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ABSTRACT

We assume that quantitative measurements on a considered trait and unphased genotype data at certain
marker loci are available on a sample of individuals from a background population. Our goal is to map
quantitative trait loci by using a Bayesian model that performs, and makes use of, probabilistic reconstructions
of the recent unobserved genealogical history (a pedigree and a gene flow at the marker loci) of the sampled
individuals. This work extends variance component-based linkage analysis to settings where the unobserved
pedigrees are considered as latent variables. In addition to the measured trait values and unphased genotype
data at the markerloci, the method requires as an input estimates of the population allele frequencies and of
amarker map, as well as some parameters related to the population size and the mating behavior. Given such
data, the posterior distribution of the trait parameters (the number, the locations, and the relative variance
contributions of the trait loci) is studied by using the reversiblejump Markov chain Monte Carlo
methodology. We also introduce two shortcuts related to the trait parameters that allow us to do analytic
integration, instead of stochastic sampling, in some parts of the algorithm. The method is tested on two
simulated data sets. Comparisons with traditional variance component linkage analysis and association

analysis demonstrate the benefits of our approach in a gene mapping context.

SSUME that quantitative measurements on certain
trait and unphased genotype data at certain mark-

er loci are available on a sample of individuals from a
population. In quantitative trait locus (QTL) mapping
the goal is to find positions in the genome in which the
genetic variation between the individuals explains the
observed differencesin the considered quantitative trait.
A central task in QTL mapping is to estimate how the
sampled individuals are related to each otherin different
parts of the genome, since such information provides a
means toidentifyregions where the estimated inheritance
pattern is in accordance with the observed similarities
in the trait values. Important pieces of information for
estimating the locus-specific relatedness structures would
be given by pedigree records and genotyped ancestors.
However, for example, in wild animal and plant pop-
ulations there are situations where no data on the genetic
history are available or where such data are available only
onaveryrecenthistory of the sampled individuals. In view
of such situations, we have earlier introduced a Bayesian
model that estimates the unobserved recent history of the
sampled individuals by performing reconstructions of
pedigrees and gene flows at the linked marker loci
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(GASBARRA ¢t al. 2007a). Here we extend that work to
map QTL.

Many QTL mapping methods adopt a two-step strat-
egy where one first estimates the relatedness structure
from marker data, either locuswise or at the level of
individuals (BINK et al. 2008), and then incorporates the
estimates into subsequent QTL or association analyses
as if they were observed quantities (e.g., MEUWISSEN and
GoDDARD 2004, 2007; YU et al. 2006) . A special feature of
our approach is that both of these tasks are carried out
simultaneously within a single Bayesian model. Similar
ideas have been used in some coalescent-based gene
mapping methods that model jointly the relatedness
structure of a trait locus and the phenotype (e.g., LARRIBE
et al. 2002; MoRRris et al. 2002; ZOLLNER and PRITCHARD
2005; MiNTCHIELLO and DuURBIN 2006). Our method
differs from these in that we are working with the recent
genetic history of the sample (individuals) and not using
continuous time approximations of coalescent trees and
recombination graphs.

Our method can be seen as an extension of pedigree-
based linkage analysis to situations where no pedigrees
are observed. Thus, even though the relationships be-
tween the sampled individuals may be unknown, there
should still be close relatives in the sample so that
linkage information can be extracted. These kinds of
data may be mostly available in wild plant or animal
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species (FRENTIU et al. 2008), but may also be available
for humans. We also consider similar marker maps that
are used in pedigree-based linkage analysis. In our
examples we consider ~100 loci with polymorphic
markers (say, with six alleles) that are moderately spaced
along the chromosomes (say, 4 cM apart from each other).

In this article our phenotype model considers only
additive genetic effects for QTL and for the polygene,
but extensions to environmental covariates and genetic
interaction effects would be technically straightforward.
We analyze the phenotype model by estimating the
genetic components of phenotypic variance. An advan-
tage of avariance component model is that the numbers
of QTL alleles and their effect sizes need not be
specified (see YI and Xu 2000).

Computationally, we use the reversiblejump Markov
chain Monte Carlo methodology, which allows us to treat
the number of QTL, their positions, and their variance
contributions as random variables. Because the method
is computationally intensive, we have introduced two
shortcuts in the algorithm that allow for an analytic
integration over the allelic paths at the QTL and over the
residual variance. As a result, the central parameters of
interest are the relative phenotypic variance contribu-
tions of the QTL with respect to the residual variance.

We illustrate the usefulness of the method with two
examples. Comparisons of our results with the fixed-
pedigree variance component linkage analysis program
SOLAR (ArLmMAsYy and BLANGERO 1998) and with the
association analysis package TASSEL (BRADBURY et al.
2007) clearly show the advantage that is gained from
being able to model the unobserved part of the recent
genetic history of the sampled individuals.

MODEL FOR GENETIC HISTORY

Consider a sample of n individuals belonging to the
current generation of the population. We build a
probability model for their joint genetic history, up to
T generations backward in time, at certain marker loci
whose relative positions (with respect to each other) are
assumed to be known.

The configuration space of possible ancestral histo-
ries has three components: the pedigree specifying the
relationships between the individuals, the paths of
alleles of these individuals at the marker loci, and the
types of the alleles of the founder individuals at gen-
eration 7. We described the same probability model on
the configuration space earlier (GASBARRA ¢t al. 2007a)
and therefore provide here only a brief summary of this
model.

