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SUMMARY

Using validation sets for outcomes can greatly improve the estimation of vaccine efficacy (VE) in
the field (Halloran and Longini, 2001; Halloran and others, 2003). Most statistical methods for using
validation sets rely on the assumption that outcomes on those with no cultures are missing at random
(MAR). However, often the validation sets will not be chosen at random. For example, confirmational
cultures are often done on people with influenza-like illness as part of routine influenza surveillance.
VE estimates based on such non-MAR validation sets could be biased. Here we propose frequentist
and Bayesian approaches for estimating VE in the presence of validation bias. Our work builds on
the ideas of Rotnitzky and others (1998, 2001), Scharfstein and others (1999, 2003), and Robins
and others (2000). Our methods require expert opinion about the nature of the validation selection
bias. In a re-analysis of an influenza vaccine study, we found, using the beliefs of a flu expert, that
within any plausible range of selection bias the VE estimate based on the validation sets is much
higher than the point estimate using just the non-specific case definition. Our approach is generally
applicable to studies with missing binary outcomes with categorical covariates.
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1. Introduction

Many statistical methods have been developed to deal with estimating the causal effects of
randomized treatments when outcomes are missing on some participants. Most methods rely
on the non-identifiable assumption that the outcome of interest is missing at random (MAR)
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(Little and Rubin, 2002). If the outcome is not MAR, then effect estimates could be subject to
selection bias. Rotnitzky and others (1998, 2001), Scharfstein and others (1999), and Robins
and others (2000) developed a frequentist selection model that displays the sensitivity analysis
over a plausible range of selection bias parameters. Scharfstein and others (2003) developed
a Bayesian approach that allows the formal incorporation of prior beliefs about the degree of
the selection bias to obtain the full posterior distribution, a single summary of the sensitivity
analysis. Others, for example Little (1994) and Daniels and Hogan (2000), have developed
pattern-mixture models for sensitivity analyses. Some other approaches include the work of
Baker and others (2003), Molenberghs and others (2001), Verbeke and others (2001), and
Vansteelandt and others (2006).

A particular case of missing data occurs if the outcome of interest is difficult or expensive to
ascertain, so that a surrogate outcome may be used instead. The outcome of interest may be
measured on some of the study participants in a subset called a validation sample, while the
surrogate is measured on all participants. In this situation, statistical missing data methods are
available to use the outcomes of interest in the validation sample to correct the bias based on
the non-specific case definition alone (Pepe and others, 1994). Halloran and Longini (2001),
Halloran and others (2003), and Chu and Halloran (2004) have demonstrated the potential use
of these methods for estimating vaccine efficacy (VE) on the example of an influenza vaccine.
In a randomized study with a planned random sample selected for the validation set, MAR
would be a reasonable assumption. However, in many situations, the selected sample may be
a convenience sample, so that MAR is unlikely to hold. Halloran and others (2003) presented
a simple model to explore the sensitivity of the VE estimates to the magnitude of the departure
from the MAR assumption. However, their approach was ad hoc and did not give confidence
bounds on their estimators.

Here, we formulate a class of selection models, indexed by interpretable parameters, to evaluate
the sensitivity to selection bias when using validation sets to estimate VE. Frequentist and
Bayesian approaches to inference will be presented. In developing and applying our
methodology to the re-analysis of the influenza vaccine study, we worked closely with a
scientific expert. Our approach is generally applicable to missing binary outcomes with
categorical covariates.

