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After decades of empiricism, the treatment of cancer is widely felt to be entering the era of
“targeted” therapy and leading to personalized strategies for individuals with this dreaded
disease. Of course, the approach to targeted therapy in oncology is not a new one. Students of
breast cancer history point to Sir George Beatson's report in 1896 of the clinical improvement
he observed in three young women with locally advanced breast cancer following surgical
oophorectomy (1). Subsequent landmark studies by Jensen, Lippman, and McGuire, among
others, demonstrated that what Beatson had actually done was remove a specific growth factor,
17β-estradiol, from its cellular target, the estrogen receptor (ER) (2-4). Clinicians now
routinely use tissue ER content to individualize antiestrogen therapy for breast cancer patients
(5).

This example of personalized medicine is now joined by many others (6,7). Until recently,
personalized oncologic care has been based on somatic changes in the cancer, such as the
overexpression of ER or HER2/neu. However, tumor-related somatic changes may be only one
side of the coin that clinicians might use to make therapeutic decisions. The other side of the
coin involves the use of inherited germline differences between individual patients to predict
cancer outcomes and toxic effects of specific therapies, a field that has been designated
“pharmacogenetics” (8,9). Several studies [reviewed in (8,9)] have illustrated the clinical
potential of determining inherited single nucleotide polymorphisms in genes that encode drug
targets, transporters, and metabolizing enzymes. The latter group includes enzymes that
convert the therapeutic agent to an inactive and excretable metabolite or, in some cases, that
activate a prodrug to an active metabolite (8,9).

The selective ER modulator tamoxifen is considered by many experts to be one such prodrug.
For example, in vitro experiments have demonstrated that tamoxifen has relatively low affinity
for the ER compared with its 4-hydroxylated metabolite or estrogen itself (10). In addition, the
concentration of tamoxifen required to inhibit the growth of estrogen-dependent breast cancer
cells in culture is approximately two orders of magnitude higher than that of 4-hydroxy-
tamoxifen (11). Together, these results supported the long-held theory that the 4-hydroxy
derivative of tamoxifen is the active metabolic product of tamoxifen (12). Most of the many
other tamoxifen metabolites that have been identified had been considered to be irrelevant,
mainly because they are present in serum at much lower concentrations than tamoxifen.
However, recent data (13) from investigators in the Consortium on Breast Cancer
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Pharmacogenomics (COBRA) have led to the rediscovery and renewed interest in one of these
metabolites, 4-hydroxy-N-desmethyl-tamoxifen, previously designated metabolite BX. This
metabolite (now known as endoxifen) has the same binding affinity for ER and antiproliferative
effect on cultured human breast cancer cells as 4-hydroxy-tamoxifen but is present at 5- to 10-
fold higher concentrations in the serum of most women taking tamoxifen (13).

Endoxifen is generated from tamoxifen by the enzymatic activity of the product of a P450 gene,
cytochrome 2D6 (CYP2D6) (14). Although 60% of individuals of European descent are
homozygous for the active allele of CYP2D6 (ie, the *1 allele, designated “wild type”),
approximately 7% are homozygous for an inactive allele (*4 is the most common variant allele
among individuals of European descent, whereas *10 is the most common allele among those
of Asian descent) (15). Individuals who are homozygous for these variant CYP2D6 alleles are
poor metabolizers of substrates for the enzyme. Studies by COBRA investigators have shown
that among women who take tamoxifen, those who are homozygous for inactive CYP2D6
alleles have substantially lower endoxifen levels than those who are homozygous for the wild-
type allele (14,16). Furthermore, certain concomitant medications that partially or completely
block the activity of the CYP2D6 enzyme likewise result in very low serum concentrations of
endoxifen (17).

What are the clinical implications of these findings? COBRA investigators have previously
demonstrated 100% concordance of CYP2D6 genotyping results between germline DNA from
leukocytes and DNA extracted from formalin-fixed, paraffin-embedded (FFPE) cancer tissue
(18). This technological breakthrough permits interrogation of older clinical datasets in which
FFPE cancer tissue specimens were collected and archived but germline DNA (ie, from
leukocytes) was not. In a joint collaboration, investigators from the Mayo Clinic and COBRA
retrospectively examined (19) FFPE tumor samples from a small, but prospectively conducted
trial in which women with ER-positive breast cancers were randomly assigned to receive 5
years of tamoxifen with or without 1 year of fluoxymesterone (20). In this study, women with
homozygous variant CYP2D6 who received adjuvant tamoxifen alone had higher rates of
recurrence than those with the wild-type genotype, and the authors concluded that perhaps this
poorer outcome was a result of poor conversion of tamoxifen to endoxifen. This effect was
echoed by the use of CYP2D6 inhibitors in women who were wild type for CYP2D6 (21).

Several subsequent investigations have addressed the interaction between CYP2D6 genotype
and outcomes in women who were treated with tamoxifen in the prevention (22), adjuvant
(23–27), and metastatic (28) settings. The results of two of the adjuvant studies (26,27), as well
as the metastatic trial (28) and the prevention study (22), are consistent with the hypothesis
that women with variant CYP2D6 genotype do not activate tamoxifen and therefore have worse
outcomes. However, the other three adjuvant studies (22-24) failed to support this theory, and
remarkably, two studies (24,25) provided statistically significant evidence of exactly the
opposite effect: that women with homozygous CYP2D6 variants have better outcomes than
those who are wild type when treated with tamoxifen. Although disconcerting, these disparate
conclusions are not unexpected when one considers that these studies are small and mostly
retrospective and that they address different treatment settings and are confounded by different
doses and durations of tamoxifen therapy, patient selection, and the effects of other drugs and
tumor-related somatic changes, all of which may affect the activity of tamoxifen. Because
metabolism of tamoxifen is quite complex, it is also likely that inactivating CYP2D6 alleles
other than *4, and indeed germline differences in completely different genes, each of which
have been only superficially examined, may also play a role in the activity of this agent
(23-25).

