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Abstract
The application of proteomic techniques to neuroscientific research provides an opportunity for a
greater understanding of nervous system structure and function. As increasing amounts of
neuroproteomic data become available, it is necessary to formulate methods to integrate these data
in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments.
Furthermore, computational methods can be used to make biologically relevant predictions from
large proteomic datasets. Here, we applied an integrated proteomics and systems biology approach
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to characterize the presynaptic nerve terminal. For this, we carried out proteomic analyses of
presynaptically enriched fractions, and generated a presynaptic literature-based protein-protein
interaction (PPI) network. We combined these with other proteomic analyses to generate a core
list of 117 presynaptic proteins, and used graph theory-inspired algorithms to predict 92 additional
components and a presynaptic complex containing 17 proteins. Some of these predictions were
validated experimentally, indicating that the computational analyses can identify novel proteins
and complexes in a subcellular compartment. We conclude that the combination of techniques
(proteomics, data integration, and computational analyses) used in this study are useful in
obtaining a comprehensive understanding of functional components, especially low-abundance
entities and/or interactions in the presynaptic nerve terminal.

Keywords
computational biology; graph theory; mass spectrometry; presynaptic nerve terminal; signaling
networks

Introduction
In recent years, extensive efforts have been made, using subcellular fractionation techniques
and large-scale mass spectrometric (MS) analyses, to identify proteins associated with
various synaptic preparations [1], including synaptosomes [2-5], synaptic membranes [6-8],
the postsynaptic density (PSD) [9-17], synaptic vesicles [18-22], and the presynapse [23,24].
These neuroproteomic studies have revealed a high degree of complexity in synaptic
composition: it is estimated that synapses may contain over 1000 different types of proteins
[25]. However, despite a tremendous increase in the rate of discovery of synaptic
components, our understanding of synaptic organization has lagged behind, largely because
of the lack of understanding of how synaptic proteins interact to form complexes and
signaling networks. The question is, once we generate large lists of proteins using
proteomics, what else can be learned?

In order to synthesize the data from proteomic studies in a meaningful way, a range of
computational techniques can be employed [26]. Information from the biochemical
literature, particularly protein-protein interaction (PPI) data, can be applied to increase our
understanding of functional pathways within a cellular compartment of interest. Biologically
relevant predictions of novel proteins and interactions can be made by applying graph
theory-based algorithms to proteomic datasets. Such systems-level approaches have only
recently been applied to neuroproteomic studies. A network representation of the
postsynaptic NMDA receptor complex has been generated using a combination of
proteomics, to identify components of the complex, and literature mining, to identify
interactions among these components [27]. A model of signaling networks in hippocampal
CA1 neurons has also been generated by manual curation of interaction data from the
experimental literature [28]. Analysis of the networks generated in these studies has shown
that molecular networks with simple design principles are likely to underlie synaptic
signaling.

In this study, we describe an interdisciplinary approach that combines proteomics with graph
theory analysis to characterize the protein composition of the presynaptic nerve terminal.
First, we carried out proteomic experiments using a fractionation method that allows for the
enrichment of rodent presynaptic proteins (and separation from the PSD [29]), and tandem
mass spectrometry (LC-MS/MS) for the identification of these proteins. Second, using a
computational approach, we merged available presynaptic proteomic lists, extracted
presynaptic components and interactions from the literature, and used graph analysis
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algorithms to evaluate and enrich the knowledge about the presynaptic proteome. These data
were used to make predictions of novel presynaptic components and interactions, several of
which were validated experimentally. The approach used here is generally applicable to
analyzing large datasets from high-throughput proteomic studies.

Materials and Methods
Subcellular Fractionation

Isolation of a presynaptic (PRE) fraction was performed essentially as described in Phillips
et al. [29]. Male wild-type C57B6 mice (20-25 g) or Sprague-Dawley rats (200-250 g) were
sacrificed by decapitation and the brains rapidly removed. The hippocampi from 4 (for
Western blotting) or 10 (for MS/MS analysis) mice, and the striata from 3 (for Western
blotting) or 5 (for MS/MS analysis) rats were combined and homogenized in 3 ml of 0.32 M
sucrose, 0.1 mM CaCl2, with 30 μl each of protease inhibitor cocktail and phosphatase
inhibitor cocktail (Sigma, St. Louis, MO) at 4 °C. All of the following fractionation steps
were carried out at 4 °C unless otherwise specified. The homogenate was brought to a final
concentration of 1.25 M sucrose by the addition of 2 M sucrose (12 ml) and 0.1 mM CaCl2
(5 ml). The homogenate was then placed in a 40 ml ultracentrifuge tube and overlaid with 10
ml 1 M sucrose, 0.1 mM CaCl2. The gradients were centrifuged at 100,000g for 3 hrs. The
synaptosomal fraction (4-5 ml) was collected at the 1.25 M/1 M interface. To obtain
synaptic membranes, the synaptosomal fraction was brought to a volume of 35 ml with 20
mM Tris-Cl pH 6, 0.1 mM CaCl2, containing 1% Triton X-100 (TX-100) and 350 μl each of
protease and phosphatase inhibitor cocktails, mixed for 20 min, and centrifuged at 40,000g
for 20 min. The pellet containing the isolated synaptic membranes was collected. To
separate a presynaptic fraction from the PSD, the pellet was resuspended in 20 ml of 20 mM
Tris-Cl pH 8, 1% TX-100, 0.1 mM CaCl2. The mixture was again mixed for 20 min, and
centrifuged at 40,000g for 20 min. The insoluble pellet containing the PSD fraction was
collected and stored at -80 °C until use. The supernatant was removed and concentrated to 1
ml using an Amicon Ultra-15 filter (5,000 MW cut-off, Millipore, Bedford, MA). The
concentrate was precipitated with 9 ml of acetone by incubation at −20 °C for 12 hrs, and
centrifugation at 15,000g for 30 min. The resulting pellet, containing the PRE fraction, was
stored at −80 °C until use.

