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ABSTRACT

Mutation and recombination are the two main forces generating genetic variation. Most of this variation
may be deleterious. Because recombination can reorganize entire genes and genetic circuits, it may have
much greater consequences than point mutations. We here explore the effects of recombination on
models of transcriptional regulation circuits that play important roles in embryonic development. We
show that recombination has weaker deleterious effects on the expression phenotypes of these circuits
than mutations. In addition, if a population of such circuits evolves under the influence of mutation and
recombination, we find that three key properties emerge: (1) deleterious effects of mutations are reduced
dramatically; (2) the diversity of genotypes in the population is greatly increased, a feature that may be
important for phenotypic innovation; and (3) cis-regulatory complexes appear. These are combinations of
regulatory interactions that influence the expression of one gene and that mitigate deleterious
recombination effects.

MUTATION and recombination are the two main
forces generating genetic variation, the raw ma-

terial that natural selection feeds upon. Although a
small fraction of the variation generated by mutation
and recombination yields evolutionary innovations, the
majority of this variation may be deleterious. Recom-
bination can rearrange entire genes and even larger units
of organization. It thus has potentially much greater
effects on the phenotype than mutations, in particular
point mutations of single nucleotides.

Its potentially large deleterious effects on well-adapted
genotypes notwithstanding, recombination is clearly
very successful evolutionarily, as the near ubiquity of
sexual reproduction in eukaryotes attests (Birky 1996;
Judson and Normark 1996; Schon et al. 1998). The
reasons for this ubiquity are less clear. (For reviews
see Barton and Charlesworth 1998; Otto and
Lenormand 2002; Otto and Gerstein 2006.) It is
undeniable that sexual reproduction and recombina-
tion have clear benefits to individuals or populations.
For example, they can help a population avoid the
consequences of Muller’s ratchet, which is the accumu-
lation of slightly deleterious mutations caused by
genetic drift in finite populations (Muller 1964).
Second, recombination can help bring together bene-
ficial mutations from different individuals that would

otherwise have to arise and go to fixation sequentially in
an asexual population (Fisher 1930; Muller 1932). It
can thus help speed up adaptive evolution during pe-
riods of directional selection where a population is far
from a fitness optimum (Keightley and Otto 2006).
Additionally, it may cause the more rapid elimination
of deleterious mutations (Kondrashov 1998). These
and many other benefits of sex may depend on multiple
details of how mutations and selection affect the fitness
of individuals and the mean fitness of a population. For
example, sex can be advantageous for the elimination
of deleterious mutations when the combined negative
effects of several such mutations on fitness are stronger
than the sum or the product of their individual effects
(Otto and Feldman 1997; Kondrashov 1998). The
question whether these conditions are often met has
received considerable attention (Bonhoeffer et al.
2004; Kouyos et al. 2006, 2007; Sanjuan and Elena

2006; Sanjuan et al. 2006).
Against these and other potential advantages of sex

stand two major disadvantages. The first is that popula-
tions of sexually reproducing and anisogamous organ-
isms are vulnerable to the invasion of asexual variants
where only females bear offspring. If an asexual female
variant arose that reproduced at the same rate as
sexually reproducing females, this variant would double
in frequency every generation, because it produces only
female offspring. It would thus have a reproductive ad-
vantage over sexually reproducing females (Maynard

Smith 1978). The second major disadvantage of recom-
bination is that it breaks up beneficial allele combinations,
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reducing the mean fitness of the population and
increasing the genetic load (Muller 1950). (A popula-
tion’s genetic load designates a mean fitness lower than
could be attained in the absence of some evolutionary
force, such as mutation, migration, or recombination.)
The simple and intuitive nature of the latter mechanism
makes it likely that it is rather general. Not surprisingly
then, a reduction in population mean fitness caused
by recombination has also been demonstrated for multi-
locus genetic systems involving quantitative traits influ-
enced by large numbers of individual loci. For a summary
of pertinent results see Burger (1999).

Population genetic models of any evolutionary phe-
nomenon must make simplifying assumptions about
how genotypes relate to phenotypes or fitness, to render
models tractable. Complex genetic systems—from pro-
teins to genetic circuits—may defy some of these as-
sumptions (Wagner 2005; Kaneko 2008). Much of
what is known empirically about the effects of recombi-
nation in systems where the genotype–phenotype re-
lationship is complex stems from the gene and protein
level. Although recombination is more frequent on
levels of organization above the molecule (Zhang et al.
2002), we know much less about its effects on these
important levels. In particular, there have been rela-
tively few studies of the effects of recombination on
gene circuits, i.e., groups of genes that jointly perform a
biological task. Is the phenotype produced by a biologi-
cal circuit (for example, a gene expression phenotype)
more susceptible to mutation or to recombination?
How does recombination affect population properties
in such circuits? Building on previous work (Wagner

1996; Siegal and Bergman 2002; Azevedo et al. 2006;
Gardner and Kalinka 2006; Misevic et al. 2006;
Huerta-Sanchez and Durrett 2007; MacCarthy

and Bergman 2007), we consider these questions for a
model of transcriptional regulation circuits known to be
important in organismal development (supporting in-
formation, Figure S1). Despite being quite abstract,
variants of this model have proven highly successful in
explaining the regulatory dynamics of early develop-
mental genes in the fruit fly Drosophila, as well as in
predicting mutant phenotypes (Mjolsness et al. 1991;
Sharp and Reinitz 1998; Jaeger et al. 2004). The model
has also helped elucidate a number of fundamental
evolutionary questions. Among them are the questions
why mutants often show a release of genetic variation
that is cryptic in the wild type (Bergman and Siegal

2003), how adaptive evolution of robustness occurs in
genetic circuits (Wagner 1996; Siegal and Bergman

2002; Leclerc 2008), and whether recombination can
influence epistasis (Azevedo et al. 2006).