Pedigree model: For pedigrees we use the probability
model introduced by GASBARRA et al. (2005). The model
considers an isolated population with nonoverlapping
generations indexed backward in time by ¢ =0,1,...,
T, with ¢ = 0 referring to the present and ¢ = T to the

founder generation. The population is characterized by
four sets of parameters: N;, Nj, o, and B, for =1, ..., T
The parameters N; and Ny describe, respectively, the
number of males and females belonging to generation ¢
of the population. Parameter o, controls the differences
of reproductive success between males in generation &
large values of o, imply nearly equal numbers of children
for each male, whereas for small values of o there will be a
few dominant males who are mainly responsible for the
reproduction. Parameter 3, tunes the degree of monog-
amy (of males) in generation & large values of 3, lead to
random mating and small values of 3, introduce more
permanent family structures into the pedigree. Naturally
the roles of males and females can be changed in the
model. We denote this probability measure on pedigree
graphs by F5(+).

Flow of alleles through the pedigree: We assume a fixed
marker map with L loci and denote the recombination
fractions between loci by p = (p(4, I'): 1 = I< ! = L).
Note that several chromosomes can be modeled simul-
taneously by using the recombination fraction p(Z, ') =
% to indicate that markers /and /' lie in different linkage
groups.

By definition, the genome of each individual in the
pedigree consists of a pair of paternal and maternal
haplotypes. The flow of alleles through the pedigree is
determined by the grandparental origins that for
haplotype i are denoted by ¥, = (U;(1),..., ¥,(L)) €
{0,1}". The convention used here is that y;() = 0 if
the allele at locus [ of haplotype i is of grandmaternal
origin, and {s;(/) = 1 in the case of grandpaternal origin.

If an allele carried by an individual in generation ¢> 0
is transmitted to some individual in the present gener-
ation, we say that the allele is ancestraland otherwise that
itis censored. Since we are actually interested only in the
paths of the ancestral alleles, we set{s;({) = @ if the allele
at locus [ of haplotype iis censored.

The probability of a set W = ({,),_,, of grandparental
origins of nonfounder haplotypes on the pedigree is
given by

Py(¥) =TT T eCitws 0, %O = p(ts, 0), )02,

ieN leA;

where A; = {l: ¥;(]) # O}, p(L, I') is the recombination
fraction between loci [ and 7', with the convention that
p(—oe, 1) = %,j(tl;i, l) denotes the last uncensored locus
of haplotype ibefore [, with the convention that j({s; /) =
—o if [is the first uncensored locus of its chromosome
in the haplotype ¢, and A;() = [;() — ¥;(j(;, 1) ] with
the convention that {s;,(—%) = 0.

Types of founder alleles: Denote by g, = (g({) : I =
1,...,L) the ordered genotype of individual k and
let A={g: k€ F} be the set of founder geno-
types. Assuming linkage equilibrium at the founder
generation, the probability of the founder alleles is
given by
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Pa(a) = [T T ten(0: 0,

keF 1=1

where the population genotype frequencies fr(-; /) at each
marker locus [ are assumed given. (If Hardy-Weinberg
equilibrium is assumed, we can use the population allele
frequencies instead.) The genotype frequencies are
extended to partially or totally censored genotypes in
the obvious way. Note that the ordered founder alleles
together with the grandparental origins of the non-
founder haplotypes determine the flow of alleles in the
pedigree.

Prior distribution for genetic history: Given the pedigree
parameters (N, Nj, B, o, 7), the population genotype
frequencies and the recombination fractions between the
marker loci, a configuration w consisting of a pedigree G
and a gene flow with founder alleles A and grandparental
origins V¥ is assigned the (prior) probability

m(@) = B(G) X Pa(A) X Py(V).

Our earlier work (GASBARRA et al. 2007a) studied this
distribution conditionally on the observed marker data
and in this article we further add to the model a
contribution from a quantitative phenotype.

Variance component model for the phenotypes: We
use a variance component model that is similar to, for
example, those by ALMAsY and BLANGERO (1998) and
Y1 and Xu (2000). A slight difference between the
standard model development (e.g., Equation 1 in Y1
and Xu 2000) and the one given below is that here the
covariances at the QTL are derived explicitly using the
corresponding incidence matrices (X,). This formula-
tion is chosen because our state space can be aug-
mented to contain the exact paths at the putative
QTL, and thus we could work with the exact identity-
by-descent (IBD) matrices at the QTL (X, X7). How-
ever, in this article we use the conditional expectations
of the IBD matrices at QTL, given the allelic paths at the
flanking markers. We formulate the model at the level
of single alleles, and therefore certain variance param-
eters in our model equal half of the corresponding
quantities when they are considered at the level of
genotypes.

To derive the model, we suppose that a quantitative
phenotype is measured from each of the n sampled
individuals from the current generation of the popula-
tion. In the following we explain the phenotype model
conditionally on genetic history w. Note, however, that
both structures (genetic history and phenotype param-
eters) are random variables in our model and we are
studying their joint posterior distribution conditionally
on the observed marker data and the observed pheno-
type values. Conditionally on genetic history o we adopt
a simple regression model for the phenotypes,

Ny

y=pt+ > XBgtmte (1)
g=1

where y is the n-dimensional vector of phenotypes, \ is
the population mean, X, is the n X 2fmatrix describing
which of the 2f founder alleles each individual carries
atQTL ¢, B is the 2fdimensional vector of founder allele
effects at QTL ¢, m is the n-dimensional vector of poly-
genic contributions (sum of the effects of QTL located
outside of the marker map), and ¢ is the n-dimensional
vector of residual errors. Possible extensions of the model,
which would contain also covariates and genetic effects of
higher degrees, are considered in the DISCUSSION.