Western blotting
Total protein concentrations of the different hippocampal fractions (homogenate,
synaptosomes, synaptic junctions, PSD, and PRE) were determined using the BCA protein
assay (Pierce, Rockford, IL). PRE and PSD pellets were resuspended in 1% or 0.1% SDS.
Equal amounts of protein from each fraction were resolved on 7.5% SDS-PAGE gels. Gels
were transferred to nitrocellulose membranes (Scheicher & Schuell, Bioscence, Keene, NH)
by electroblotting. Membranes were blocked with Odyssey blocking buffer (LI-COR
Biosciences, Lincoln, NE) and then incubated with selective primary antibodies: Clathrin
heavy chain (1:6000, BD Biosciences, San Jose, CA), Syntaxin 1 (1:2000, Chemicon,
Temecula, CA), SNAP25 (1:20,000, Sigma, St. Louis, MO), PSD95 (1:50,000, Upstate,
Lake Placid, NY), GluR1 (1:1000, Chemicon, Temecula, CA), CAMKIIα (1:10,000,
Upstate, Lake Placid, NY), IQGAP (1:1000, BD Transduction, San Jose, CA), GEF-H1
(1:500, Cell Signaling, Danvers, MA), PCTAIRE 1 (1:250, Cell Signaling, Danvers, MA),
or RIN1 (1:250, BD Transduction, San Jose CA). Protein bands were detected using IR800-
labeled goat anti-mouse IgG or IR700-labeled goat anti-rabbit IgG secondary antibodies
(1:20,000, LI-COR Biosciences, Lincoln, NE) and the Odyssey infrared imaging system.
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Proteomics
In-gel digestion—The hippocampal PRE and PSD fractions were resuspended in 200 μl
of 1% SDS, and protein concentrations were determined using the BCA protein assay
(Pierce, Rockford, IL). 100 μg of protein from each fraction was separated by 7.5% SDS-
PAGE. Following electrophoresis, the proteins were visualized by Coomassie blue staining,
using 1% PhastGel Blue (Amersham Biosciences, Buckinghamshire, UK). The entire
protein lanes were sequentially cut into 26 gel slices and destained with 45% acetonitrile in
100 mM ammonium bicarbonate. The resulting gel slices were incubated with 10 mM tris(2-
carboxyethyl)phosphine hydrochloride, alkylated by the addition of 50 mM iodoacetamide,
and then digested in situ with trypsin (100 ng per band in 50 mM ammonium bicarbonate).
The tryptic peptides were extracted using POROS 20 R2 beads (Applied Biosystems, Foster
City, CA) in 0.2% trifluoroacetic acid containing 5% formic acid. The extracted peptides
were concentrated by loading the POROS beads onto C18 Zip-tips (Millipore, Bedford,
MA), and eluted with 30% and 75% of acetonitrile containing 0.1% trifluoroacetic acid. The
eluates were dried under vacuum using a Speed Vac concentrator.

In-solution digestion—The hippocampal PRE and PSD fractions were resuspended in 50
mM Tris-Cl, 0.1% SDS, incubated with 40 mM tris(2-carboxyethyl)phosphine
hydrochloride and then digested with trypsin (100 ng in distilled water). The tryptic peptides
were loaded onto a cation-exchange cartridge containing POROS 50 HS beads (Applied
Biosystems, Foster City, CA) and eluted with 500 mM potassium chloride in 5 mM
phosphate buffer and 25% acetonitrile. In-solution digestion was also used to process the
striatal PRE fraction. In this case, the tryptic peptides were eluted from the cation-exchange
cartridge using a step gradient of increasing potassium chloride concentration (25, 50, 75,
100, 150, 200, 250, 350 mM). The eluates were dried under vacuum using a Speed Vac
concentrator.

Mass spectrometry—The resulting peptides were dissolved in 2-25 μl of HPLC sample
solvents containing water:methanol:acetic acid:trifluoroacetic acid (70:30:0.5:0.01, v/v/v/v).
Capillary-HPLC-MS/MS analysis was conducted on an LCQ ion trap mass spectrometer
(Thermo Finnigan, San Jose, CA) coupled with an online MicroPro-HPLC system (Eldex
Laboratories, Napa, CA). Two μl of tryptic peptide solution was injected into a Magic C18
column (0.2 × 50 mm for in-gel digests, or 0.2 × 150 mm for in-solution digests, 5 μm, 200
Å, Michrom BioResources, Auburn, CA) which had been equilibrated with 70% solvent A
(0.5% acetic acid and 0.01% trifluoroacetic acid in water:methanol (95:5, v/v)) and 30%
solvent B (0.5% acetic acid and 0.01% trifluoroacetic acid in methanol:water (95:5,v/v)).
Peptides were separated and eluted from the HPLC column with a linear gradient of 30-95%
solvent B in 15 min or 30-70% solvent B in 100 min, at a flow rate of 2.0 μl/min for in-gel
digests and in-solution digests, respectively. The eluted peptides were sprayed directly into
the LCQ mass spectrometer (2.8 kV). The LCQ mass spectrometer was operated in a data-
dependent mode for measuring the molecular masses of peptides (parent peptides) and
collecting MS/MS peptide fragmentation spectra.