The model (Wagner 1996) represents a regulatory
circuit of N transcriptional regulators, which are re-
presented by their expression patterns S(t) ¼ (S1(t),
S2(t), . . . , SN(t)) at some time t during a developmental
or cell-biological process and in one cell or domain of

an embryo. These transcriptional regulators can in-
fluence each other’s expression through cross-regula-
tory and autoregulatory interactions, which are
encapsulated in a matrix w ¼ (wij). The continuously
valued elements wij of this matrix indicate the strength
of the regulatory influence that gene j has on gene i
(Figure S1). This influence can be activating (wij . 0),
repressing (wij , 0), or absent (wij ¼ 0). Put differently,
the matrix w represents the (regulatory) genotype of
this system, while the expression state is its phenotype.
We model the change in the expression state of the
circuit S(t) as time t progresses according to the
difference equation Siðt 1 tÞ ¼ s½

PN
j¼1 wij SjðtÞ�, where

t is a constant, and s(.) is a sigmoidal function whose
values lie in the interval (�1, 11). This equation reflects
the regulation of gene i’s expression by other genes. We
are here concerned with circuits whose expression
dynamics start from a prespecified initial state S(0) at
some time t ¼ 0 during development and arrive at a
prespecified stable equilibrium or ‘‘target’’ expression
state S(‘). We call such circuits viable and name the set
of all viable circuits the ‘‘viable ensemble.’’ The initial
state can be thought of as being determined by
regulatory factors upstream of the circuit, which may
represent signals from the cell’s environment or from
other domains of an embryo. Transcriptional regulators
that are expressed in the stable equilibrium state S(‘)
may affect the expression of genes downstream of the
circuit. We think of their expression as critical for the
course of development, deviations from S(‘) being
highly deleterious; we thus consider that a circuit is
lethal if it is not viable.

In the context of this model, we show that mutations
that change the same number of regulatory interactions
as a recombination event typically have much stronger
deleterious effects. We also ask whether recombination
is costly in terms of the genetic load it causes for a
population undergoing recombination at each genera-
tion. We find that recombination may even reduce the
genetic load in populations subject to stabilizing selec-
tion. Recombination also increases dramatically the
genetic diversity in populations as shown by a ‘‘geno-
typic diversity index’’ that we define below. Finally, re-
combination in general changes alleles that remain on
the same chromosome (haplotype) in a genome; in the
context of our model, we find that this effect of re-
combination creates particular cis-regulatory complexes
that mitigate recombination’s effect on a regulatory
network.

METHODS

Implementation of mutations: We here describe how
a circuit genotype (specified by w) is allowed to change
through mutations. We constrain mutational changes
to modify only one regulatory interaction at a time.
Furthermore, since biological circuits are sparse, we

674 O. C. Martin and A. Wagner

http://www.genetics.org/cgi/data/genetics.109.104174/DC1/1
http://www.genetics.org/cgi/data/genetics.109.104174/DC1/1
http://www.genetics.org/cgi/data/genetics.109.104174/DC1/2
http://www.genetics.org/cgi/data/genetics.109.104174/DC1/2


want this to be reflected in the allowed {wij}. We do this
by forcing the number M of (nonzero) regulatory inter-
actions to be in a given range (M�, M1). In practice, the
value of M� does not matter much (Ciliberti et al.
2007) and so for simplicity it could be taken to be zero
or any value substantially smaller than M1. For the
maximum of the range, we set M1 ¼ zN; z is then the
average number of interactions per gene. For most of
our simulations, we set z ¼ 3, but other values lead to
the same qualitative behavior as long as they are not
too small. Also, we call two circuits (viable or not)
nearest neighbors if they differ by just one regulatory
interaction.

A mutation may cause (i) an existing interaction to
disappear, in which case the respective wij is set to zero,
(ii) a new regulatory interaction to appear, in which case
the new value is chosen as a Gaussian random variable
with mean zero and variance one (N(0, 1)), and (iii) an
existing interaction to change in magnitude. For such a
mutation, we force the sign of the interaction to remain
unchanged by choosing an N(0, 1) random variable and
multiplying it by (�1) if it is of the wrong sign. Each
putative interaction wij to be mutated is chosen at
random; if the interaction is already present, we take
the mutations of cases i and iii to be equiprobable.

Implementation of recombination: We implement
recombination akin to how it would occur in a sexually
reproducing haploid organism. In our model, an entire
row wi. of the matrix w represents the promoter and
enhancer regions of gene i, through which other genes
can exert their influence on this gene. Although an
enhancer region can be large, the individual transcrip-
tion factor binding sites on it are genetically closely
linked, and recombination will occur only very rarely
between them. In contrast, different genes of a gene
regulatory circuit will often be unlinked (in particular
they can occur on different chromosomes) and thus
they will recombine freely. We here focus on free
recombination between circuit genes and neglect re-
combination within genes (promoters/enhancers). Spe-
cifically, recombination occurs between two parent
circuits w(1) and w(2). To form an offspring w(O) through
recombination, we cycle over all pairs of rows i of the
parent matrices and choose one of the two rows at
random from the parents to form wi.