We assume that p ~ N(0, 02) (univariate normal
distribution), Bg ~ N(0, 0'31) (multivariate normal
distribution), n ~ N (0, 4013(1)), where @ is the kinship
matrix calculated from the pedigree structure, and
g ~ N(0, 0?I). Here o}, 0, o, and o} are the vari-
ance components related to the population mean, a
single allele at QTL ¢, the polygenic contribution, and
the residual effect, respectively. The element ®; of the
kinship matrix is the conditional probability, given the
pedigree structure, that a randomly sampled allele at a
random locus from individual 7 is IBD with a randomly
sampled allele from the same locus from individual j
(see, e.g., LANGE 2002). In this model the number of
QTL (Nqu) is considered as a random variable, and each
QTL has an exact position specified in terms of the
genetic distance to the nearest marker locus.

For a given genetic history (pedigree, allele paths,
and founder alleles at the marker loci), the phenotype
model (1) is simply

y ~ N(0, %), (2)
where the covariance matrix has the form
thl
3= (ril + Z 0'3Yq + 40[2)(D + 0’1 (3)
q=1
=020, (4)
with
qull
Q=01+ 0,Y,+40,®+1L (5)
g=1

Here 1is the n X nmatrix full of ones, Yq = XqX;f is the
(unscaled) covariance matrix at QTL ¢, and 6, = 0/07}
for z =, ¢, p. The representation of 3 in terms of @
becomes useful in the practical computations that we
describe below.

Priors: We assume that a priorio; ~ 1G(a, d) (inverse-
gamma distribution) and that each 0, ~ Exp(1) (expo-
nential distribution). A priori, each marker interval
(between two adjacent markers or between the extreme
markers and the endpoints of the chromosome) may
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contain at most one QTL and this happens with
probability 1 — exp(—AA), where A is the genetic length
of the interval and N > 0 is a hyperparameter chosen
according to our prior guess on the total number of
QTL.

Posteriors: In our earlier works we estimated the
posterior distribution of the genetic histories of the
sampled individuals, conditionally on the genotype
observations at the marker loci. In this article our focus
is on the posterior distribution of the QTL parameters,
namely the number, the positions, and the relative
variances of the QTL, as well as the relative variance of
the polygenic component with respect to the residual
variance. The posterior is calculated conditionally on
the marker and phenotype data and on fixed popula-
tion parameters. We described earlier how to apply
Markov chain Monte Carlo (MCMC) methods to esti-
mate the posterior distribution of the genetic histories.
Here we add new parts to our MCMC algorithm that also
update the QTL parameters. Before introducing the
MCMC algorithm we consider briefly two simplifying steps
by which we are able to integrate out analytically several
variables of the phenotype model during the MCMC run.
These analytic integrations decrease the number of
variables that need to be updated in the MCMC algorithm
and thereby shorten its running time.

Integrating o} out: Instead of updating parameter o}
in the MCMC algorithm, we combine the likelihood
function from (2), an inverse-gamma prior for o; and a
representation % = 020 to analytically integrate o out
from the likelihood formula. (See ApPeENDIX B for
details.) As a result we get the likelihood function

(om0 ey @) -(1/2) (@2 PT(d + ) /2)
Py ©) = (2m) (/2)q t(0) ® (a*/Q)((Hn)/QF(d/Q) )

where a* = a+y"® 'y, and aand dare the parameters
of the inverse-gamma prior for o;.

Integrating over allelic paths at QTL: It would be
possible to include in the configuration the complete
information of the allelic paths at the QTL and thus use
the exact Y, matrices in the model. However, using the
exact recursive formulas given in APPENDIX A we are able
to compute Yq =E(Y, | ) at each QTL ¢, i.e., the
conditional expectation of Y, given the available allelic
paths at the (nearest informative) marker loci. In this
article we have approximated the exact model (2) by
replacing Y, with Yq in Equation 5 when calculating
matrix ©.

MCMC ALGORITHM

In our earlier articles (GASBARRA et al. 2007a,b) the
MCMC algorithms explored the space of possible
genetic histories of the sampled individuals using several
different Metropolis—Hastings updating schemes. Here

we add to the algorithm further Metropolis—Hastings
proposal steps involving QTL parameters. As the number
of QTL (Nyg) is a random variable that affects the
dimensionality of the model, we update it using the
reversiblejump MCMC methodology (GREEN 1995). Ear-
lier, such ideas were used for QTL mapping, for example,
by HeaTH (1997) and SiranpiA and Arjas (1998).
Next we describe the Metropolis—Hastings schemes that
are used to update the variables (in each iteration of
the MCMC run).

Updating genetic history: We use the proposal
distributions explained in GASBARRA et al. (2007a) to
update the pedigree and allelic paths. The only modi-
fication is that in the current algorithm the phenotype-
likelihood contribution is taken into account when
calculating the acceptance probability of the proposed
configuration.

Adding and removing QTL: In each iteration with
probability § we propose a deletion of an existing QTL.
The candidate QTL for deletion is sampled with a
probability proportional to the inverses of the effect
variance. When we propose to delete a QTL, we also
propose to transfer its variance contribution to the
polygenic variance. Note that the variance related to a
QTL qis 20’,‘?, i.e., twice the variance contribution of a
single QTL allele, since each individual carries two QTL
alleles.