Database search and protein identification—The measured molecular masses of
parent peptides and their MS/MS data were used to search the National Center for
Biotechnology Information (NCBI) Reference Sequence (RefSeq) database using the
program Sonar (Genomic Solutions, Ann Arbor, MI). The same data were searched, using
identical parameters, against a random database of NCBI non-redundant mouse sequences
generated by the program decoy.pl from Matrix Science, in order to determine the false
positive discovery rate. The false positive rate (FPR) = RP/(RP+NP) was calculated, where
RP and NP are the number of confirmed matches derived from the randomized and normal
database, respectively. By assigning both protein and peptide identification thresholds as <
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1, the FPR equals 0.01. By assigning a protein identification threshold of protein score < 0.1
with peptide score < 0.1, the FPR equals 0. Therefore, protein identifications were made
based on Sonar expectation values (E-values) of < 0.1 either at the protein or peptide level.
BLAST searches were performed for hypothetical and unknown proteins using the NCBI
Protein: Protein BLAST web server.

Literature-based presynaptic PPI network
From biochemical research publications reporting direct (binary) interactions between
presynaptic proteins and metabolites, we manually extracted and constructed a network of
presynaptic PPIs. We abstracted interactions to a mixed graph (directed/undirected), where
proteins are represented as nodes and their direct interactions as links. In order to generate a
high quality dataset with minimal inherent bias, binary interactions were included only from
primary publications describing presynaptic mammalian interactions with no high-
throughput data (e.g. yeast two-hybrid or other proteomic methods) included, unless
confirmed by other techniques. In order to effectively incorporate data from multiple
sources, we used UniProt (http://www.expasy.uniprot.org/) accession numbers (human and
mouse) and Entrez Gene (http://www.ncbi.nlm.nih.gov/) gene names (human), the standard
for protein identification. In the few cases where protein identifiers could not be mapped to
UniProt, their original identifiers were retained. The network was analyzed and visualized
using SNAVI [30]. This network contains 127 proteins and small molecules (nodes) and 229
interactions (links), from 145 publications. Self-interactions were not included, whereas
interactions involving calcium were included in the network, as calcium plays a central role
in neurotransmitter release from the presynaptic nerve terminal. In all, four types of
interactions were incorporated – binding, phosphorylation, dephosphorylation, and channel
opening. A web-based interface that provides access to this network is provided at
http://amp.pharm.mssm.edu/presynaptome.

Generation of a core presynaptic dataset
In order to generate a core presynaptic list, we compiled lists of proteins from our proteomic
studies of PRE fractions, our literature-based presynaptic network (converted to list of
components), and two published proteomic studies of presynaptic fractions. The first study
[23] used the same fractionation protocol applied in our proteomic studies to separate
presynaptic and PSD fractions from the rat forebrain, and reported a list of proteins
associated with each fraction using multi-dimensional protein identification technology
(MudPIT). The second study [19] isolated fractions containing free synaptic vesicles or
synaptic vesicles associated with presynaptic plasma membrane from the rat brain using
subcellular fractionation, immunoaffinity purification, and sucrose gradient centrifugation,
and identified proteins by two-dimensional gel elelectrophoresis followed by matrix-assisted
laser desorption-ionization time-of-flight (MALDI TOF) MS. Only the proteins identified in
the fraction containing synaptic vesicles associated with presynaptic plasma membrane were
considered in our study, since this fraction contained components of the synaptic vesicle
trafficking machinery that regulate presynaptic nerve terminal function. In order to compile
these lists into a “merged list” and eliminate redundancy, the proteins from all proteomic
lists were assigned human accession numbers and gene names using Uniprot and Entrez
Gene.

Prediction of Presynaptic Proteins and Complexes
A “background” literature-based protein-protein interaction network was created by merging
interactions from BioGrid [31], HPRD [32], PPID [33], and a CA1 neuronal regulatory
network [28]. We excluded interactions that originate from research articles reporting more
than five interactions to reduce the chance for false positives. This network has 6,442
proteins and 17,879 interactions extracted from 12,462 publications.
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A binomial proportions test was used to evaluate the significance of interactions between
proteins from the background dataset with proteins from the “merged list” of 306 proteins
identified by proteomics. The binomial proportions test provides a good approximation to
the Fisher Exact Test, which is used to evaluate the likelihood of a discrete event as
compared to what would be expected by chance. For this analysis, the z-score for each
protein from the background dataset was computed using the following equation:

(1)

Where:

N1 = # of proteins in the merged list (= 306)

N2 = # of proteins in background dataset (= 6442)

p1 = # of direct interactions with proteins in the merged list

p2 = # of direct interactions with proteins in the background network

(2)

A higher z-score for a protein would indicate that the number of its interactions with
proteins from our experimentally determined seed list is significantly enriched compared
with the number of its interactions with other protein partners [34].

Of the 6,442 proteins from the background list, 646 interacted with at least two proteins
from the merged list, and 92 of these showed a significant preference (z-score > 3) to
interact with proteins from the merged list. A z-score of 3 was chosen since this corresponds
to a p-value of ∼ 0.01, which is a standard cutoff for statistical significance. Also, this z-
score provided a reasonable number of proteins that could be further analyzed. The 92
proteins with z-score > 3 were evaluated to determine whether they have previously shown
to be presynaptic by searching PubMed, SynDB [35] (a database of synaptic proteins) and
GO [36].

To predict a presynaptic complex, proteins from the merged proteomics list (306 proteins)
were analyzed for the presence of overlapping direct protein interactions (shared neighbors),
using interactions from the background dataset (6,442 proteins). 21 pairs of proteins from
the merged list were found to have at least four shared direct interacting partners. Other
thresholds were tested; four was chosen to produce an acceptable balance between
comprehensiveness and stringency. These proteins do not directly interact with each other
and do not share sequence homology. The percent of shared neighbors for all pairs of
proteins was then calculated as follows and used for ranking the probability that a pair of
proteins may exist in a complex:

(3)
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Where: SN = shared neighbors, ON1 = other neighbors (not shared) of protein 1, and ON2 =
other neighbors of protein 2.

The protein interactions from this publication have been submitted to the IMEx
(http://imex.sf.net) consortium through IntAct [37] and have been assigned the identifier
IM-11648.

