S1.
doi:10.1371/journal.pgen.1000717.g005
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Figure 6. Evolutionary analysis of TIA binding sites and proteins. (A) Proportion of introns with a PPT within 20 nt from the 59ss, as a
function of 59ss strength, among the indicated metazoans. Results for additional organisms are shown in Supplementary Figure 3B in Text S1. (B)
Conservation of RRMs among TIA homologs. Multiple alignment conservation scores were calculated as described in Methods. (C) Multiple sequence
alignment of the RRM2 domains of TIA1, PUB1, NAM8 and NGR1 homologs. The figure shows the RNP1 and RNP2 motifs of the domains. Amino acids
of the RRM2 (F, R, D, Y, and F) that interact with RNA in the analogous proteins PAB and SXL [74] are highlighted. Conserved positions are shaded in
blue. (D) Multiple sequence alignment of the first 70 amino acids of the N-terminus of the U1C homologs. The arrows above the blocks and the lines
below indicate the mutations and deletions that were tested in [31]. The color of the arrows indicate whether the position is conserved (orange) or
not conserved (green) in the multiple sequence alignment. In the cited study, only the deletions of 30 and 47 amino acids (30AA and 47AA) showed
changes in level of interaction with TIA1 [31].
doi:10.1371/journal.pgen.1000717.g006
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average of 69% pairwise similarity in the first 20 positions and

much lower conservation levels in downstream residues. In

parallel, we examined the extent of conservation of the Q-rich C

terminus of the TIA proteins. Although the precise order of amino

acids at the C terminus varies, a distinct and statistically significant

enrichment was observed in the Q-rich region among the vast

majority of TIA1/TIAR/PUB homologs with respect to all other

proteins of similar size. Furthermore, no enrichment in Qs was

found among relevant controls with high sequence similarity to

TIA proteins in other regions (see Supplementary Results in Text

S1 for a detailed analysis). Thus, the machinery involved in TIA

regulation of splicing is conserved throughout evolution, from the

sequences of functional regions of the involved proteins to the

binding sites in the pre-mRNA.

Discussion

This study was motivated by our finding that Alu exonization

events involving both Alu arms occur in only ,5% of Alu exons.

Several factors probably limit exonization events across the arms

of Alu elements. For example, the lengths of exons are known to be

constrained with internal exons averaging 145 nucleotides in

length. Alu exons within right arms average 110 nucleotides in

length [67], whereas exons that encompass sequence from both

arms tend to be between 200 and 250 nucleotides long. Thus,

exonizations occurring from a single arm yield exons that are more

optimal in length. However, approximately 20% of human exons

are longer than 200 nt [68], strongly contrasting with only 5% of

Alu exons that contain sequences from both arms.

We hypothesized, and subsequently demonstrated, that the PPT

sequence separating the two arms may be involved in limiting

exonization across arms. The presence of a PPT enhanced the

selection of the 59ss of the right arm Alu exon even in the presence

of a stronger splice site downstream. Conversely, in the absence of

a PPT sequence between the two splice sites, the stronger

downstream site was selected, indicating that in the absence of

the PPT, the rules of simple competition apply. In subsequent

analyses we were able to determine that the effect of the PPT on

the Alu 59ss selection is mediated by TIA1/TIAR proteins. This

led us to conduct a bioinformatic analysis in which we examined

the machinery involved in TIA regulation across evolution. This

machinery, from the binding signal on the pre-mRNA to the

sequences of the TIA and U1C proteins, is conserved and, for

most metazoans, the presence of a polypyrimidine stretch anti-

correlates with 59ss strength.

Interestingly, our findings may also explain why most exoniza-

tions tend to occur predominantly from the right arm of Alu

elements and not from the left [53]. A previous study showed that

exons from within left arms tend to be shorter, depleted in exonic

splicing enhancers (ESEs) and enriched in exonic splicing silencers

with respect to those from right arms [67]. Here we showed that

the presence of a PPT downstream of the right arm Alu 59ss, which

is intrinsically embedded in the structure of a typical Alu element,

enhances the selection of right arm Alu exons. Such an effect is not

possible in the left arm and this might reduce the potential for Alu

exonizations from the left arm.

Our study using the Alu model system highlights a novel aspect

of TIA1/TIAR proteins: These proteins activate a splice site at

some distance from their binding site. Previous studies in human

systems demonstrated that TIA1 only activates 59 splice sites

immediately followed by U-rich sequences [30,32], although one

study suggested, but did not conclusively prove, that TIA1 may be

active from greater distances [62]. In our model system, the PPT

was located 18 nt from the 59ss of the Alu exon and the TIA1/

TIAR proteins activated its selection. This is similar to the activity

of the yeast TIA homolog NAM8 which can activate a 59ss 46 nt

downstream of its binding site [39]. In this respect, our results

concur with recent findings, based on depletion of TIA proteins,

that demonstrated a correlation between the magnitude of the

change in exon skipping and the distance between U-rich motifs

and the 59ss [63]. The function of TIA proteins from a distance

may be mediated by other splicing factors or by a formation of

pre-mRNA secondary structures that bring together the U-rich

sequence and the 59ss to be activated.