(O). Because we
constrain the number of nonzero interactions to be in
the range (M�, M1), it is possible that a putative offspring
circuit w(O) will not contain the required number of
interactions. If so, the recombination process is repeated
until a w(O) is found that does fulfill the constraint.

Population dynamics to reach mutation–selection
balance or recombination–mutation–selection balance:
We work with nonoverlapping generations and fixed
population sizes P . Given a list of P parents, we produce
the next generation that will consist of P viable individ-
uals. We do this by creating offspring sequentially. In the
absence of recombination, a parent is chosen at random

(with replacement), and with probability m a single
regulatory interaction is mutated as described above to
produce a child. In the presence of recombination, two
of the P parents are chosen at random (with replace-
ment). From this ‘‘mating pair’’ a recombined genotype
is produced (see the procedures described above), and
then again with probability m a mutation is applied to
produce the child.

Because either process (mutation and recombina-
tion/mutation) can produce an offspring that is non-
viable, we repeat these processes until a population of
P viable offspring has been reached. This population
constitutes the next generation. We iterate for as many
generations as needed to erase the memory of the
initial conditions and to reach a population in the
steady state. In finite populations, fluctuations from
generation to generation occur in the steady state, but
the process is stationary: averages over many popula-
tions evolving in parallel are the same as averages over a
long time of just one population. We note that our
procedure ensures that the number of offspring per
mating pair is Poisson distributed in the absence of
selection.

RESULTS

Recombination has much weaker effects than point
mutations on gene expression phenotypes: In our first
analysis, we compare the effects of mutation and recom-
bination on a circuit’s expression phenotype (S(0) /
S(‘)). We consider only free recombination; that is,
we view the circuit genes we study as being unlinked.
The reason is that in this case the effects of recombina-
tion are likely to be most visible. Recombination occurs
between two parent circuits w(1) and w(2). In a recombi-
nation event, regulatory regions wi. (rows i of the matrix
w representing regulatory genotypes) are exchanged
with probability 1

2 between w(1) and w(2). The result is one
or more new ‘‘offspring’’ circuits w9 whose phenotype we
evaluate. Such a recombination event changes some
number m of regulatory interactions wij when com-
pared to a parent circuit. We are interested in the prob-
ability RR(m) that a recombination event changing m
regulatory interactions of a viable circuit maintains
viability. This probability is a measure of the circuits’
robustness to recombination. We compare this probabil-
ity to Rm(m), which is defined analogously but by using
instead m independent mutations.

We first compared RR(m) and Rm(m) for a random
sample of circuits (that is, they were generated ran-
domly from the viable ensemble; see File S1) with
identical phenotype. Figure 1A shows the resulting data
for circuits comprising 12 genes. There are significant
differences between mutational and recombinational
robustness even for events that affect only m ¼ 1 reg-
ulatory interactions. Specifically, .90% of recombinant
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offspring that differ from their most closely related
parent by only one regulatory interaction are viable,
whereas only 75% of circuits with one regulatory in-
teraction changed due to mutations are viable. These
differences become more extreme as the number m of
changes increases. For example, when a recombination
event changes m¼ 12 regulatory interactions, 50% of all
offspring circuits are viable, whereas ,8% of circuits
with 12 random mutations remain viable. In sum, the
data in Figure 1A show that if one or more regulatory
interactions wij were already part of a viable circuit, then
replacement of these interactions wij with those of
another viable circuit via recombination greatly in-
creases the likelihood that the recombinant circuit is
viable compared to the case where the wij are changed
by random mutations.

The circuits we studied thus far are randomly sampled
from all circuits with the same phenotype and were not
subject to any evolutionary process. However, we know
that evolution can dramatically increase mutational
robustness in such circuits (Wagner 1996; Siegal and
Bergman 2002; Azevedo et al. 2006). We thus next
examined the difference between RR(m) and Rm(m)
for populations of circuits that are subject to random

mutations of individual regulatory interactions, as well
as to selection to preserve phenotype. Figure 1B shows
that in these populations Rm(m) increased significantly
compared to Figure 1A. This is consistent with previous
observations (Wagner 1996; Azevedo et al. 2006). In
addition, recombinational robustness also increased
substantially. For example, whereas in a random sample
of circuits with the same phenotype 50% of recombina-
tion events changing m¼ 12 mutations did not affect the
phenotype (Figure 1A), in a population in mutation–
selection balance 75% of recombination events led
to no change. Continual mutation pressure alone has
thus decreased the death rate due to recombination by
a factor 2.

Finally, we carried out an analogous comparison for
circuits in recombination–mutation–selection balance
(Figure 1C). The results show that in such populations
recombinational robustness increases dramatically:
.99% of ‘‘offspring’’ circuits that differ from their
parents in up to m ¼ 12 regulatory interactions are
viable. Mutational robustness has also increased further
from the mutation–selection balance, but not quite as
dramatically. For example, only 40% of circuits subject
to 12 mutations are viable.