2. Influenza vaccine study

A field study of a trivalent, cold-adapted, influenza virus vaccine (CAIV-T) was conducted in
Temple-Belton, Texas, and surrounding areas during the 2000-2001 influenza season. The
field study was part of a larger community-based, non-randomized, open-label field study
conducted from 1998-2001 (Piedra and others, 2001; Gaglani and others, 2003). In Temple-
Belton, eligible healthy children and adolescents aged 18 months through 18 years were offered
CAIV-T vaccine through the Scott & White (S & W) Clinics from 1998-2001. The analysis
includes children who were S & W Health Plan members, and is concerned with the CAIV-T
vaccinations administered in the influenza season 2000-2001. Children received a single dose
of CAIV-T each year that they enrolled. The primary clinical outcome was a non-specific case
definition called medically attended acute respiratory infection (MAARI), which included all
ICD-9-CM diagnoses codes (Codes 381-383, 460-487) for upper and lower respiratory tract
infections, otitis media and sinusitis. Any individual presenting with history of fever and any
respiratory illness at S & W Clinics was eligible to have a throat swab (or nasal wash in young
infants) for influenza virus culture. The decision to obtain specimens was made irrespective
of whether a patient had received CAIV-T. The specific case definition is culture-confirmed
influenza. Table 1 contains the data. The overall fraction of MAARI cases sampled was a little
higher in the unvaccinated than in the vaccinated groups (p = 0.03).
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Halloran and others (2003) analyzed the data by adapting the mean score method for validation
sets (Pepe and others, 1994) with the goal of evaluating the protective VE of CAIV-T
vaccination in healthy children during the influenza season 2000-01. Chu and Halloran
(2004) developed a Bayesian method. The overall vaccine effectiveness estimate based on the
non-specific case definition was 0.18 (95% CI: 0.11, 0.24). The overall efficacy estimates
incorporating the surveillance cultures using the mean score method was 0.79 (95% ClI: 0.51,
0.91) and the Bayesian method was 0.74 (95% HPD: 0.50, 0.88). In this situation, using the
surveillance cultures as a validation set resulted in a four-fold increase in estimates, much closer
to the efficacy estimate of 0.93 (95% CI: 0.88, 0.97) obtained in a double-blind, randomized
controlled trial (Belshe and others, 1998).

In the influenza vaccine study in Texas, no surveillance cultures were positive in the age group
1.5-4 years. In Halloran and others (2003), a continuity correction of 0.5 was added to the
number of cultured samples and to the number positive in that age group in the mean score
analysis. For this age group, their estimate of VE using the mean score method was 0.91 (95%
Cl: —0.24,0.99). The Bayesian method of Chu and Halloran (2004) yielded an estimate of 1.00
(95% HPD: 0.52,1.00). So, the Bayesian method provided a much tighter measure of
uncertainty than the mean score method with the continuity correction.

The results of Halloran and others (2003) and Chu and Halloran (2004) are valid only if the
culture-confirmed influenza status is MAR. In consulting with influenza experts, we learned
that this assumption can easily be violated in this study if physicians tend to select children
whom they believe to have influenza for culturing. Our goal is to develop frequentist and
Bayesian methods for sensitivity analyses for these and similar data. Further, we develop a
fully Bayesian procedure that formally incorporates expert beliefs about the culturing
mechanism.

3. Notation and data structure

In the vaccine field study, let n be the total number of participants, and ng and ny the number
of non-vaccinated and vaccinated participants, respectively. Let Z denote the vaccination
indicator, taking on the value 1 if a participant is vaccinated and 0 if not vaccinated. Let A(0)
and A(1) denote the indicator of MAARI (1: yes, 0: no) for a participant if she had been, possibly
contrary to fact, unvaccinated or vaccinated, respectively. The observed MAARI outcome A
= A(2) is observed for every participant. Let Y(0) and Y (1) denote influenza status (1: positive,
0: negative) for a participant if she had been, possibly contrary to fact, unvaccinated and
vaccinated, respectively. Only one of these outcomes can be potentially observed. In this study,
influenza status is biologically confirmed by a culture. In the validation substudy, a possibly
non-random sample of the participants are biologically confirmed, so that influenza status, Y
=Y(2), is known for a subset of the participants. Let R be the validation indicator, where R =
1 if sampled for validation and R = 0, otherwise. Sampling for validation only occurs for those
with A = 1. Let X denote age category (0: 1.5-4 years, 1: 5-9 years, 2: 10-18 years) measured
at the time of study entry.

With this notation, the observed data for an individual are O = (Z, X, A, R, Y: A=R =1). We
assume that we observe n i.i.d. copies, O ={0;:i=1, ..., n}.

Throughout, probabilities P, indexed by subgroup subscripts indicate restriction to the
associated subpopulation. For example, for events A and B, P, [A] = P[A|Z =z, X = x] and
P.x[AIB] = P[AB, Z =1z, X =x].
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4. Vaccine efficacy

The scientific goal is to use the observed data to estimate the causal effect of vaccination on
the outcome Y, within age levels as well as overall. Specifically, we want to estimate age-
specific VE

VE, o1 BlY=1
TP Y =]

and overall VE

22 P [Y (1) =1]P[X=x]

VE,=1- |
£2 P Y (0)=1] P[X=x]

To identify VEg y, itis sufficient to identify P, [Y(z) = 1] for z =0, 1. For VEg, we must identify
Py [Y(z) = 1] for all z and x, and the marginal distribution of X. While the marginal distribution
is identified from the observed data without additional assumptions, the conditional
probabilities Py [Y(z) = 1] will require non-identifiable assumptions.