Immunocytochemistry
Dissociated neuronal cultures were prepared from the cortices of embryonic day 18
Sprague-Dawley rats, as described [38]. Neurons (16 days in vitro) were fixed with 2%
paraformaldeyhyde (PFA) / 2% sucrose for 15 min, permeabilized with 0.25 % TX-100 for
5 min, and incubated for 1 h at room temperature in blocking solution consisting of 2%
BSA. Cells were then incubated overnight at 4 °C with antibodies to: RIN1 (1:100, BD
Transduction, San Jose, CA), PCTAIRE 1 (1:50, Cell Signaling, Danvers, MA), SV2 (1:20,
DSHB, Iowa City, IA) or synaptophysin (1:500, Sigma, St. Louis, MO). The antibodies for
GEF-H1 and IQGAP1 (see Western blotting, above) were not of suitable quality for
immunohistochemical analysis; the signal for each antibody was too low to be detected,
even at very high concentrations (e.g. 1:20). Cells were incubated with Alexa-594 anti-rabbit
and Alexa-488 anti-mouse secondary antibodies (1:1000, Molecular Probes, Eugene, OR)
for 1 h at room temperature. Coverslips were mounted using Mowiol (Sigma, St. Louis,
MO), and visualized using a Leica TCS SP1 confocal microscope equipped with four
external lasers (350, 488, 568, and 633 nm, Leica Microsystem). Images were acquired with
a ×100/1.32 PL APO objective lens, and analyzed in sequential scanning mode.

Co-Immunoprecipitation
Mouse hippocampal synaptosomal fractions were prepared in the same way as described in
the “Subcellular Fractionation” section above. The synaptosomal fraction contains
presynaptic membranes, postsynaptic membranes and PSD, and subsynaptic web material
[29]. Synaptosomal fractions (200 μg protein) were resuspended in lysis buffer (100 mM
NaCl, 5 mM EDTA, 10 mM NaHPO4, pH 7.2) containing 1% TX-100 and protease and
phosphatase inhibitor cocktails, and incubated at 4 °C for 20 min. The lysates were
subjected to immunoprecipitation at 4 °C overnight with anti-synapsin 1 antibody (4 μg,
Stressgen, Victoria, BC) and pre-washed protein A/G agarose beads (40 μl, Pierce,
Rockford, IL). As a control, the lysates were incubated with protein A/G agarose beads
alone. The immunoprecipitates were washed twice with lysis buffer containing 0.25%
TX-100, and once with PBS containing 5 mM EDTA. Bound proteins were eluted with
Laemmli loading buffer at 100 °C for 20 min, resolved by 7.5% SDS-PAGE, and
immunoblotted with antibodies to dynamin (1:5000, BD Biosciences, San Jose, CA),
CAMKIIα (1:10,000, Upstate, Lake Placid, NY), MAP2 (1:2000, Chemicon, Temecula,
CA), and synapsin I (1:20,000, Pierce, Rockford, IL). Protein bands were detected using
IR800-labeled goat anti-mouse IgG or IR700-labeled goat anti-rabbit IgG secondary
antibodies (1:20,000, LI-COR Biosciences, Lincoln, NE) and the Odyssey infrared imaging
system.

Results and Discussion
With the advent of high-throughput proteomics, it is now possible to systematically
catalogue the components within a subcellular compartment. In this study, we describe an
approach to characterize the composition of the presynaptic nerve terminal using subcellular
proteomics and systems biology. First, we carried out proteomic studies of proteins enriched
in the presynapse. For this, we separated presynaptic (PRE) and postsynaptic (PSD)
fractions from rodent hippocampus and striatum by an anionic extraction method, as
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described in Materials and Methods. To verify the extent of the purification, the various
fractions were subjected to Western Blotting, using antibodies to known presynaptic
proteins: Syntaxin I and SNAP25, and to known PSD proteins: GluR1 and PSD95. In
addition, the fractions were probed with antibodies to clathrin heavy chain, an endocytic
protein that was previously shown to be enriched in presynaptic fractions [23], and
CAMKII, a major component of the PSD [39] that also associates with presynaptic vesicles
[40]. The PRE fraction is enriched in presynaptic proteins and excludes proteins enriched in
the PSD fraction (Figure 1).

We then identified proteins in the PRE fractions by LC-MS/MS following either in-gel or
in-solution digestion (Supplementary Figure 1). Proteins were identified based on highly
stringent statistical analysis (in both the quality of the MS/MS peptide fragment ion spectra
and the significance of amino acid sequence matches) using the program Sonar, which has
recently been reported to be one of the most specific MS/MS database search algorithms
[41]. In the hippocampal PRE fraction, we identified a total of 138 proteins (Supplementary
Table 1). The profiling of the hippocampal PSD proteins has been previously reported [42].
In the striatal PRE fraction, we identified 121 proteins (Supplementary Table 2). The
relatively low number of proteins identified in each of our PRE fractions suggests that these
lists are far from comprehensive. The presynaptic proteome likely includes both abundant
proteins (e.g. those that are found across different types of synapses and at high levels) and
rare proteins (e.g. those that are synapse or brain region-specific). Although subcellular
fractionation is the method of choice to reduce the complexity of samples for MS analysis,
there remains a large bias in MS data against low-abundant proteins in a sample. In order to
address this, we used a graph theory-inspired computational approach to evaluate and enrich
the knowledge about proteins identified in presynaptic fractions by us and by others.