Figure 1.—Mutational
and recombinational ro-
bustness. (A) Mutational
robustness Rm(m) and re-
combinational robustness
RR(m) as a function of the
number m of individual
regulatory interactions that
changed in a circuit as a re-
sult of mutation or recom-
bination. The data shown
were produced using 106

circuits randomly sampled
from the viable ensemble
(see File S1). (B) The same
as in A, but for a population
of circuits in mutation–selec-
tion balance, where selection
confines the population to
the set of circuits with the
same phenotype. (C) The
same as inB, but for apopula-
tion of circuits in mutation–
recombination–selection bal-
ance. (D) The fraction of vi-
able recombinant offspring
circuits (vertical axis) as a
function of the normalized
recombination distance DR

between parent and off-
spring. Data are shown for circuits in the viable ensemble (‘‘Sample’’), for circuits from a population in mutation–selection balance,
and for circuits from a population in mutation–selection–recombination balance. Note the very high fraction of viable recombinants
for the population in mutation–selection–recombination balance. All panels are based on circuits with N ¼ 12 genes, number of
regulatory interactions per circuit in the interval (N, 3N), and orthogonal vectors S(0) and S(‘). Note that all relevant circuit prop-
erties depend only on the angle between these vectors (Ciliberti et al. 2007). B–D are based on populations of 1000 circuits and m¼1
mutation per circuit andgeneration. This corresponds to the large population size regime, approaching the infinite population limit.
Lengths of error bars show one standard deviation.
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Recombination leads to populations with high
genetic diversity: We next asked whether the extreme
recombinational robustness we observe is caused by a
population that is very impoverished in genetic variation,
such that only a small number of genotypes continually
(re)create each other through recombination.

Figure S2, a, shows that the number of different
genotypes in a population in mutation–recombination–
selection balance is greater than that in a population in
mutation–selection balance, even though the average
genotypic distance (defined via a Hamming distance
of the matrices w, as detailed in methods) between
individuals is smaller in the recombining population
(Figure S2, b). In addition, Figure S2, c, shows the values
of a genotypic diversity index I that takes into account
both the number and the frequency of different
genotypes, for the cases of recombining and nonrecom-
bining populations. This index is defined as follows. Let
a population have P individuals and k different geno-
types; if pi individuals have genotype i (P¼ p1 1 . . . 1 pk),
then I is given by

I ¼ ð
P

i piÞ2P
i p2

i

:

I increases from a value of one if all genotypes in the
population are identical (pi ¼ P for some i) to a value
of P if all individuals have different genotypes. We find
that I is consistently higher in recombining popula-
tions (Figure S2, c). Taken together, these observations
show that recombination in a population leads to a
greater number of genotypes, while simultaneously in-
creasing the similarity between these genotypes.

Recombination with mutation leads to high robust-
ness and can produce less genetic load than mutation
alone: Simple intuition suggests that recombination
typically increases the genetic load of a population
under stabilizing selection. That is, it should cause a
reduction in mean fitness, because it breaks up favor-
able allele combinations. However, this is not what
happens in some quantitative genetics models (Burger

2000); furthermore, previous work (Azevedo et al. 2006;
Huerta-Sanchez and Durrett 2007; MacCarthy and
Bergman 2007) has shown that for the complex geno-
type–phenotype map embodied by the circuits we study,
recombination enhances robustness and modifies epista-
sis. Figure 2A shows the genetic load (related to the
survival rate of offspring, see methods) for two kinds of
populations. One of the populations is subject to muta-
tion and selection, and its load is caused by mutations
only. We denote this load as Lm. The other population is
additionally subject to recombination, and its load, Lmr, is
caused by both recombination and mutation. Both popu-
lations have achieved a balance of the evolutionary forces
affecting them. Figure 2A shows the genetic load as a
function of population size. For small population sizes,
the genetic loads of the two populations are not distin-

guishable. However, as population sizes increase, the
recombining population attains a significantly lower
load.

To understand the reasons for this phenomenon,
several observations are germane. The first is that the
genetic loads of both populations depend linearly on
the mutation rate m (Figure 2B) and with a slope that is
similar for the two kinds of populations. What this
suggests is that mutation and not recombination is the
prime cause of the load in both populations. To help
understand this observation, it is useful to recall the
analysis of Figure 1, which showed that the recombi-
national robustness in populations subject to recombi-
nation becomes extremely high. For example, in
populations with recombination, the probability that a
recombination event changing one or two regulatory
interactions leaves the circuit’s phenotype intact is
RR(1) ¼ 1.00 and RR(2) ¼ 0.998 (based on .105 re-
combination events), whereas the probability that one
or two mutational changes leave it intact is Rm(1)¼ 0.94
and Rm(2) ¼ 0.88. This means that in a recombining
population of the circuits that we study, the deleterious
effects of recombination are negligible compared to
those of mutations and so Lmr � Lm ¼ m(1 � ,Rm.),
where ,Rm. is the average mutational robustness in the
population.