5. Two structural assumptions

Before proceeding further, we will make two structural assumptions to facilitate identification
of Py [Y(2) = 1].

Assumption 5.1
Z is independent of {A(0), A(1), Y(0), Y(1)} given X.

This assumption states that vaccination status is independent of the potential outcomes {A(0),
A(1), Y(0), Y(2)}, given age (X). That is, within levels of age, vaccination is randomized. Our
expert felt that this assumption was reasonable, since there is no reason to believe that the
decision to vaccinate was based on anything related to the potential outcomes.

Assumption 5.2
A(z) =0 implies Y(z) = 0.

We make this assumption because the study design called for passive case ascertainment. As
aresult, the data structure is such that no participants who do not appear in the clinic are cultured
for confirmation of influenza infection. The above assumption states that if a participant, under
vaccination status z, does not have MAARI, then she does not have medically attended
influenza. The interest is in efficacy against medically attended, culture-confirmed influenza,
not influenza infection.

6. Identification of P, [Y(z) = 1]

With these assumptions, we can write

Pe[Y(2)=1]1=P_,[Y () =1] (6.1)
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=P..[Y=1] 6.2)

1
:EOP:_X [Y=1|A=1,R=r] P, [A=1,R=r]. ©6.3)

Equation (6.1) follows from randomization within levels of X, (6.2) uses the fact that Y =Y
(2), and (6.3) follows from an application of the law of conditional probability and our second
assumption above. Note that, for all z, x, r, P,x [Y =1|A=1,R=1]and P, [A=1,R =r] are
identifiable but P, x [Y = 1]A = 1, R = 0] are not. Thus identification of Py [Y(z) = 1] will require
identification of these latter probabilities.

The most common assumption employed to identify these probabilities is that of MAR (Little
and Rubin, 2002). MAR states that R is independent of Y given (Z, A, X). This implies that, for
allz, x, P, [Y=1JA=1,R=0] =P, [Y =1]JA=1,R =1]. As aresult, Py [Y(z) = 1] becomes
identifiable. Since the assumption of MAR is untestable and is considered questionable by our
scientific expert, it is useful to perform a sensitivity analysis to outcomes that are missing not
at random.

7. Frequentist sensitivity analysis

7.1 Model specification

Scharfstein and others (1999, 2003) and Robins and others (2000) introduced a sensitivity
analysis methodology in which a class of models (including MAR) are posited, each yielding
identification of P, [Y = 1]JA = 1, R = 0]. They recommended that inferences about the
estimands of interest be presented over a range of posited models, considered plausible by
subject matter experts. In particular, they assumed a pattern-mixture model of the form

P, [Y=1|A=1,R=1] exp (a.y)

P..[Y=1]A=1,R=0] =
Czx (7.1)

where

C,x=P, [Y=0|A=1,R=11+P_[Y=1|A=1,R=1] exp (a.y)

and o x is a specified non-identifiable constant to be varied in the sensitivity analysis. Setting
azx = 0 is equivalent to MAR. Note that plugging the right-hand side of (7.1) into the right-
hand side of (6.3) yields identification of Py [Y(z) = 1]. Specifically,

exp (a; )
P [Y(2)=11=P.,[Y=1|A=1,R=1]{ P. [A=1,R=1]+——=P_, [A=1,R=0] ;.
Czx (7.2)
It is possible to re-write Model (7.1) as the following selection model:
logitP,  [R=01A=1, Y=y]| =h, ,+a_,y, (7.3)

where
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h:._‘-:log {L M} ‘

Czx Pox[R=1]A=1] (7.4)

For subjects with Z =z, X = x, and MAARI, a;  is interpreted as the log odds ratio of being
unvalidated for diseased vs. undiseased subjects. So, a; x positive or negative indicates that
diseased subjects have lower or higher odds of being validated, respectively.