In the case thatno deletion is proposed, we attempt to
add a new QTL at a location sampled uniformly on the
available genetic map. If the sampled interval already
contains a QTL, we propose to replace the existing one
with a new one. The variance of the proposed QTL
is sampled as a uniformly random proportion of the
current polygenic variance that is simultaneously pro-
posed to decrease accordingly.

Both of these updates propose a change in the number
of QTL and since there are continuous variables in-
volved in the QTL model, the theory of reversible-jump
MCMC (GREEN 1995) is adapted in computing accep-
tance probabilities of the moves.

Updating current QTL: We choose randomly a QTL
from Ny possibilities and propose a modification to its
relative variance. In addition, with probability é we
simultaneously attempt to modify its location.

The new position is sampled from a normal distribu-
tion centered at the current position (with fixed standard
deviation given as a tuning parameter to the algorithm).
If the new position is outside of the chromosome or if
there isalready a QTL in the proposed interval, we refrain
from modifying the location.

Parameter 0, for the chosen QTL is perturbed by
multiplying it with a random variable from a lognormal
distribution (whose parameters are fixed for the whole
MCMC run).

Simultaneously with the perturbation of 6, we also
propose to change the parameters 0, and 6, with similar
lognormal proposals.
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Updating 0, and 0,: We also have separate updates
for 6, and 6, that propose no modifications to any other
variable. These are implemented with lognormal pro-
posals (see above).

RESULTS

There are three main points that we aim to illustrate
by the following examples. First, our method produces
good results in comparison with a widely used variance
component QTL mapping software SOLAR (ALMASY
and BLANGERO, 1998), even in cases where we are using
less information than SOLAR. More specifically, our
method is able to handle also data that do not include
records on pedigrees, whereas traditional linkage anal-
ysis packages like SOLAR work only on the known parts
of a considered pedigree. Second, we show that if the
data include close relatives, then our method is able
to separate the true signals from false positives more
efficiently than an association analysis method TASSEL
(BRADBURY et al. 2007) that utilizes an estimated re-
latedness matrix as a part of the mixed linear model
for the phenotype. Our third point is that, in some
genetic mapping situations, it is important to be able to
explicitly model the genetic relatedness between the
sampled individuals beyond only one or two genera-
tions backward in time to find strong enough QTL
signals. And this is exactly what our method is designed
to do.

Linkage analysis on close relatives: When sampling
from natural populations, one frequently encounters
situations where the pedigree relationships between
individuals are not known, but where it is possible that
even close relatives are included among the sampled
individuals. When such samples are analyzed for the
associations between genetic markers and phenotypic
values, it is necessary to account for the relatedness
structure to avoid false positives. In this example we show
how our method is able to simultaneously account for
the unknown relatedness and to estimate the locations
on the genome that are partly responsible for the phe-
notypic variation.

Data simulation: We consider 50 nuclear families each
with three children, whose parents are interconnected
via a pedigree structure that is simulated, 20 genera-
tions backward in time, using the pedigree model of
GASBARRA el al. (2005). (The population parameters are
a,=5,B,=10"7 N = N;/= 1500 — 50¢, for generations
t=1,2,...,19, where 1 is the parents’ generation and
19 is the founder generation.) Given the simulated
pedigree structure, the genetic marker data are simu-
lated on four chromosomes by first sampling the alleles
for the founders (who are assumed to be in linkage and
Hardy—Weinberg equilibria) and then dropping the
genes through the pedigree according to Mendelian
rules and the recombination model. Each chromosome
contains 30 microsatellite markers, each with six alleles

that are equally frequent in the population at the
founder generation. The recombination fractions be-
tween adjacent markers of the same chromosome are
0.04. Conditionally on the marker data, two QTL were
simulated on the genome, ¢; between markers 38 and
39, and ¢y between markers 96 and 97, on chromosomes
2 and 4, respectively. For the founder individuals, five
equally frequent alleles are assumed to exist in the
population at both QTL. The effects of the five alleles
are sampled from N(0,07), with oy = 0.5 and 09 = 0.7
for QTL ¢ and g, respectively. Finally, the phenotypes
for the sampled individuals at generation 0 are simu-
lated as y; = Q; + ¢; where Q;is the sum of the effects of
the four QTL alleles that i carries and &, ~ N (0, 1) are
sampled as independent residual effects. The resulting
empirical sample variance of the QTL allele effects
among the sampled individuals was 0.36 for ¢; and 0.48
for ¢o, and the residual variance was 0.79.

Results: We applied our method to analyze the phe-
notypic values of 150 individuals belonging to the
youngest generation of the above-explained simulated
genetic history combined with their unphased marker
genotype data. We carried outa pedigree reconstruction
for only a single generation backward, which turned out
to be enough in this case, as the nuclear families were
large enough to contain linkage information (three
children in each family). The prior distribution for the
existence of QTL was chosen in such a way that the
expected number of QTL over all four chromosomes
was about five (N =0.01(1/cM)). By simulations the
population parameters for the parents’ generation were
adjusted to correspond to a population where monog-
amy is common and very large numbers of offspring in
the same family are rare (N' = N" =625, 3 =10*, and
a = 0.625).

The allele frequencies among parents were assumed
to be uniform and the recombination fractions were
assumed known exactly (i.e., 0.04 between adjacent
markers).