The second germane observation regards the re-
lationship between the product of population size P
and mutation rate m on one hand and genetic load on
the other hand. The product Pm is a key parameter of
population genetics. It determines the amount of poly-
morphism in populations. Populations with Pm > 1
(respectively Pm ? 1) are monomorphic (polymorphic)
most of the time. Note that recombination will not affect
a population’s composition if the population is mono-
morphic, because all possible mating pairs of individu-
als are identical. It has been shown earlier for RNA
molecules and for regulatory circuits (van Nimwegen

et al. 1999; Ciliberti et al. 2007) that populations
subject to mutation and stabilizing selection on a given
phenotype will evolve increased mutational robustness,
but only if Pm ? 1. Briefly, the reason is that for ro-
bustness to increase, a population needs to show var-
iation for robustness and thus be polymorphic. Figure
2C shows the relationship between Pm and the relative
advantage of recombination experienced by a popula-
tion. This advantage is expressed as the ratio of the
genetic loads Lmr/Lm. If this ratio is smaller than one,
then the genetic load of the recombining population is
smaller, and recombination is advantageous. It is clear
from Figure 2C that the greater Pm is, the greater also
the advantage of recombination.

Taken together, these observations provide the fol-
lowing explanation for the effect of recombination on
the genetic load. In sufficiently large populations (Pm ?

1), recombination can increase both mutational robust-
ness (Figure 1 and Azevedo et al. 2006) and robustness
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to recombination (Figure 1). This increase has two
effects. First, recombination as a source of deleterious
change becomes small compared to mutations. Second,
in recombining populations, fewer mutations have
deleterious effects (because of the increased mutational
robustness), and thus, overall, the genetic load of such
populations is lower. Put differently, the reduced load is
a by-product of the increased robustness caused by
recombination, and this increased robustness can man-
ifest itself only in sufficiently polymorphic populations,
because recombination is otherwise ineffective.

These observations describe the causes for an advan-
tage of recombination qualitatively. However, circuit
sizes, numbers of regulatory interactions, population
sizes, and mutation rate may interact in their effects on
the genetic load. For example, we have observed that
when varying P and m while holding Pm constant, the
genetic load essentially does not change for the pop-
ulations in mutation–selection balance, while in the
case of recombining populations the load continues to
decrease as P increases (results not shown). That Pm is
not the sole determinant of the equilibrium genetic
load is also clear from Figure 2C, because there is much
unexplained variance in the statistical association
shown. We leave a more quantitative analysis to future
contributions.

Cooperative effects and cis-regulatory complexes: A
complementary way of analyzing the effects of recom-
bination derives from the following observations. If the
parent circuits differ in H regulatory interactions, then
one of the recombinant offspring will differ from one
parent by m regulatory interactions, whereas the other
offspring will differ by (H � m) regulatory interactions.
We can then express the distance of the offspring from
either parent as a fraction of H, i.e., as a recombination
distance DR ¼ m/H. This recombination distance varies
between 0 and 1. A value of DR close to zero means that
the offspring is close to the reference parent, whereas a
value of DR close to one means that the offspring is very
distant from the reference parent, but very close to the
other parent. Intermediate values of DR mean that the
offspring is roughly equally distant from either parent.
Figure 1D shows that offspring with values of DR that are
very close to zero or one are very likely to be viable,
whereas offspring with intermediate values of DR have a
lower likelihood to be viable. In other words, the
likelihood that a recombination event is deleterious
shows a U-shaped distribution, whose trough occurs at

Figure 2.—Recombination can lead to reduced genetic load.
(A) Population size (horizontal axis) vs. genetic load (vertical
axis) for populations in mutation–selection(–recombination)
balance. The mutation rate per circuit and generation is m ¼
0.5. Lengths of error bars correspond to one standard deviation.
(B) Mutation rate (horizontal axis) vs. genetic load (vertical
axis) for populations in mutation–selection (–recombination)
balance. At each mutation rate and for each of the two kinds
of population, the load is shown for populations of size P ¼
30, 40, 50, 100, 200, 400, 700, 1000, and 1500. Error bars are
omitted for clarity, and many points are invisible, because they
are congruent or nearly so. (C) Logarithmically transformed
product of population size and circuitwide mutation rate (hor-
izontal axis) is plotted against the ratio Lmr/Lr (vertical axis)
of the genetic loads of a population in mutation–selection
(–recombination) balance (Lmr) and the load of a population
in mutation–selection balance (Lr). If this ratio is smaller than
one (thick horizontal line), then the load of the recombining

population is lower, and recombination provides an advantage.
Ranges of mutation rates and population sizes used are identical
to those in B. The diagonal line is a linear regression line. All
panels are based on circuits with N ¼ 12 genes, number of reg-
ulatory interactions per circuit in the interval (N, 3N), and or-
thogonal vectors S(0) and S(‘). B and C are based on
populations of 1000 circuits and m ¼ 1 mutation per circuit
and generation.
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the maximum (DR ¼ 0.5) number of changes. This
trough is deepest for parents taken at random from the
viable ensemble (cf. methods), is flatter for populations
subject to mutation and selection, and is even flatter for
populations that are, in addition, subject to mutation,
recombination, and selection balance (Figure 1D).
These observations further underscore our earlier ob-
servation that both mutation and recombination can
dramatically increase recombinational robustness.