When eliciting plausible ranges for a; x, our expert found it easier to think about selection bias
on a relative risk as opposed to an odds ratio scale. Specifically, he felt more comfortable
expressing opinions about the relative risk of being validated given that a MAARI participant
has influenza, compared with having another influenza-like illness. As a result, we re-
formulated the above models in terms of the relative risk selection bias parameters

_ P [R=1jA=1,y=1]

Bes P..[R=1]A=1,Y=0] (7.5

We can re-parametrize Model (7.3) in terms of f; . Letting 7, x = P,x [R=1|A=1,Y =0], we
can show that there is a one-to-one mapping between (h; x, azx) and (ix, Bzx). Specifically,

Nex =(1+exp (/1:..\‘))71

_ 1+exp(hoy)
Bex = L+exp(h  +a. )
or
hyx  =log (1 —n.x)—log(n.x)

a, =log (ﬁ:_} - ’7:..\‘) = IOg(l - 77:..x') .

Because of this one-to-one relationship, specification of 8, x will lead to identification of Py
[Y(2) = 1] via the following formula:

_ _ P..[Y=1|A=1,R=1]P.[A=1]
PlY (2)=1] TBoxP-A[Y=0A=LR=1]+P.[ Y=1JA=1.R=1]

_P[Z=7X=x.A=1.R=1,Y=1]P[Z=z.X=x.A=1]/ P| Z=2.X=x]

T PPl Z=2X=xA=1,R=1.Y=0]1+P[Z=2.X=xA=L.R=1.Y1] * (7.6)

7.2 Estimation and inference

The frequentist non-parametric estimator of Py [Y(z) = 1] can be found by replacing the
probabilities P in (7.6) by their empiricals P. Then

P[Z=z,X=x,A=1,R=1,Y=1] P [Z=z,X=x,A=1]/ P [Z=z,X=x]

P.[Y(x)=1]= -
B-x P Z=z,X=x,A=1,R=1,Y=0] + P [Z=z,X=x,A=1,R=1,Y=1] .7

The right-hand side of the above equation reduces to the results with the mean score method
when g, x = 1, for all z and x.

We can then estimate VEg x by

Biostatistics. Author manuscript; available in PMC 2009 October 23.
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Gp oy P lY()=1]
Py =11

and VEg by

_ 2 P AY()=1]P[X=
V5, <1 - Pl ()=1] P [X=x]

22 P.[Y(0)=1] P [X=x]

In Section A of supplementary material available at Biostatistics online
(http://www.biostatistics.oxfordjournals.org), we derive the large sample-based confidence
intervals for VEs x and VEs. The sensitivity analysis proceeds by varying the j, x over plausible
ranges. When a stratum has a relatively small number of validation cultures and small number
of positive cultures, as in our influenza example, these large sample confidence intervals may
not perform well. When there are no positive cultures, one can use the continuity correction
approach of Halloran and others (2003). In Section 8, we show how to compute Bayesian
credible intervals which should perform better in this setting.

8. Bayesian Inference

Scharfstein and others (2003) developed a Bayesian methodology that allows full posterior
inference about the estimands of interest, by assuming informative prior distributions on the
selection bias parameters on the odds ratio scale. Their work did not allow for covariates and
assumed independent priors across treatment groups. Our goal is to extend their work to the
relative risk parametrization of selection bias, discrete covariates, and dependence of the priors
for the relative risk parameters across treatment groups.

To simplify notation, we let

B-=(B-0.B-.1 aﬁ:.Z)l’ B= (ﬁ(l)’ﬁll) s 1:=(120, 1121 ’7:.2)’» ’7:(’7;)» ’7,1)I~ Pa=P_ [ Y=1|A=1], p=(p-0. P-1- /7:.2),91): (p(,)’ p’l) sz xa=P.
/ F 4 4 . . -

,and ¢:(¢o,¢1) . With this notation,

Gz
P’C Y 4 :1 =r;x Y:l = _h‘_"—’
Y (@) =1]=P_ [ 1=p: S ézod)z.m

and

1
PlxPrxi za:0¢0..x.a

VE, =1 - : ,
Pox $ox1 L, (Pl xa (8.1)

S.x

=1

Eizo {pl..x‘¢l.x.l (25:02(11:0¢:.x.a) / (Z,IZ:()(bl.x.a)}
2'2,(:0 {pO..x'¢0..r.1 (zizoztllzo‘b;x.a) / (zé:()(ﬁ()..xxa)}. 8.2)

VE,=1-

S

In the prior specification for #, we provide two options: (1) Bayesian analogue of the frequentist
sensitivity analysis and (2) fully Bayesian analysis. For option (1), we specify point-mass priors
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on pand estimate the posterior distributions of the estimands of interest, over a range of #. This
approach is comparable to the frequentist sensitivity analysis described above, but does not
rely on large sample approximations. For option (2), we specify a non-degenerate prior
distribution on B, elicited from a subject matter expert. This approach has the advantage of
providing a single summary of the posterior inference about the estimands, which naturally
incorporates the uncertainty due to selection bias.