We executed four independent runs of the algorithm,
each running for 55,000 MCMC iterations, and then
discarded the first 5000 iterations as a burn-in part. The
results from different runs were similar, suggesting that
the chains had converged. The elapsed time of the runs
was ~b5 days but a running time of a single day would
have already been sufficient to achieve qualitatively the
same results. The results (averaged over all four runs)
describing the expected value of the ratio of the
QTL variance to the residual variance, as a function of
chromosomal location, are shown in the top panel of
Figure 1. The measurement unit of location is an interval
between two adjacent markers. The positions of the
simulated QTL are marked with asterisks on chromo-
somes 2 and 4. Both QTL can be identified from the
posterior curve of QTL variance, and no considerable
additional signals are present elsewhere on the marker
map. The top panel of Figure 1 also shows two intervals
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F1GURE 1.—Results of example I. Rows from top to bottom correspond to our method, SOLAR, and TASSEL, respectively. The
two true QTL are marked with “*” and the posterior probabilities that the marked intervals contain at least one QTL are shown for

our method.

surrounding the QTL positions and the corresponding
posterior probabilities (~0.68 and ~0.74) that these
intervals contain at least one QTL. These intervals were
chosen manually to cover the regions that were estimated
to have relatively high contributions to the phenotypic
variance.

For comparison we also run the data with SOLAR
(ALMASsY and BLANGERO 1998), which is a widely used
variance component linkage analysis package for quan-
titative traits. It requires pedigree(s), marker data,
and the marker map as input and estimates the IBD
distribution between members of the same pedigree at
several locations between the markers. The resulting
IBD information is then utilized in a sequential testing
procedure for the existence of a QTL between the
markers. SOLAR is able to compute the IBD estimates
using the multipoint method unless the pedigree struc-
tures are too complicated.

In this example we gave SOLAR the correct family
structures (b0 nuclear families with three children each)
accompanied with the correct marker map and the
genetic marker data on the children. The resulting
multipoint LOD score curves are displayed in the middle
panel of Figure 1. It can be seen that also SOLAR gives
signals for the two real QTL, but it also assigns nonzero
scores to some other regions. The reason for this may be
that SOLAR has amodel for only asingle QTL, and since

these data contain two QTL, this may result in some
additional noise in SOLAR’s tests. The overall shapes of
the curves in the top and middle panels of Figure 1 are
quite similar and both concentrate strongly in the
vicinity of the true QTL. The fact that we have used less
information in our analysis than in the SOLAR run does
not seem to result in less accurate signals for the true
QTL. Indeed, with these data our method was able to
reconstruct the nuclear families with three children very
accurately.

The bottom panel of Figure 1 displays marker related
P-alues from the association analysis program TASSEL
(BRADBURY et al. 2007). TASSEL applies a mixed linear
model (MLM) to explain the phenotypes by using
markers (each marker separately) and can also include
covariates, population structure, and relatedness struc-
ture in the analysis. Here we applied a model that
included the relatedness structure between individuals
calculated using the moment estimator of LyNcH and
RiTLAND (1999). This approach is close to our own in
the sense that both try to accommodate for the related-
ness between the sampled individuals and also allow for a
polygenic component in the model.

For these data it turned out that this combination of
an association analysis with relatedness estimates was not
able to separate the true QTL signals from false positives.
However, one must keep in mind that this data set is
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F1Gure 2.—The 7 youngest genera-

tions from the 20-generation pedigree
that was used in the data simulation
of example II, drawn with Pedfiddler

(J. C. Loredo-Osti and K. Morgan).

Data simulation: We use a similar procedure to
generate the data set as in the previous example,

considering 50 nuclear families but now with only two

children in each. The parents of those families are

connected by a simulated 18-
which has a bottleneck in its recent history as shown in

generation pedigree,

the first 7 generations of the complete

pedigree are actually shown in Figure 2, and the

Figure 2. Only

remaining generations were simulated as in the previous

example. We consider marker data on a single chromo-
some containing 100 microsatellite markers, each with
six alleles. The recombination fractions between the
adjacent markers are again 0.04. Conditionally on the

marker data, two QTL were simulated on the chromo-

some, with ¢;

between markers 13 and 14 and ¢» between

markers 86 and 87.

For the founder individuals, five

equally frequent alleles were assumed to exist in the
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Advantage from modeling several generations: In the
above example the nuclear families were large enough

there are close relatives in the data. The association
(withrespect to the QTL effects, sample size, and marker

analysis results indicate, however, that these data are not
too obvious in the sense that one could have established

the QTL positions directly from the correlations be-
tween the marker data and phenotypes without model-

ing the linkage within the families.
allele distribution) so that the QTL could be found

more suitable for linkage analysis than for association
analysis as the marker distances are relatively long and
already by a model that included only a single genera-
tion of the ancestors of the sampled individuals. We now
consider a more difficult situation where we have to
model several additional generations backward in time
before clear signals of the QTL can be identified.
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FIGURE 3.—Results of example II with varying numbers of reconstructed generations. The numerical values are the posterior

probabilities that the marked intervals contain at least one QTL.

population at both QTL. The effects for the five types of
founder alleles were sampled from N (0,0?), with oy =
0.5 for QTL ¢; and o9 = 0.3 for ¢. The final phenotypes
for the sampled individuals at generation 0 were created
by adding independent standard normal random vari-
ables to the sum of the QTL effects of each individual.
The resulting sample variance of the QTL allele effects
among the sampled individuals was 0.26 for ¢;, and 0.12
for g0, with residual variance equal to 0.96.

Results: 'We applied our method to analyze the
phenotypic values of 100 individuals belonging to the
youngest generation of the above-explained simulated
genetic history combined with their unphased marker
genotype data. Separate reconstructions were carried
out for T=1, 2, 3, 4 generations backward in time. For
the values of the population parameters we used o, = 10,
B,=0.001, N;= N;/= 1000 — 25¢, for generations ¢ =1,
2,..., 4. They were chosen on the basis of a similar
simulation experiment as in the previous example.