One must ask if these pharmacogenetic findings for tamoxifen are relevant today for women
with ER-positive breast cancer. Even if poor metabolizers do have a worse prognosis when
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treated with tamoxifen monotherapy, we must consider whether this agent has become a
clinically irrelevant historical bookmark. Several studies (29-33) have now shown that for
postmenopausal women with ER-positive breast cancer, estrogen depletion with an aromatase
inhibitor is generally more effective than tamoxifen in both the adjuvant and metastatic settings.
A panel convened by the American Society of Clinical Oncology has recommended the use of
an aromatase inhibitor at some time in the course of treatment for all postmenopausal women
with ER-positive breast cancer (34). However, despite this enthusiastic endorsement,
aromatase inhibitors are not ideal for all women because they are associated with substantially
more common and often more severe musculoskeletal complaints that often lead to
nonadherence (35,36), as well as with higher long-term risks for osteoporosis and fractures
(30,37,38). Moreover, because aromatase inhibitors are contraindicated in premenopausal
women, tamoxifen is currently the treatment of choice for these patients. Tamoxifen and the
related selective ER modulator raloxifene are approved for chemoprevention, whereas
aromatase inhibitors are not. Finally, tamoxifen is also effective in the metastatic setting, and
as more women receive adjuvant aromatase inhibitor therapy, those who do relapse will be
treated with tamoxifen. Therefore, in the foreseeable future, most premenopausal women and
many postmenopausal women at risk for or with ER-positive breast cancer may consider
tamoxifen at some point in their treatment.

In this issue of the Journal, Punglia et al. (39) have used assumptions drawn from the Mayo–
COBRA study (19,21) to build a model to estimate whether women with wild-type CYP2D6
might have superior outcomes if they take tamoxifen rather than an aromatase inhibitor.
Applying this model to results produced from the Breast International Group 1-98 trial, one of
the large prospective randomized clinical trials to compare tamoxifen with the aromatase
inhibitor letrozole (30), they conclude that women who have the wild-type CYP2D6 genotype
would actually have lower rates of relapse when treated with tamoxifen. If this model is correct,
the role of CYP2D6 genotype testing would be critical for selecting the optimal adjuvant
endocrine treatment for women with ER-positive breast cancer because it implies that more
than 90% of women (those who are wild type for CYP2D6) would actually have better outcomes
if they received tamoxifen instead of an aromatase inhibitor and that those who are homozygous
for inactivating variant alleles should take an aromatase inhibitor.

Is this model applicable to the real world, and should CYP2D6 genotype testing be incorporated
into routine care at this time? The conclusions reached by Punglia et al. (39) depend on the
estimated hazard rates for recurrence for women taking tamoxifen and are based on the relative
effects of CYP2D6-mediated conversion of tamoxifen to endoxifen. These estimated hazard
rates were based on data from the single study from the Mayo–COBRA collaboration (19) and
ignore the considerable heterogeneity of outcomes of tamoxifen-treated women when analyzed
by the effects of CYP2D6 genotypes reported in the numerous other studies, discussed above.
Because of this uncertainty, and despite the Punglia et al. model, we do not recommend routine
CYP2D6 genotyping for all patients who are considering tamoxifen, although we recognize
that there are already selected circumstances in which such knowledge might be helpful. At
the least, however, women who are taking tamoxifen should avoid the concomitant use of drugs
that inhibit CYP2D6 activity if possible. Ironically, some of the most potent inhibitors of
CYP2D6 are the selective serotonin uptake inhibitors and the selective serotonin
norepinephrine inhibitors (SSNRIs), which are frequently used for treatment of hot flashes
(40). Examples of these inhibitors include paroxetine and fluoxetine. However, other SSNRIs,
such as venlafaxine, do not inhibit CYP2D6 yet are quite effective for treatment of hot flashes,
and as such would be the preferred treatment for these patients (17,41).

Regardless, we believe that these studies have brought the field of pharmacogenetics onto the
radar screen of clinicians caring for breast cancer patients. The model reported by Punglia et
al. (39) suggests that selection of endocrine therapy based on CYP2D6 genotype might make
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tamoxifen more than just another choice, but actually the preferred choice, for women with
ER-positive breast cancer who are wild type for the CYP2D6 gene. However, as with all tumor
marker research, early studies are often quite positive, and rigorous validation of these results
is critical before widespread adoption (42,43). Ongoing and planned studies of archived FFPE
specimens from the large randomized trials that have compared tamoxifen with an aromatase
inhibitor should provide definitive experimental data regarding inherited differences in
CYP2D6 and other genes that should confirm or refute the hypothesis that CYP2D6 genotype
might be used to effectively guide endocrine therapy for women with ER-positive breast cancer.

The future of personalized cancer medicine will likely use both sides of the coin by
incorporating both tumor-related somatic changes and inherited germline pharmacogenetic
factors to predict the best course of treatment for a specific patient. Alone, each may have
limited value, but the whole is likely to be greater than the sum of the parts. These exciting
findings highlight the importance of prospective collection, processing, and storage of
biospecimens for future studies of yet-undiscovered somatic and germline markers to permit
studies of individualized treatments. Increasingly, biologic subgroup analyses from large
clinical trials have become as or more interesting than the overall results. We encourage all
investigators, both public and private, to be certain that tissue and germline (leukocytes or
buccal swabs) specimens are collected and made available for such translational research
(44).
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