8.1 Prior specification for (B’,n’, p’, "’

In our specification of the joint prior distribution on (£'.%', p’, ¢')’, we make the following
assumptions:

¢ is independent of (8,9, p')’.

91 is independent of ¢g.

p is independent of (#',5’)".

The components of p are independent.

The components of g may be correlated.

Given f; x, nzx is independent of {#1, ', n1-7x" - X' #X}.

* f,x and #; x are only related through f; « 's restriction on the support of #; .

Thus, the prior distribution of (#',5’, p’, ')’ can be written as

1 2
n (B, p,d)=n(B) :1;[0'};[0” (P2x) T (2xlBox) 7 (&) .

We further assume that

#(p) is an informative prior on a compact subset of R8. For the fully Bayesian analysis
of the vaccine trial, we assume an informative multivariate normal prior on the log
P scale. The details of the informative priors are described in Section 9.1.

7(pzx) is a uniform prior on [0, 1].
m(nzx|Bz,x) is @ uniform prior on [0, min (ﬁfi 1)] Specifically,

7 (-xlBz.x) =max {B. r, 1} 1 (. x<min {1, 1/B. .}).,

where | (A) denotes the indicator of the event A.

7(p,) is a non-informative prior on the set

2
{(¢;.0.0,¢>;.0.1, $21.0, D211, 9220, $22.1) 10 < B0 < 1, \-zoazo‘ﬁ:""'“:]}'

Assume that the combinations of (x, a) have k = 1,..., K categories with n, subjects
in each category. The prior on ¢, is specified asa Dirichlet, D(1,..., 1). This represents
a prior sample of K, the number of categories of (x, a). We could make this less
informative by replacing the 1's with 1/K.
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8.2 Sampling from the posterior distribution

To sample from the posterior, we constructed a Gibbs sampling algorithm with data
augmentation (Tanner and Wong, 1987) and slice sampling (Damien and others, 1999; Neal,
2003). Section B of the supplementary material available at Biostatistics online
(http://www.biostatistics.oxfordjournals.org) provides a full description of the algorithm.

9. Data Analysis

9.1 Informative priors

For Bayesian inference, we specify informative priors for the selection bias relative risk
parameters, 8, by age group and vaccination status. We asked an influenza expert the following
question: “If a physician were doing surveillance cultures during an influenza season, what is
the probability that he would select the children who actually had true influenza over the
children who just had non-specific respiratory symptoms to culture?” He responded that this
was very hard to answer. One “would be more likely to be correct in the unvaccinated,” because
unvaccinated children presenting with true influenza would have more typical, severe disease
than the vaccinated children. One would be “less likely to be correct in young children under
5 years,” because children under 5 years experience many other severe respiratory diseases
that could be mistaken for influenza, while older children are already immune to such diseases.
He added that the degree of selection bias would also “depend on the rules for collection, for
example, a certain number per week or with specific symptoms.”

Another influenza expert had similar views. He provided us with his best guess for each of the
univariate relative risk selection bias parameters 5, ; defined in (7.5) and his belief about the
interval that would likely contain 90% of the prior distribution for each f; x. He also provided
us with the degree of correlation of the selection bias by age group and vaccine status.
Correlations could also be elicited graphically (Shardell, 2005). Although z(g) is an informative
prior on a compact subset of RS, the expert did not have different prior beliefs about the
selection bias in the 5- to 9-year and 10- to 18-year age groups. Thus, we present the prior
distributions for these two age groups as one group in Table 2.