Figure 3 shows results of an additional analysis, which
highlights that it is not only the change of individual wij’s
but also how they act together in regulating the
expression of any one gene that is critical for preserving
circuit viability. In this analysis we began with parent
circuits that differ in H interactions and offspring at
distance DR ¼ m/H from one of the parents. We then
changed m randomly chosen interactions in one of the
parents to those of the other parent (regardless of
whether they occurred in the regulatory region of the
same gene, i.e., the same row of w) and estimated the
likelihood that the resulting changed circuit was viable.
We found that this likelihood is generally lower than
when the same number m of interactions is changed
through recombination. This means that the joint change
of regulatory interactions that cooperate in the regulation
of one gene, as occurs with recombination, impairs circuits
less. Breaking up these combinations of interactions is
more disruptive. Also, in File S1, we show that when
the offspring are constructed as just described and are
exposed to additional mutations, then the likelihood to
remain viable decreases in ways similar to those caused by
mutations in the parents. Furthermore, robustness to
these additional mutations also increases in populations
subject to selection, mutation, and/or recombination
(Figure S3).

To address the issue of how synergistic (cooperative)
action emerges when populations are subject to re-
combination, we first investigated statistical properties
of the strengths of regulatory interactions in the in-
teraction matrix w. Figure 4A shows the distribution of
the nonzero weights wij. In a random network (regard-
less of viability) these weights follow a Gaussian distri-
bution in our model. Remarkably, this distribution is

Figure 3.—The cis-regulatory interactions (wij) in the reg-
ulatory region of any one gene i affect the gene expression
phenotype synergistically. We show here that recombination
changing m regulatory interactions affects viability to a lesser
extent than m independent substitutions of regulatory inter-
actions between one and the other parent. Data shown are
for (A) a random sample of circuits with the same phenotype
(viable ensemble), (B) a population of circuits in mutation–
selection balance, and (C) a population of circuits in mutation–
recombination–selection balance. If the genotypic distance
between parents is H and if m is the genotypic distance of
the offspring to a reference parent (one of the two parents),
then the normalized distance is DR ¼ m/H, which is shown on
the horizontal axes of all panels. The diamonds denote the
fraction of viable recombinant offspring circuits. We obtained
the data for the triangles as follows. For two random parent
circuits in the ensemble of interest, we first generated an off-

spring by recombination; let DR be its normalized distance to
the reference parent. We then took one of the offspring’s pa-
rents and changed (‘‘substituted’’) one at a time a randomly
chosen interaction to that of the other parent; we repeated
these substitutions until the circuit obtained had the normal-
ized distance DR. We then repeated this entire process for 104

mating pairs to estimate the fraction of viable offspring as a
function of DR. All panels are based on circuits with N ¼ 12
genes, number of regulatory interactions per circuit in the in-
terval (N, 3N), and orthogonal vectors S(0) and S(‘). Note
that all relevant circuit properties depend only on the angle
between these vectors (Ciliberti et al. 2007). B and C are
based on populations of 1000 circuits, and m ¼ 1 mutation
per circuit and generation. Lengths of error bars correspond
to one standard deviation.
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hardly changed at all for networks drawn at random
from the ensemble of viable networks and for popula-
tions of viable networks subject to mutation and
selection (Figure 4A). In striking contrast, populations
undergoing recombination exhibit a distribution for
the wij that is very non-Gaussian (Figure 4A). This
distribution is not even bell shaped and has pronounced
‘‘shoulders’’ corresponding to a greater use of strong
regulatory interactions (large values of wij). The larger

values must persist in the population only because they
are advantageous under recombination and selection
and point to a different usage of regulatory interactions
in the two kinds of populations.

To examine this observation further, it is useful to
remark that by shuffling the regulatory regions of dif-
ferent genes (as represented by different rows of the
matrix w), recombination destroys potential statistical
associations between cis-regulatory elements (as repre-
sented by wij’s) in the regulatory regions of different
genes. However, this effect could be compensated by
greater cooperativity between the cis-regulatory element
wij’s within any one regulatory region. To assess whether
this is the case we introduce a statistic vi to distinguish
properties of the regulatory interaction wij’s influencing
the expression of a gene i between populations un-
dergoing recombination or just mutation. We define
vi as

vi ¼
X

j=Sj ð0Þ¼Sj ð‘Þ
jwij j :

For each network, we compute vi for each gene i and
define v as the average of vi over all genes. How can one
interpret vi? Note that vi sums the strengths jwijj of the
interactions in a given row i for all ‘‘incoming’’ regula-
tory interactions from genes j for which the expression
level Sj is the same in the initial and target states. Such a
gene’s expression level Sj(t) is less likely to change as the
system approaches the target gene expression state
(because it is already at the ‘‘correct’’ expression level)
than the expression levels of genes that do not have the
same expression in the initial and the target state. The
expression pattern of these genes j is thus less variable
or less ‘‘noisy,’’ which is why they are used in defining vi.
If these genes are allowed to have a disproportionately
large influence on the regulation of other genes, one
would expect more robust gene expression dynamics
and thus greater robustness for the target expression
state. In Figure 4B we show the distribution of v.
Specifically, Figure 4B shows the distribution of v for
the genotypes in populations under mutation–selection
balance and under mutation–recombination–selection
balance. Clearly, populations undergoing recombina-
tion have much larger values of v. Our previous obser-
vations showed that recombination leads to higher
robustness. The right-shifted distribution of v (Figure
4B) suggests that the mechanistic cause of this higher
robustness is precisely the principle just outlined.