For each value of 7, four separate MCMC runs were
executed and their average values are reported here.
The elapsed time of the runs was ~6 days but qualita-
tively similar results were already achieved within a
single day. Figure 3 shows how the posterior of relative
QTL effects, as a function of location, develops as more
generations are included. In particular the step from
T=3to T= 4 seems to bring the QTL effects to levels
that correspond well to those calculated in the data

simulation. Thus it seems evident that in these data the
power for detecting QTL comes from a more distant
past than the parents’ or grandparents’ generations.
Each panel of Figure 3 also shows two intervals
surrounding the QTL positions and the corresponding
posterior probabilities that these intervals contain at
least one QTL. These intervals were chosen manually to
cover the regions that were estimated to have relatively
high contributions to the phenotypic variance. For both
intervals the corresponding QTL probabilities consis-
tently increase as more generations are included in the
model. This phenomenon further confirms that we are
able to capture stronger QTL signals from these data by
modeling several generations simultaneously.

The same phenomenon can also be seen in Figure 4,
where we have also included results from a SOLAR
analysis based on the correct nuclear family structure
(middle panel) and from a TASSEL analysis with the
relatedness matrix estimated as in the previous example
(bottom panel). The top panel contains the data from
our method with 7 = 4. Since the families are smaller
and QTL weaker than in the previous example, SOLAR
does not seem to be able to catch the QTL ¢,. However,
SOLAR might perform better if one firstidentifies g, and
then fixes it as a covariate when searching for a second
QTL. Note again that we have used more information in
the SOLAR run than with our own method, since even
though we have modeled the history four generations



QTL Mapping on Reconstructed Pedigrees 717

«
o
s
Z
© o
=3
=]
(7]
¢
T -
§ 51
)
=
© /\,\,/k/\
3 - 0.41 0.20
* *
r T T T T T T T T T T T T T T T T T T T 1
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
<+ _
o
~
g 7]
3 -
[ .
ez
8
- o
o
o
= % *

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1 1 1 1 1 ]
o
o
o
o
o
o
o
o

—log(p-val) (TASSEL)
00 05 10 15 20 25 3.0 35

1

o

[e]

o

o

o

o

o

o

o

L
%

o

o

Marker
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backward in time, it is still based only on the genotype determined by the expected IBD sharing at the QTL
data at the youngest generation and no part of the positions, given the IBD sharing at the flanking marker
pedigree was considered known to us. We also attempted loci, and the polygenic covariance structure is dictated
to analyze these data with SOLAR by giving it the correct by the pedigree configuration. This approach is tar-
pedigree structure up to the grandparents’ generation, geted at the settings where the sampled individuals are
but SOLAR was not able to handle that due to the likely to be related to each other within a few of the most
complexity of the pedigree. recent generations, but where their exact relationships
The association analysis with relatedness estimates are not known. If more specific knowledge of the
incorporated into the linear model was not able to catch relationships were available, it would also be possible
the true QTL positions either. Moreover, since the data to fix the known parts of the pedigree. Thus the tra-
include close relatives, association analyses that test a ditional variance component linkage analysis that oper-
single marker at a time can be expected to produce ates only on the fixed pedigree becomes a special case of
some amount of false positives regardless of the our framework.
correction. Our approach is applicable to diploid species and can

adapt to several (nonrandom) mating scenarios as well
as to user-specified marker maps. The practical useful-

DISCUSSION ness of our method depends especially on the amount

In this article we have extended our earlier model for of available marker data and on the degree of re-
marker data-based pedigree and gene flow estimation to latedness between the sampled individuals.

also account for a quantitative phenotype via a variance Marker data: In recent years the development of

component approach. In the model, the phenotypic genotyping technologies has been extremely rapid, and

variance is decomposed into a random number of QTL therefore the gene mapping studies in humans are

effects, a polygenic effect, and a residual. The struc- currently carried out with hundreds of thousands of

tures of the covariance matrices for QTL effects are single-nucleotide polymorphisms (SNPs) distributed
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over the genome. It is not computationally possible to
handle such data at once by the approach taken in this
article. However, a stepwise strategy, where linkage
analysis is carried out first, and then association analy-
sis is employed conditionally on the results of the
preliminary linkage analysis, is possible, especially in
population isolates. Such a strategy is also the motiva-
tion behind the methods that detect associations in the
presence of linkage signals (CANTOR et al. 2005). It
could also be possible to treat several tightly linked
SNPs as a single multiallelic locus, if credible haplotype
information were available. In that case the linkage
between the combined SNPs should be so tight that it
would be feasible to assume that no recombinations
have occurred within the SNP blocks during the most
recent generations of the history of the sample. This
would allow us to pick a sparser and computationally
more tractable marker map from the original large SNP
panel, while still maintaining some of the information
carried by the polymorphic haplotype blocks.

Relatedness: In our approach the detection of QTL is
based on the correlations between the allele sharing and
phenotypic similarities among the sampled individuals.
Thus, to identify the QTL, it is necessary that the
sampled individuals share ancestors within the esti-
mated pedigree. Furthermore, close relatives such as
siblings and cousins provide a valuable source of in-
formation concerning the transmission of the alleles
between the generations. In contrast, the genetic mate-
rial of the sampled individuals who are isolated from the
rest of the pedigree may spread out arbitrarily among the
ancestors, because there is no haplotype information
coming from genotyped relatives. Hence, our approach
is likely to be most useful in settings where the sampled
individuals are closely related but the exact pedigree
records are not available or not reliable. Such cases could
be encountered, for example, in some wild animal
populations. Indeed, a recent topic of general interest
in such a context is the estimation of the relatedness
structure or of the pedigree of the sampled individuals
(FRENTIU et al. 2008; PEMBERTON 2008). The approach
introduced here not only provides a means to estimate
the relatedness structure, but also offers a simultaneous
analysis of a quantitative trait.