In a first step to further analyze the PRE lists produced by proteomics, we manually
extracted PPI data from the biochemical and physiological literature to generate an in silico
network that represents only presynaptic interactions, as described in Materials and Methods
(Supplementary Figure 2, Supplementary Table 3). This network, made of 229 direct
(binary) interactions between 127 presynaptic proteins, was generated without considering
the results from the proteomics experiments, and is provided as a web-based resource at
http://amp.pharm.mssm.edu/presynaptome. Since other studies have reported lists of
presynaptic proteins identified by proteomic approaches, we also extracted the data from
two recently published proteomic studies of presynaptic fractions [19, 23]. Compilation of
these lists with the two lists we developed experimentally, and the list we created from the
literature-based network, resulted in a “merged list” containing 393 entries (306 proteins
from proteomics, and 87 entries exclusively from the literature) (Supplementary Table 4). A
similar strategy focusing solely on proteomic data has been applied to characterize the
postsynaptic proteome [25].

In order to readily merge and analyze data from various sources, we extended all protein and
interaction data experimentally verified in other mammalian model organisms to
orthologous proteins in human (Supplementary Tables 1, 2, and 4). It is a common
assumption that PPIs can be inferred through homology transfer from one model organism
to another, since functionally linked proteins are likely to evolve together, and therefore
should have homologs in evolutionarily related organisms. Although this is not always the
case, particularly when comparing prokaryotes and simple eukaryotes with higher
eukaryotes [43], PPIs have been shown to be well conserved between protein pairs with at
least 80% sequence identity [44]. A recent study examining the evolutionary conservation of
proteins, interactions, and complexes showed that mouse and rat show the greatest
conservation of human proteins over all, followed by fly, worm, and yeast [45]. The same
study found that nearly 70% of human interactions are conserved in mice. Based on these
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data, it is believed that PPIs from higher eukaryotes such as mouse and rat are highly
conserved when compared to human.

Comparison of the lists of proteins derived from the proteomic studies revealed 13-22%
overlap (Supplementary Tables 3, 5). Although this is a significant overlap when compared
with the expected overlap for randomly generated lists of genes, we would expect the
overlap among these lists to be higher. A low degree of overlap could be due to brain
regional variation, different strategies of sample preparation, protein separation, and/or run-
to-run differences in MS analysis that are routinely observed. In the merged list, 45 proteins
(15%) were detected experimentally three or more times, 56 proteins (18%) were detected
twice, and the rest (67%) were detected once (Figure 2A, Supplementary Table 6). We
designated proteins that were identified two or more times as the “core list” (containing 101
proteins). The intent of the core list is to represent proteins that are likely to be associated
with most mammalian presynaptic terminals. By filtering out the proteins that were only
identified once experimentally, we limit the number of protein contaminants, as well as
proteins that may be specific to a single brain region, species, or even methods of sample
preparation and/or protein identification. For example, with the subcellular fractionation
technique used in this study, samples may contain contaminant postsynaptic proteins that
remain adherent to the presynaptic fraction; however, the identification of such
contaminants is less likely with repeated experiments. Thus, while the original proteomic
lists and the merged list include valuable data that were used for further computational
analyses, the core list represents a highly stringent subgroup of mammalian presynaptic
proteins. The contribution of each list to the core list and to the merged list is illustrated in
Figure 2B. For example, our hippocampal PRE list contributed 79 proteins to the core list,
indicating that these proteins have been validated as being present in the presynapse by one
or more of the other lists.

Using Gene Ontology, we mapped the “biological process” to proteins from the
hippocampal and striatal PRE fractions as well as to proteins in the core list (Supplementary
Table 7). The core list is enriched for proteins involved in presynaptic functions, such as
neurotransmission. Proteins belonging to transport- or secretion-related biological processes
(intracellular transport (18.6%), vesicle-mediated transport (15.3%), protein transport
(14.4%), secretion (9.3%), and secretion pathway (9.3%)) are more highly represented in the
core dataset. On the other hand, proteins belonging to several metabolic- or catabolic-related
processes (cofactor metabolism, macromolecular catabolism, negative regulation of
metabolism, carbohydrate metabolism, organic acid metabolism, and electron transport) are
under-represented in the core list. Thus, by integrating lists from different sources, we were
able to enrich for proteins with established presynaptic functions.

To further analyze the merged list of PRE proteins, we sought to identify literature-based
PPIs among the proteins in the merged list. For this we consolidated and filtered several
literature-based mammalian PPI networks from BioGrid [31], HPRD [32], PPID [33], and a
neuronal signaling network we developed for a prior study [28] (see Materials and Methods
for details). We “connected” proteins from the core list by linking pairs of proteins through
shared neighbors, using interactions from the consolidated and filtered literature-based
mammalian PPI network (“background network”). Between the 101 proteins in the core list
(“Top 101”), we found 13 direct interactions, 222 interactions using 1st-level shared
neighbors (path length of one extra node and two links), and 1,772 interactions using 2nd –
level shared neighbors (path length of two extra nodes and four links). The same analysis
was performed using 0, 1, 2, or 3-level shared neighbors to connect the 45 proteins
identified 3 or more times (“Top 45”) in the merged list (Supplementary Table 8). A total of
226 intermediate proteins were found to “connect” core list proteins. Among them, 16
consisted of proteins that had been detected once in proteomic studies (Supplementary Table
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9). Since these proteins have been shown to interact with proteins from the core list, they are
likely to be bona-fide components of the presynaptic nerve terminal proteome, and were
therefore upgraded to the core list. This resulted in a “final” core presynaptic list made of
117 proteins (Table 1, Figure 2C).

This “final” list represents a core portion of presynaptic proteins but is not comprehensive,
since low abundance proteins or proteins associated with a specific brain region are likely to
be missing from this list. In the next step, in order to predict novel presynaptic proteins not
detected experimentally, we used a binomial proportions test to identify proteins from the
background network that preferentially interact with proteins identified experimentally to be
presynaptic (Supplementary Table 10). Similar strategies using graph theory have been
applied to enrich large-scale datasets in yeast by predicting PPIs [46-48]. The binomial
proportions test was used to find proteins from the background network that specifically
interact with presynaptic proteins, while pruning out proteins that interact with a large
number of other non-presynaptic proteins, and as such could be interacting with some
presynaptic proteins but not specifically. We found 92 proteins from the background
network that show a significant preference (z-score > 3) to interact with proteins from the
merged list, suggesting that these proteins could also exist at presynaptic nerve terminals.