A second pertinent observation is that there are far
more potential epistatic interactions between wij in
different rows than within rows; however, among all
these interactions, the intrarow interactions are more
likely to be relevant for a robust gene expression pattern
in recombining populations, especially if they are based
on the more steadily expressed genes just discussed.
The reason is that recombination constantly separates

Figure 4.—Regulatory regions operate differently in pop-
ulations subject to recombination. (A) Networks in nonre-
combining populations (open circles) have essentially the
same distribution of nonzero weights wij as networks sampled
from the viable ensemble of networks (open squares) or as
networks regardless of their viability (not shown). In contrast,
populations subject to recombination (solid circles) give rise
to a distribution that is broader and no longer bell shaped.
(B) Populations with and without recombination can be dis-
tinguished by considering the distribution of the statistic vi,
averaged over the different genes (regulatory regions) of a
network (see text for details). Data in A are based on 105 cir-
cuits with N¼ 12 genes, and data in B are based on 104 circuits
with N ¼ 20 genes. The number of regulatory interactions per
circuit lies in the interval (N, 3N), and we use orthogonal vec-
tors S(0) and S(‘). Whiskers indicate one standard error and
are too small to be visible in many cases. Curves were fitted to
data using quadratic spline functions.
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regulatory regions of different genes. With this obser-
vation in mind, one would expect a difference in the
distribution of vi that appears in populations subject
to recombination, compared to nonrecombining pop-
ulations, because recombining populations can take
advantage of the most relevant epistatic interactions
(those arising within a regulatory region) to ensure
robustness of a gene expression pattern. This differ-
ence in the distribution of vi is exactly what we observe
(Figure 4B).

In sum, a gene’s regulatory region can be thought of
as forming a cis-regulatory complex, whose allelic
combinations are not disrupted by recombination in
our model.

This perspective is in line with our earlier observa-
tions (Figure 3) that exchanging a regulatory complex
(row i) in one individual with its counterpart in another
individual is rarely deleterious, while exchanging sub-
components of such a complex (individual wij’s) is
generally far more deleterious.

DISCUSSION

We have made several key observations. First, if
random mutations change a number m of interactions
in a regulatory circuit, then it is much more likely that
the change is deleterious than if the same number m of
interactions is changed through recombination. This
holds regardless of whether circuits are sampled ran-
domly from an ensemble of circuits with the same
phenotype or from populations subject to selection,
mutation, or recombination. The pertinent observa-
tions from Figure 1 are strikingly similar to those made
recently by Drummond and collaborators (Drummond

et al. 2005) for a completely different kind of model
system, lattice proteins. The similarity suggests that
recombination may affect dissimilar systems on differ-
ent levels of organization similarly. While work on reg-
ulatory circuits is largely theoretical, for proteins there
is experimental evidence that recombination does
actually have weak effects on protein functions. For
example, the products of recombination between two
distantly related b-lactamases retained function with
significantly higher probability than b-lactamase var-
iants that involved the same number of amino acid
changes as introduced by recombination, but where
these changes were introduced through random point
mutation (Drummond et al. 2005). More anecdotally, a
DNA shuffling experiment involving divergent interleu-
kin-12 genes from seven mammalian species showed
that between 40 and 90% of chimeric molecules re-
tained interleukin-12 activity (Leong et al. 2003). A
similar study creating four random recombinant a-
interferons from 20 different human a-interferon genes
that differ, on average, at 17 amino acid positions, found
that all four recombinant proteins generated were as

active as their ‘‘parents.’’ The authors estimate that
mutating the same number of positions as are changed
in a recombination event among these proteins would
abolish protein function (Chang et al. 1999). Such
weak deleterious effects may contribute to the prom-
ise recombination shows in engineering new proteins
(Stemmer 1994; Crameri et al. 1997, 1998; Zhang et al.
1997; Chang et al. 1999; Kolkman and Stemmer 2001;
Leong et al. 2003; Raillard et al. 2001a,b). Because
recombination can reorganize genetic systems on a
much larger scale than point mutations, these weak
effects on different levels of organization are intriguing.
The question of whether they are general warrants
further exploration.

A second central observation we made is that re-
combination may decrease the genetic load of a pop-
ulation under stabilizing selection. The explanation
involves several factors. First, the joint action of selec-
tion and recombination dramatically increases robust-
ness to recombination itself. That is, in a population in
recombination–mutation–selection balance, recombi-
national robustness can be very high, in which case
most of the genetic load of the population is caused by
mutations. Second, recombination increases a popula-
tion’s mutational robustness to a much greater degree
than mutations alone do (Figure 1). Combined, these
two factors can make the load reach lower values in
recombining populations than in nonrecombining pop-
ulations, provided that the product of population size and
mutation rate is not too small.

Third, we found that recombination allowed the
emergence of cooperative effects among cis-regulatory
sites (as represented by individual entries of the matrix
wij); the genotypes in populations undergoing recom-
bination build up cis-regulatory complexes within in-
dividual genes’ regulatory regions that are not broken
up by recombination; without recombination there is
no emergence of such complexes.

Last but not least, we also found that recombination
affects the number of different genotypes sustained in a
population: recombination led to populations with sig-
nificantly larger genotypic diversity, as measured either
by the number of different genotypes or by an index of
genotypic diversity.