Phenotype model: In this article we considered only
additive genetic effects, but if required, our phenotype
model could be easily extended to include environmen-
tal covariates as well as genetic interaction effects. For
example, inclusion of dominance effects would require
estimating whether each pair of the sampled individuals
shares two alleles IBD at the QTL or a polygene and
would be a technically straightforward addition to the
current MCMC algorithm. However, identifiability prob-
lems (for the polygene) due to small sample sizes are
common already with known pedigrees (M1zTaL 1997;
WALDMANN et al. 2008), and when also a pedigree is
estimated, such problems are likely to increase. The lack

of a known pedigree structure together with relatively
small sample sizes may also be a reason for the relatively
large estimates for the additive polygenic componentin
our examples, [ép = 0.62 and ép = 0.70 in examples I
and II (7T = 4), respectively]. It is likely that the
polygenic component has here captured some of the
variation due to the QTL and to the residual variance.
To estimate it more accurately, we would need larger
sample and family sizes. For example, Y1 and Xu (2000)
assumed in their examples that the pedigrees of 500 full-
sib families with six siblings in each were known, com-
pared to our settings of 50 full-sib families with two to
three siblings in each and without a known pedigree
structure. The important thing in our examples was that
we were able to get good estimates of the relative effects
of the QTL.

MCMC algorithm: The proposal distributions that
modify the pedigree and the gene flow at the marker
loci are the same as in our previous article (GASBARRA
et al. 2007a), while the corresponding acceptance ratios
have been updated to take into account the phenotype
model. The main addition was the updates for the
phenotype parameters, implemented with the reversible-
jump MCMC (RJMCMC) methodology. In recent QTL
literature, RIMCMC algorithms have been accused of
being complicated and slowly mixing, and other ap-
proaches to model selection have been considered
(e.g., WANG et al. 2005). On the other hand, in a recent
comparison by O’Hara and SiLLANPAA (2009) RIMCMC
was found to provide a competent alternative to other
Bayesian model selection methods. Here updating of the
phenotype parameters did not notably slow down the
sampler, as most of the time is still spent on the
computationally demanding block updates for the ped-
igree and the gene flow at the marker loci. Furthermore,
our phenotype updates were speeded up by integrating
out the residual variance and the exact inheritance paths
at the QTL loci. We also note that in our variance
component model the effect of each QTL is character-
ized by a single (relative) variance value. This may further
facilitate the mixing of our algorithm compared to the
models that estimate the absolute effects of all possible
QTL alleles/genotypes (e.g., WANG et al. 2005).

During the example analyses we found that a good
initial state for the multigeneration pedigree model can
be created sequentially, one generation at a time. The
idea is that first the algorithm is run for a certain
number of iterations on the state space of tgeneration
pedigrees, and then the final configuration of that run is
augmented to a (¢ + 1)-generation configuration. By
repeating this procedure for t=1,..., T — 1, an initial
state containing Tancestral generations can be created.
This strategy seemed to yield more realistic initial states
than our previous practice (GASBARRA el al. 2007a),
which sampled a pedigree and allelic paths from the
youngest generation to the founder generation in one
go. A natural explanation for this improvement is that a
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multigeneration pedigree with a gene flow imposes
strong dependencies between the variables, and there-
fore it is better to resample and improve the current
configuration locally before it is extended to the next
generation.

Another way to improve the mixing of the sampler
could be an application of parallel computation, e.g., in
the form of Metropolis-coupled Markov chain Monte
Carlo (MCMCMC) (GEYER 1991), where a number of
processors running in parallel would execute separate
MCMC algorithms, of which only one would correspond
exactly to the target distribution. The recombination
likelihoods of the other MCMC samplers would then
have different degrees of relaxation, represented by a
temperature parameter. The chains with higher tempera-
ture values would pay less attention to the recombination
likelihoods and as a result would explore the configura-
tion space more freely. At certain points of time the chains
at the adjacent temperature values would communicate
and possibly switch their temperature values according to
the Metropolis—Hastings rule. The final results would be
collected only from the coldest chain, ¢.e., from the chain
with the original target distribution.

Conclusion: Our experiences with the method re-
ported here suggest that a joint estimation of the recent
relatedness structure and of the locations of quantitative
trait loci is not only feasible but also advantageous in
certain situations compared to other approaches that are
not able to model the inheritance process using esti-
mated pedigrees. The practical usefulness of this method
depends, in a complex way, on several factors such as the
degree of relatedness of the sampled individuals, the
genetic architecture of the trait, and the effectsizes of the
QTL and needs to be considered separately in any
particular situation. An ability to analyze these kinds of
complex models helps in filling the gap between the
frameworks of linkage and association analyses and as
such deserves further development.
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APPENDIX A: EXACT RECURSIVE COMPUTATION OF THE CONDITIONAL COVARIANCES AT THE QTL GIVEN
THE ALLELIC PATHS AT THE FLANKING MARKER LOCI

As usual, we denote by w a configuration that describes the pedigree together with the paths and types of the
(ancestral) alleles at marker loci. We numerate the haplotypes in the pedigree, starting from the founder generation.
Let ys;(I) € {0, 1} be the grandparental origin of the allele at marker locus /on haplotype i, with the convention that
{;({) = 0 when the allele is inherited from the grandmother and {,(/) = 1 if from the grandfather.