For our analysis, we plugged the elicitations into a multivariate Normal prior on the log f scale
as follows. We transformed the elicited best guesses for each 5, x and 90% range to the log
Pz x scale. Using gnorm in Splus, we found the univariate Normal (mean, standard deviation)
distributions that best approximated the elicited priors on the log scale. In the unvaccinated 5-
to 18-year olds, the elicitation was quite consistent with a Normal distribution. In the other
three groups, adjustments were necessary as shown in Table 2. The expert felt comfortable
with the changes in elicited and proposed priors in light of the uncertainty about the selection
bias. Table 2 contains the log-transformed elicited priors, the slightly adjusted univariate
Normal priors with their 90% interval on the log f; x scale, and the corresponding best guess
and ranges on the relative risk, f, x, scale. The corresponding univariate distributions that we
used for the log S, x for the unvaccinated 1.5- to 4-year old and older children are Normal (0.69,
0.43) and Normal (1.10, 0.25) and for the vaccinated 1.5- to 4-year olds and older children are
Normal (0.18,0.57) and Normal (0.53, 0.32).

The expert believed that the correlation in selection bias among the strata would be high. He
suggested a correlation as high as 0.90. The corresponding covariance matrices for z(f) were
constructed from the marginal univariate Normal distributions and the correlations. We also

performed the analysis assuming zero correlation.

All programs were written in R. The Markov Chain Monte Carlo algorithm was run for 500
000 iterations with 100 000 discarded as burn-in.
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Figures 1 and 2 display results of the frequentist sensitivity analysis. These figures present
results by age stratum. The selection bias parameters were varied over the 90% ranges elicited
from the expert. It was not feasible to present parsimoniously the overall results because the
selection bias parameters were too high-dimensional. This is a key drawback of the frequentist
sensitivity analysis methodology.

Figure 1 shows the estimated probabilities (and 95% confidence intervals) for influenza in the
vaccinated and unvaccinated groups, for each age stratum, as a function of g, . Figure 2 shows
the point estimates and lower 95% confidence bounds for the age-group-specific efficacy. The
black diamonds indicate the results at the best guess of the expert. Within these ranges and
within each age group, the VE estimates based on the validation sets are higher than the point
estimates based on the non-specific definition, which were 0.2, 0.25, and 0.14 for the age groups
1.5-4, 5-9, and 10-18, respectively. The lower confidence bounds indicate the degree of
variability.

The prior and posterior distributions for the relative risks of selection f,  's by vaccination
status and age group are the same, since there is no information in the data about the degree of
selection bias (figure not shown). Figure 3 shows the Bayesian posterior distribution of the
age-group-specific efficacy and overall efficacy using the informative prior distributions from
Table 2, assuming a correlation of 0.9. The mode is 1.00 in the age group 1.5-4 years, since
there are no positive cultures in the vaccinated group in that age group. The results assuming
a zero correlation were nearly identical (not shown).

Table 3 compares the summaries of the Bayesian posterior distributions and of the frequentist
estimates and 95% confidence intervals. The assumption of MAR results in an overestimate
of the VE compared with the selection bias relative risk assumptions elicited from the expert.
Consistent with Chu and Halloran (2004), the Bayesian posterior means are somewhat lower
than the frequentist estimates. In general, the Bayesian credible intervals are tighter than the
frequentist confidence intervals. This is especially true for the age group 1.5-4 years, where
the validation sample is small and there are no positive cultures.

Itis interesting to note that the Bayesian analysis using an informative prior for £ had a narrower
credible interval than the analysis with # fixed at its best guess, i.e. a degenerate prior (see the
first two rows of Table 3). At first glance, this former interval would be expected to be wider.
However, the posterior results are a weighted average of posteriors with fixed g, of which some
have larger and some have smaller variation than the posterior at the best guess. Thus, it is
plausible to get a smaller width for the overall posterior credible interval than that fixed at the
best guess. Similar phenomena have been previously documented in Gustafson and Greenland
(2006) in the context of adjusting for misclassification of exposure.

10. Discussion

In this paper, we have developed both frequentist and Bayesian methods for analyzing missing
binary outcomes that are thought to be informatively (i.e. related to the unobserved outcome)
missing. Our relative risk parametrization of selection bias, incorporation for discrete
covariates, and prior dependence of the selection bias across treatment groups extends earlier
work (Scharfstein and others, 2003), which used the log odds ratio parametrization without
covariates. We elicited informative age group and vaccination status prior distributions from
an influenza expert. Bayesian inference with informative priors on the selection bias parameters
provides a useful and parsimonious way of drawing inference about VE that incorporates expert
uncertainty about the missing data mechanism. In addition, the Bayesian approach provides
better small-sample inference.
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The frequentist or Bayesian sensitivity analysis approach provides much greater detail than the
single summary from the fully Bayesian analysis. As a consequence, when the dimension of
the selection parameters is greater than 3 or 4, it is harder to visualize. While the advantage of
the Bayesian sensitivity analysis is the finite sample performance, it is computationally very
intensive. The frequentist sensitivity analysis is computationally more feasible and will
perform well when the sample sizes are large.