In our experimental system, we focused on the regulative role of

the TIA proteins. The reason we focused on these proteins are (1)

that the regulation was mediated through the binding to a

pyrimidine-rich stretch downstream of the 59ss, which is a classical

mode of regulation of the TIA proteins, and (2) we ruled out PTB,

which could potentially also have played a role in this context.

However, other splicing factors can bind pyrimidine-rich stretches

on the one hand, and play a role in splicing, on the other. Two

such proteins are U2AF65 and PUF60: U2AF65 facilitates 39

splice-site recognition at the early stages of spliceosome assembly,

and PUF60 was found to functionally substitute for U2AF65

[69,70]. Despite the fact that classically these two proteins are

mostly known for their involvement in the context 39ss selection,

two considerations could suggest that they might potentially play a

role in our system as well: First, the fact that we observed an effect

of the PPT when it was distanced up to 18 nucleotides from the

59ss may suggest that in fact this regulation did not act on the 59ss

but on the 39ss, since human introns can be as short as 25 nt. In

such a scenario, PUF60 and U2AF65 could be involved as factors

regulating 39ss selection. However, we consider this scenario

unlikely since the effect we observed increased once the PPT was

brought into closer proximity with the 59ss. Second, it was

previously demonstrated that U2AF65 also plays an enhancing

regulatory role when binding downstream of the 59ss [71]. An

additional recently discovered protein which might potentially

play a role is nSR100, which was shown to bind pyrimidine-rich

sequences within alternative exons and in the intronic regions

flanking them, and to enhance their recognition [72]. Thus, we

cannot rule out that in addition to the TIA proteins, additional

factors such as U2AF65 and/or additional factors play a role in Alu

exonization.

Our bioinformatic analysis provided evidence that our exper-

imental conclusions are applicable to a wide variety of organisms.

This analysis showed that the PPT region tends to be located

within 20 nt of the beginning of an intron; this is the situation in

Alu elements. Moreover, this analysis revealed the presence of an

inverse correlation between 59ss strength and prevalence of PPT

tracks within metazoan introns. This anticorrelation may be

indicative of the functional role of the interaction between these

two signals, consistent with previous findings showing that PPTs

downstream of the 59ss support the inclusion of weakly defined

exons [29,30,32]. It is noteworthy, however, that while our

observations establish a correlative relationship between the two

signals, it will require experimental analysis in different organisms

to establish a cause-effect relationship between the 59ss and the

PPT downstream of it.

Our analysis further demonstrated the high extent of conser-

vation of the TIA proteins and their binding sites on pre-mRNA.

For most organisms there was a clear PPT peak downstream of

splice sites. In all analyzed eukaryotes, excluding the two protozoa,

we found at least one TIA homolog. Moreover, the RRM2

domain, which is responsible for binding U-rich sequences, was

particularly conserved and most homologs have retained a

glutamine-rich C-terminal region. Finally, the N-terminal domain
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of U1C, which mediates the recruitment of U1 snRNP by the TIA

proteins, was highly conserved among eukaryotes.

Our analysis did, however, show that this machinery may have

undergone modifications over the course of evolution. In S. pombe,

for example, there is no clear PPT downstream of splice sites and

we found no PUB1 or TIA1 homolog. This might be related to the

extremely short intron length in S. pombe, which allows this

organism to maintain intron selection without the need for TIA1

or PUB1 proteins. Two additional organisms in which modifica-

tions may have occurred are A. thaliana, for which no TIA1/TIAR

homolog was found, and C. elegans, in which no anticorrelation

with 59ss strength existed. One possibility is that in these organisms

additional factors compensate for the loss of the factor, or of the

signal. Indeed, in plants two related proteins UBP1 and RBP45,

can interact with intronic U-rich elements and enhance the

recognition of suboptimal splice sites [42–44]. This could explain

why we still observe a PPT/59ss anti-correlation in A. thaliana.

Alternatively, the role of the PPT downstream of the 59ss, and

perhaps also the relationship between the PPT and the 59ss, may

have changed over time. In C. elegans, for example, the binding of

TIA1/TIAR proteins to the PPT downstream of the 59ss may

occur regardless of the strength of the latter. Alternatively, the

PPT downstream of the 59ss may be an evolutionary ‘fossil’ which

has lost its function in C. elegans. As in S. pombe, such loss of function

may be a function of intron length as C. elegans introns are

considerably shorter than those in other analyzed metazoans [54].

Such loss of function may also be linked with dramatic differences

in C. elegans splicing compared to other organisms tested in this

study, as attested, for example, by the high prevalence of trans-

splicing in this organism [73].

A further intriguing result is the balance of power we observe

between different splicing signals. Despite the presence of an

intervening PPT, a weaker, upstream splice site is only selected as

long as the stronger, competing splice site is weaker than a set

threshold. Once this threshold is exceeded, the stronger splice site

is selected even in the presence of a PPT. The strength of the PPT

is yet another factor as also shown by [32]. In this context, we

found that in a dataset of 2,296 alternative 59ss events, in 25.4%

and 33.9% of the cases there is a PPT within 25 nt downstream of

the proximal and distal 59ss, respectively. These cases are potential

candidates for TIA regulation. Taken together, our findings

demonstrate the role of TIA proteins in the specific context of Alu

exonizations and also in the much wider context of exon selection

in organisms from throughout the evolutionary tree.
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