Let A;(1) € {1,..., 2f} be the founder allele of haplotype 4 that is, A;(I) = kif the allele at position /of haplotype i
is inherited from the kth founder haplotype. Suppose that a candidate QTL is located at position [ + A between
markers land I (I< I+ A<T).

If the ith haplotype belongs to the founder generation,

1, ifi=k,
P(Ai(l+A)k|m){O 12k

Otherwise, haplotype ¢ is formed by recombining the haplotypes gf and gm transmitted from a grandfather and a
grandmother, respectively. Then the conditional distribution of the grandparental origin at the locus (I + A), given
the flanking markers, is

P(i(l+4) =0]w) =1—=P@;(l+4) =1]w)
= P(;(1+4) = 0[d;(0),4;(1"))

and according to the Haldane recombination model

PQ;(1+A) =0[d;(1) =0, ,(") = 0)
=P(U;(1+A) =1[,() =1, (1) = 1)
_ (1 +exp(—2A))(1 +exp(—=2(I' — I — A)))
2(1 + exp(—2(" = 1))) ’

and

PQ;(1+48) =0],(1) = 0, ¥,(I') =
= P(,(1+4) =1[;(1) = 1, ,(1 ) )
_ (I +exp(=24))(1 — exp(=2(l' = [ = A)))
2(1 —exp(=2(V' - l))) '

Using these conditional recombination probabilities we find the recursive formulas for the conditional IBD
probabilities of nonfounder haplotypes:

P(A(l+A) = k|w) = P(Ag(1+A) = k| o) P(U;(1 +A) = T[;(D), 4;(1'))
l

+ P(Agn (14 4) = k[0)P(P;(1+A) = 0[;(1), b))

Since we follow only the paths of the ancestral alleles, it is possible that the grandparental origins of the ith haplotype
are not known at the flanking markers of the QTL. Then in the formulas above, land ' are the closest markers on the
left and on the right of the candidate QTL at which the configuration w determines the grandparental origins. In the
case that there are not any ancestral alleles on the left (or right) side of the QTL, the corresponding grandparental
origin probabilities are set equal to §

Since we want to compute conditional genetic covariances between individuals, we use the same idea to compute the
joint conditional distribution of the IBD indicators on two haplotypes. Again the recursion starts from the founder
generation, where the IBD indicators are fully determined.

If iand ¢ are two separate haplotypes obtained by recombining the haplotypes gf, gm and gf’, gm’, respectively, then
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PA(I+A)=Fk Ay(I+A)=F' | o)
=P (1+A) =0[d;(0), (1)) P(yr (1 + A) = 0 (1), by (1))
X {1(gf = gf")1(k =Fk")P(Age(I + A) = k| w)
+ 1(gf # gf’)P(Agf(l-i— A) =k, Agf’(l"l_ A)=F"|ow)}
i(LHA) = 0[d(0), by (1) Py (14 A) = 1[4 (1), b (1))
f(l+A) =k A (I+4A) = k' |w)
(L A) =T [(0), b ()P (14 A) = 0y (), Ui (1))
am(l+A) =k Ay (I +A) =}’ |0)
+ P(;(L+A) = 1[U;(0), (1)) P(by (L4 A) = 1[5 (1), ¥ (1))
X{1(gm = gm")1(k = k') P(Agn (I + A) = k| w)
+1(gm # gm')P(Agn (I + A) = k, Agn (I + A) = &' | @) }.

P
P(Ag
P
P(A

Here 1(x = y) is the indicator that equals 1, if x = y, and 0 otherwise.
Using the above formulas, the expectation of the conditional covariance between individuals /and Jat QTL ¢ given
the allele paths is calculated as

Y], o) = ZZZP (I+A)=k=A(l+A)|w),
i=i1,iy j=1,J2 k=1

where #; and i are the haplotypes of /and j; and j, are the haplotypes of J.

APPENDIX B: ANALYTIC INTEGRATION OF o7 FROM THE LIKELIHOOD

With the notation introduced in the VARIANCE COMPONENT MODEL FOR THE PHENOTYPES section we assume that

(y|02,0) ~ N(0,020) and that 6 ~ IG(a, d). Then
p(y, 07| ©) = p(a7) X ply| o}, ©)

a/2)"? _ a (n 1 _
:( (/d}2) (02) ((d+2)/ exp(2> X ( /2) det(c @) (1/2) exp <2yT(af®) ly)
_(/2)"? , " . e 1
I(d/9) (02)~ ((d+2)/2) exp _—f X ( /z o) (/Z)det((ﬁ) (I/Z)exp Q?EYT@ ly
/2
— (g2)~((d+nt+2)/2) a+y 'y —(n/2) —(1/2) (a/2)
(07) ex p( ) det(O) (472

B (a*/Q)(d+n)/2
T((d+n)/2)

a/2)"*T'((d + n)/2)
(a"/2)* 2T (d)2)

where a* = a+y” @ 'y. Now the term left of the multiplication symbol is the density of the IG (a*, d + n) distribution
(as the function of 07), whence its integral (with respect to ¢7) is 1, and only the term on the right side remains. That s,

(0.2> ((d+n+2)/2) exp (_2) (2,”) (n/2) det(@)—(l/?)(
(o3

r

—ay(a/2)PT((d + n)/2)

Py1©) = (@m) R ded®) U T ay2)