Past work on the architecture of ‘‘genotype networks’’
(often called neutral networks), defined as the sets of
genotypes that have the same phenotype (Schuster

et al. 1994), can help us understand some of these
observations. Such genotype networks occur in multiple
kinds of biological systems (Wagner 2005). For the
circuits we study, a genotype network can be repre-
sented as a graph whose nodes—regulatory circuits—
correspond to genotypes, and where two genotypes are
neighbors if they have the same phenotype and if they
differ by one mutational change (in our case, their
genotypes are at distance 1). The degree of a node in this
genotype network is the number of neighboring nodes
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it has; it is also a measure of the mutational robustness of
the corresponding circuits. For our regulatory circuits,
these genotype networks are vast, connected, and very
heterogeneous in degree (Ciliberti et al. 2007). Earlier
work has shown that in populations evolving on such a
network, mutation and selection alone will drive a pop-
ulation toward nodes of high mutational robustness
(van Nimwegen et al. 1999). It is thus the architecture of
genotype networks that allows populations in mutation–
recombination–selection balance to localize in network
regions with the highest robustness and thus have a very
small genetic load.

Our system is very different from simple two- or three-
locus models often considered when investigating the
effects of recombination; the intuition derived from
such simplified models is that recombination typically
has deleterious effects because it breaks up coadapted
gene complexes. This may be true for regulatory regions
of different genes, but we also found that recombina-
tion allowed for greater cooperativity in the same
regulatory region. Furthermore, simple models of few
loci do not capture the fact that mutational robustness
becomes higher as a result of mutation and even
more so through recombination. To be sure, one could
conceive simple two-locus models that incorporate a
changeable mutational robustness. However, in more
complex genotype–phenotype maps, this feature is a
natural consequence of the organization of a genotype
network.

For the gene regulatory circuits we studied, Azevedo
and collaborators have studied the effects of recombi-
nation in the absence of mutations, and they found that
populations subject to recombination and selection saw
both their mutational and their recombinational ro-
bustness increase significantly (Azevedo et al. 2006).
These same authors also showed that recombination
can lead to synergistic epistasis (Azevedo et al. 2006), a
phenomenon where multiple mutations have stronger
effects on fitness than expected from the effects of
single mutations. Synergistic epistasis seems to be neces-
sary if one accepts that sexual reproduction is favored
because recombination promotes the elimination of
deleterious mutations from a population (Kondrashov

1998). This means that recombination may create the
conditions for its own maintenance in a population (but
see Leclerc 2008). While the evolution of negative
epistasis is an intriguing observation, it does not address
the question how recombination can become estab-
lished in a population in the first place. The same holds
for our observations. We show that recombination can
provide a population-level advantage, but we do not
claim that our results provide an explanation for the
origin of recombination. Similarly, recombination may
or may not provide an advantage under directional
selection. Various work in population genetic theory
and experimental observations demonstrate such an
advantage (Fisher 1930; Muller 1932; Felsenstein

1974; de Visser et al. 1999; Wilke 2004; Keightley and
Otto 2006; Cooper 2007), although this advantage
may not be universal (de Visser et al. 2008). In a model
of gene regulatory circuits closely related to the one
considered here, recombination modifiers that increase
the recombination rate do not readily become estab-
lished in populations (MacCarthy and Bergman

2007).
The effects of recombination on robustness and

genetic load may be more important than those of
mutations for a genetic circuit and thus deserve in-
creased attention. For example, if the genes of a gene
circuit are dispersed among chromosomes, as is often
the case, their alleles are reshuffled in every single
generation of sexual reproduction, yielding a 1000-fold
greater rate of recombination than mutation, given
typical recombination and mutation rates, as well as
typical gene sizes of 100 kbp (Drake et al. 1998; Myers

et al. 2006). These observations notwithstanding, we
note that the variation recombination acts upon is
ultimately generated by mutation. Any effects of re-
combination on a population can manifest themselves
only in polymorphic populations, because in mono-
morphic populations all recombinant offspring are
identical to their parents. In the populations we con-
sider, many individuals have an optimal phenotype, and
the populations are in mutation–selection balance on a
genotype network. In such populations only deleterious
and neutral mutations can occur, and the neutral theory
of molecular evolution (Kimura 1983) shows that such
populations will be polymorphic most of the time if the
product Pm of population size P and mutation rate m is
much greater than one. It is thus not surprising that we
see an effect of recombination on the genetic load only
if Pm is much greater than one. The threshold at which
recombination begins to have a beneficial effect may
depend on several model details, including how muta-
tion rates are defined. For instance, our mutation rate is
a circuitwide mutation rate and not a rate of mutation
per gene (regulatory region) or per single regulatory
interaction. For genic mutation rates, recombination
should begin to affect genetic loads at much smaller
values of Pm.

Recombination is commonly thought to have two
major disadvantages, namely the twofold cost of sex and
the increase in genetic load it causes (Muller 1950;
Maynard Smith 1978). If our observations hold gen-
erally, then one of these disadvantages may disappear in
complex genetic systems, while other potential advan-
tages such as increased genetic diversity and modular
regulatory control may emerge. The effects of recombi-
nation on systems with complex genotype–phenotype
maps can be rather counterintuitive. However, because
all real biological complex systems have complex
genotype–phenotype maps, it is well worth exploring
them further, both with abstract models and in suitable
experimental systems.
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