We used our proposed methods to re-analyze an influenza vaccine field study. We did a formal
sensitivity analysis to evaluate the effects of preferential selection of children with non-specific
illness for obtaining surveillance cultures to confirm true influenza. Our analysis showed that
under plausible ranges of selection bias, the VE estimates, though lower than when assuming
MAR, are substantially higher than those based on the non-specific influenza-like illness
definition alone. Our methods will be generally useful in future vaccine field studies, or other
similar studies, in which confirmatory biological specimens are not MAR.

For our development in this paper, we made the assumption that any person who does not
present with non-specific influenza-like illness also does not have medically attended influenza
illness. Implicitly, we assumed a degenerate prior at zero for the P, [Y = 1|A = 0]. In many
vaccine field studies, cases are ascertained on symptoms, then possibly confirmed biologically.
Those participants without symptoms are generally not confirmed biologically. In the study
analyzed here, ascertainment was passive through clinic visits, so our efficacy measure was
for medically attended influenza illness. Ascertainment on symptoms could also be active, say,
through regular phone calls to the home. Our methods could be used for studies with an active
ascertainment method without further extension, whereby A(z) = 1 would denote being
symptomatic by whatever case definition was used for that study, and the interpretation of VE
would be for symptomatic influenza.

It is straightforward to extend our method to the situation that infection is confirmed, perhaps
serologically, in a sample of people who did not have non-specific illness, A(z) = 0. In this
case, we would not need Assumption 2. The scientific question then would be to estimate
efficacy against infection, not medically attended disease, as in this paper. There would be
additional selection bias parameters in that situation. However, if a study were well enough
planned to sample asymptomatic participants, it would be hoped that the sampling would be
planned to be random, so that selection bias would not play a role.

Our informative priors for the selection bias parameters were assumed to be multivariate
Normal on the log g scale. Prior distributions could also be constructed less parametrically
using the information elicited from the experts. When using our methods to analyze future
studies, the providers making the decision from whom to obtain biological specimens could
be directly asked their prior beliefs about selection bias.

In ongoing research, we are extending the Bayesian methods to incorporate higher-dimensional
covariates. We are also working on methods for longitudinal and time-to-event outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Frequentist sensitivity analysis of P, x [Y = 1]. Shown are the estimated probabilities (and 95%
confidence intervals) for influenza in the vaccinated and unvaccinated groups, for each age
stratum, as a function of the relative risk selection bias parameter f; , varied over the 90%
ranges elicited from the expert.
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diamonds indicate the results at the best guess of the expert. Black lines with numbers indicate

the contours.
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Fig. 3.
Posterior distributions of the overall VE and by age group using the informative prior
distributions.
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Table 3
Results of Bayesian and frequentist analyses using surveilance cultures. For the Bayesian analyses, the posterior means
(95% highest posterior density credible intervals) for vaccine efficacy are reported, for the frequentist analyses, the
point estimates (95% confidence intervals). The estimates using just the non-specific MAARI case definition are
included for comparison

Analysis Age group
1.5-4 years 5-9 years 10-18 years Overall

Bayesian

Informative z(f) 0.80 (0.23, 1.00) 0.65 (0.13, 0.93) 0.51 (-0.12, 0.88) 0.65 (0.35, 0.86)

7(p) fixed at best guess 0.77 (0.11, 0.99) 0.63 (0.10, 0.93) 0.50 (-0.12, 0.86) 0.64 (0.32, 0.85)

=(p) fixed at 1 (MAR) 0.84 (0.41, 0.90) 0.73(0.40, 0.94) 0.64 (0.26, 0.89) 0.73 (0.53, 0.88)
Frequentist

p fixed at best guess 0.88 (—0.97, 0.99) 0.74 (-0.05, 0.88) 0.61 (—0.25, 0.88) 0.73 (0.34, 0.89)

B fixed at 1 (MAR) 0.91 (-0.34, 0.99) 0.80 (0.26, 0.95) 0.70 (0.13, 0.90) 0.79 (0.52, 0.91)
MAARI alone 0.20 (0.14, 0.25) 0.25 (0.15, 0.34) 0.14 (0.01, 0.26) 0.18 (0.11, 0.24)
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