The proteins with z-scores > 3 were compared to those with z-scores < -1, by categorizing
them according to Gene Ontology's “biological process”, “cellular component”, and
“molecular function” (Supplementary Figure 3). We find that the list of proteins with z-
scores > 3 contains a higher proportion of membrane proteins (61%) and transport-related
proteins (31%), while the list of proteins with z-scores < -1 contains a higher proportion of
nuclear proteins (54%), transcriptional regulators (48%) and metabolism-related proteins
(82%). This is consistent with the notion that the statistical test identifies proteins that have a
higher chance of being presynaptic, by virtue of their subcellular localization, function, and
ability to interact with previously identified presynaptic proteins. Indeed, of the 92 proteins
with z-scores > 3, 42 had previously been identified as presynaptic proteins, as indicated by
a database search in PubMed, SynDB [35], or GO [36] (Supplementary Table 11). This
leaves 50 proteins that preferentially interact with the merged list, which have not been
previously identified as presynaptic in any of these databases.

In order to verify the predictions that these proteins are indeed present in the presynapse, we
selected five top-ranked proteins that have available antibodies (z-scores in brackets):
PCTAIRE-1 (4.8), GEF-H1 (ARHGEF2, 4.2), RIN1 (3.9), NUMB (3.6), and IQGAP1 (3.5).
These proteins were also selected because they are known to be involved in signal
transduction processes [49-53] and would be of potential interest at the presynapse. We
examined the selected proteins in fractions obtained during the purification process. Among
them, four could be clearly detected in the PRE fraction by Western blotting (Figure 3A).
The protein NUMB could not be detected in any of the fractions, possibly due to the poor
quality of the antibody. For RIN1, the size of the protein in the PRE fraction appeared to be
of a lower molecular weight as compared to those in the homogenate and synaptosomal
fractions; this could indicate selective post-translational processing or the presence of an
alternatively spliced variant. To further confirm the subcellular localization of the predicted
proteins to be presynaptic, the localization of two of them, RIN1 and PCTAIRE-1, was
examined in cultured primary cortical neurons by immunofluoresence. We find that these
proteins co-localize with the presynaptic markers SV2 or synaptophysin (Figure 3B),
confirming that these predicted proteins are present at the presynapse. PCTAIRE-1 is a
kinase that has been shown to phosphorylate NSF in PC12 cells [49]; it is therefore
conceivable that PCTAIRE-1 could play a role in regulating vesicle trafficking at
presynaptic nerve terminals. RIN1 is a Ras effector that has previously been shown to
modulate postsynaptic plasticity in aversive memory formation in the amygdala [50]; a
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presynaptic form of RIN could play a similar role in regulating signaling pathways at the
presynaptic nerve terminal. Overall, these data are consistent with the idea that, using
computational methods, it is possible to enrich proteomic data by including low abundance
proteins such as signaling molecules.

Finally, a “shared neighbor” analysis was applied to identify potential presynaptic
complexes. Previous studies in yeast have shown that two proteins sharing a significantly
large number of common interaction partners have close functional associations and are
likely to exist in a complex [54,55]. We hypothesized that non-homologous presynaptic
proteins that share many interacting partners, but have not been shown to interact directly,
may be present in a complex. We computed the percent of shared direct interacting partners
(shared neighbors) between proteins from the merged list of 306 proteins identified by
proteomics. We found that 21 pairs of non-homologous proteins have at least four shared
neighbors, but have not been previously described to directly interact with each other
(Supplementary Table 12). Using this information, we generated a hypothetical protein
complex containing 17 proteins (Figure 3C). This complex included synapsin I and
dynamin, which have been shown to co-precipitate with Src in PC12 cells [56], and MAP2,
which has been shown to co-localize with synapsin I in the olfactory bulb glomerulus [57].
Using co-immunoprecipitation experiments, we biochemically validated some of the
predictions made by this analysis. In mouse hippocampal synaptosomes, synapsin I co-
immunoprecipitates with three other proteins from the predicted complex: dynamin,
CAMKII, and MAP2 (Figure 3D), supporting the presence of the predicted interacting
proteins in this complex. These results validate the presence of some parts of the
computationally predicted complex at presynaptic nerve terminals, and show that this
method of identifying proteins with shared interactors can be used to successfully identify
novel interacting complexes.

Concluding Remarks
Subcellular fractionation is frequently used in neuroproteomic studies to concentrate and
enrich proteins associated with a specific subcompartment of the nervous system [1]. This
approach has the advantage of simplifying the complexity of whole tissue extracts, and
maximizing the probability of detecting low abundance proteins by MS [58,59]. In addition,
the fractionation of cells into specialized subcompartments provides the possibility to link
proteomic data with functional units [60]. However, protein lists generated by MS are by no
means comprehensive; low abundance proteins, such as signaling molecules, and
membrane-bound proteins, such as receptors and channels, remain notoriously difficult to
identify in high-throughput studies [59], and contaminants remain in the sample
preparations. An important next step is to develop tools to sieve the data obtained from high-
throughput studies, and integrate it with data from the biochemical literature, in order to
obtain a clearer and fuller picture of the compartment of interest. In this study, we used a
combination of proteomics and computational biology approaches to characterize
components in the presynaptic nerve terminal. The core list of presynaptic proteins serves as
a useful resource for future functional studies that will attempt to characterize mammalian
presynaptic cell signaling pathways and presynaptic organization under physiological and
perturbed states.

An exciting feature of this study is that we have been able to make biologically relevant
predictions that can be tested experimentally. In addition to generating a core presynaptic
list of proteins, we used computational approaches to evaluate PPIs within this compartment
and predict novel presynaptic components and complexes. Several computational
predictions were validated using biochemical methods, indicating that the network analyses
used can accurately predict proteins and interactions within a subcellular compartment. This
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process allowed us to increase the number of presynaptic components that were identified by
MS, and helped in predicting a potential presynaptic complex comprising a number of
important signaling molecules; future studies evaluating presynaptic function could target
the modulation of such a complex rather than focus on individual proteins. Importantly, the
computational analyses that we applied can readily be used to study other subcellular
compartments [61].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Biochemical validation of the separation protocol used to identify proteins from the mouse
hippocampal presynaptic (PRE) fraction. To demonstrate the purity of the fractions, equal
amounts (10 to 30 μg) of protein from hippocampal synaptosomes, synaptic junctions, PSD,
and PRE fractions were separated by SDS-PAGE and probed with antibodies to presynaptic
markers (clathrin heavy chain (HC), syntaxin I, and SNAP25) and postsynaptic markers
(GluR1, PSD95, and CAMKIIα). Protein bands were quantified using the Odyssey infrared
imaging system. Bar graphs (right) show the integrated intensity of protein bands in each
fraction relative to the synaptosomal fraction.
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Figure 2.
A) To characterize the proteins identified by proteomics, we compiled lists of proteins from
our proteomic studies with other studies (Morciano et al., 2005; Phillips et al., 2005) and our
literature-based network. The majority (67%) of proteins in the merged list (containing 306
proteins) were identified only once in proteomic studies. The subset of proteins detected in
two or more independent lists was taken as the “core list” (101 proteins). B) Contributions
of each individual list to the core list and to the merged list. “Not detected” indicates
proteins that were not identified in the list. “Not in core list” indicates proteins that were
identified in the list but did not contribute to the core list. “In core list” indicates proteins
that were identified in the list and contributed to the core list. C) Schematic illustrating the
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data compilation process used to generate the final core presynaptic list of 117 proteins.
Protein lists from our proteomic studies, two other published studies, and our literature-
based presynaptic network were combined to form a merged list containing 306 proteins.
We placed proteins that were identified two or more times in a core list containing 101
proteins. To enrich this list with additional proteins, we used network analysis to identify 16
intermediates from the merged list that interact directly with proteins from the core list.
These proteins were added to the core list to generate the final core presynaptic list of 117
proteins (see Table 1).
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Figure 3.
Prediction and experimental validation of novel presynaptic components and complexes. A)
To validate the presence of some of the predicted proteins in the PRE fraction, 50 μg of
protein from homogenate, synaptosomes, and PRE fractions were separated by SDS-PAGE
and probed with selective antibodies to IQGAP, GEF-H1, RIN1, and PCTK1 by Western
Blotting. B) To further confirm the presence of these proteins at the presynapse,
immunofluorescence studies were performed using cultured primary cortical neurons. The
cells were fixed with PFA, permeabilized, and probed for the localization of RIN1 and
PCTK1, and their co-localization with the presynaptic markers SV2 or synaptophysin (SYP)
using immunocytochemistry. C) To predict a novel presynaptic complex, proteins from the
merged list were analyzed for their ability to interact indirectly (via shared neighbors). A
schematic of the predicted complex (containing 17 proteins) is shown. Proteins are indicated
by their gene names and links represent indirect interactions. D) Validation of the predicted
presynaptic protein complex by co-immunoprecipitation. Left panels: Mouse hippocampal
synaptosomal fractions were immunoprecipitated using anti-synapsin I antibody. MAP2,
dynamin, and CAMKIIα were detected in the immunoprecipitate by Western Blotting (lane
1). Lane 2 represents immunoprecipitation without synapsin antibody, and lane 3 represents
immunoprecipitation without synaptosomal lysate. Right panels: Western Blotting was
carried out on the synaptosomal lysate as a control. Bottom panels: Blots were reprobed with
synapsin I antibody as a control.
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Table 1

Core presynaptic list containing 117 proteins.

Accession # (UniProt) Protein Name Gene Name (Entrez Gene)

Trafficking (32)

Q10567 AP-1 complex subunit beta-1 AP1B1

O95782 AP-2 complex subunit alpha-1 AP2A1

O94973 AP-2 complex subunit alpha-2 AP2A2

P63010 AP-2 complex subunit beta-1 AP2B1

Q96CW1 AP-2 complex subunit mu-1 AP2M1

Q93050 V-ATPase subunit a1 ATP6V0A1

P61421 V-ATPase subunit d ATP6V0D1

P38606 V-ATPase subunit A1 ATP6V1A

P21281 V-ATPase subunit B2 ATP6V1B2

P21283 V-ATPase subunit C ATP6V1C1

P36543 V-ATPase subunit E ATP6V1E1

P09496 Clathrin light chain CLTA

Q00610 Clathrin heavy chain CLTC

Q05193 Dynamin 1 DNM1

Q14204 Dynein heavy chain, cytosolic DYNC1H1

P54920 Alpha-soluble NSF attachment protein NAPA

P46459 N-ethylmaleimide sensitive fusion protein NSF

Q9BY11 Protein kinase C and casein kinase substrate in neurons protein 1 PACSIN1

P20336 Ras-related protein Rab-3A RAB3A

Q86UR5 Rab3-interacting molecule 1 RIMS1

Q99962 SH3-containing GRB2-like protein 2 SH3GL2

Q9Y6R1 Synaptosomal-associated protein 25 SNAP25

Q16623 Syntaxin 1A STX1A

P61764 Syntaxin-binding protein 1 STXBP1

Q15833 Syntaxin-binding protein 2 STXBP2

P17600 Synapsin 1 SYN1

Q92777 Synapsin 2 SYN2

O43426 Synaptojanin 1 SYNJ1

P21579 Synaptotagmin 1 SYT1

Q8N9I0 Synaptotagmin 2 SYT2

Q96QK1 Vacuolar protein sorting 35 VPS35

P63027 Vesicle-associated membrane protein 2 VAMP2

Signaling (22)

Q2M2I8 AP-2 associated kinase 1 AAK1

P62158 Calmodulin CALM1

Q9UQM7 CAMKII alpha CAMK2A

P09543 2′,3′-cyclic-nucleotide 3′-phosphodiesterase CNP

P68400 Casein kinase II subunit alpha CSNK2A1
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Accession # (UniProt) Protein Name Gene Name (Entrez Gene)

Q16555 Dihydropyrimidinase-related protein 2 DPYSL2

P63096 G protein G(i) alpha 1 GNAI1

P04899 G protein G(i) alpha 2 GNAI2

P08754 G protein G(i) alpha 3 GNAI3

P09471 G protein G(o) alpha 1 GNAO1

P62873 G protein beta 1 GNB1

P62879 G protein beta 2 GNB2

P07948 Tyrosine-protein kinase Lyn LYN

P28482 Mitogen-activated protein kinase 1 MAPK1

Q9NQ66 Phospholipase C beta 1 PLCB1

Q08209 Protein phosphatase 2B catalytic subunit alpha isoform PPP3CA

P16298 Protein phosphatase 2B catalytic subunit beta isoform PPP3CB

P17252 Protein kinase C alpha type PRKCA

P31946 14-3-3 protein beta/alpha YWHAB

P62258 14-3-3 protein epsilon YWHAE

Q04917 14-3-3 protein eta YWHAH

P63104 14-3-3 protein zeta/delta YWHAZ

Receptors/Channels (3)

P13637 Na/K ATPase alpha-3 chain ATP1A3

P21796 Voltage-dependent anion-selective channel protein 1 VDAC1

P45880 Voltage-dependent anion-selective channel protein 2 VDAC2

Scaffolding/Clustering (2)

Q01484 Ankyrin 2 ANK2

Q9UQF2 JNK-interacting protein 1 MAPK8IP1

Cell Adhesion (4)

Q12860 Contactin 1 CNTN1

P32004 Neural cell adhesion molecule L1 precursor L1CAM

P13591 Neural cell adhesion molecule 1 NCAM1

Q92823 Neuronal cell adhesion molecule precursor NRCAM

Cytoskeletal (23)

P68133 Alpha-actin 1 ACTA1

P60709 Beta-actin ACTB

P63261 Gamma-actin ACTG1

P12814 Alpha-actinin 1 ACTN1

P35609 Alpha-actinin 2 ACTN2

Q08043 Alpha-actinin 3 ACTN3

P35611 Adducin 1 ADD1

Q13561 Dynactin subunit 2 DCTN2

P11171 Protein 4.1 EPB41

P11137 Microtubule-associated protein 2 MAP2

P07196 Neurofilament triplet L protein NEFL

Q9UH03 Septin 3 SEPT3
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Accession # (UniProt) Protein Name Gene Name (Entrez Gene)

Q99719 Septin 5 SEPT5

Q16181 Septin 7 SEPT7

Q13813 Spectrin alpha chain, brain SPTAN1

Q01082 Spectrin beta chain, brain 1 SPTBN1

O15020 Spectrin beta chain, brain 2 SPTBN2

P09493 Tropomyosin 1 alpha chain TPM1

P68366 Tubulin alpha 1 chain TUBA1

Q9BQE3 Tubulin alpha 6 chain TUBA6

P07437 Tubulin beta 2 chain TUBB2A

Q13509 Tubulin beat 3 chain TUBB3

P04350 Tubulin beta 4 chain TUBB4

Regulatory (7)

P13639 Elongation factor 2 EEF2

P63241 Eukaryotic translation initiation factor 5A-1 EIF5A

P07900 Heat shock protein 90 alpha HSP90AA1

P11142 Heat shock cognate 71 kDa protein HSPA8

P49411 Elongation factor Tu, mitochondrial TUFM

P62937 Peptidyl-prolyl cis-trans isomerase A PPIA

P35232 Prohibitin PHB

Metabolic/Mitochondrial (16)

P04075 Aldolase A ALDOA

P25705 ATP synthase subunit alpha ATP5A1

P06576 ATP synthase subunit beta ATP5B

P12277 Creatine kinase B chain CKB

P12532 Creatine kinase ubiquitous CKMT1A

P08574 Cytochrome c-1 CYC1

P10515 Pyruvate dehydrogenase complext E2 subunit DLAT

P00367 Glutamate dehydrogenase 1 GLUD1

P19367 Hexokinase 1 HK1

P50213 Isocitrate dehydrogenase [NAD] subunit alpha IDH3A

O95299 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
subunit 10

NDUFA10

O75489 NADH-ubiquinone oxidoreductase 30 kDa subunit NDUFS3

P17858 6-phosphofructokinase, liver type PFKL

P08237 6-phosphofructokinase, muscle type PFKM

P14618 Pyruvate kinase isozymes M1/M2 PKM2

P22695 Ubiquinol-cytochrome-c reductase complex core protein 2 UQCRC2

Other (8)

P69905 Hemoglobin subunit alpha HBA1

P68871 Hemoglobin subunit beta HBB

P02686 Myelin basic protein MBP

O60313 Dynamin-like 120 kDa protein OPA1
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Accession # (UniProt) Protein Name Gene Name (Entrez Gene)

Q99584 Protein S100-A13 S100A13

P04216 Thy-1 membrane glycoprotein precursor THY1

P55072 Valosin-containing protein VCP

P62760 Visinin-like protein 1 VSNL1
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