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We describe a reverse integration approach for the exploration of low-dimensional effective
potential landscapes. Coarse reverse integration initialized on a ring of coarse states enables efficient
navigation on the landscape terrain: Escape from local effective potential wells, detection of saddle
points, and identification of significant transition paths between wells. We consider several distinct
ring evolution modes: Backward stepping in time, solution arc length, and effective potential. The
performance of these approaches is illustrated for a deterministic problem where the energy
landscape is known explicitly. Reverse ring integration is then applied to noisy problems where the
ring integration routine serves as an outer wrapper around a forward-in-time inner simulator. Two
versions of such inner simulators are considered: A Gillespie-type stochastic simulator and a
molecular dynamics simulator. In these “equation-free” computational illustrations, estimation
techniques are applied to the results of short bursts of inner simulation to obtain the unavailable (in
closed-form) quantities (local drift and diffusion coefficient estimates) required for reverse ring
integration; this naturally leads to approximations of the effective landscape. © 2009 American

Institute of Physics. [doi:10.1063/1.3207882]

I. INTRODUCTION

When an energy landscape perspective is applicable, the
dynamics of a complex system appear dominated by
gradient-driven descent into energy wells, occasional trap-
ping in deep minima, and transitions between minima via
passage over saddle points through thermal “kicks.” A para-
digm for this landscape picture is the trapping of protein
configurations in metastable states en route to the dominant
folded state. The underlying energy landscape is often lik-
ened to a roughened funnel with trapped states correspond-
ing to local free energy minima.'

Important features on energy surfaces include local
minima and their associated basins of attraction, saddle
points, and minimum energy paths (MEPs) between neigh-
boring minima passing through these saddles. Besides the
identification of such landscape features, establishing the de-
tails of their connectivity is a task of considerable impor-
tance. Knowledge of the relative depths of landscape minima
provides thermodynamic information. The kinetics of transi-
tions between such states is determined by the type of terrain
(smooth, rugged, etc.) that surrounds and separates them, in
particular, by the location and height of the low-lying
saddles. The identification of important low energy molecu-
lar conformations in computational chemistry2 and the deter-
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mination of protein and peptide folding pathways,3 to name
but a few, rely on an ability to perform intelligent, targeted
searches of the energy landscape.

Molecular dynamics (MD) and Monte Carlo (MC) simu-
lations on energy landscapes are typically limited in the time
scales they can explore by the difference between the system
thermal energy and the height of transitional energy barriers.
A significant fraction of MD and MC simulation time is
spent bouncing around in local minima. Energy barriers
separating minima cause this type of trapping and the result
is long waiting times between infrequent, but interesting,
transition events. An array of techniques have been proposed
to overcome such time scale limitations including bias-
potential approaches,‘l’5 accelerated dynamics,6
variable dynamics,7’8 and transition path sampling,9’10 allow-
ing extensive exploration of the energy surface and its
transition states. The adaptive bias force method'"'? effi-
ciently samples configurational space in the presence of high
free energy barriers via estimation of the force exerted on the
system along a well-defined reaction coordinate. Short bursts
of appropriately initialized simulations are used in coarse-
variable dynamics8 to infer the deterministic and stochastic
components of motion parametrized by an appropriate set of
coarse variables. The use of a history-dependent bias poten-
tial in Ref. 13 ensures that minima are not revisited, allowing
for efficient exploration of a free energy surface param-
etrized by a few coarse coordinates. Accelerated dynamics
methods such as hyperdynamics and parallel replica
dynarnics6 “stimulate” system trajectories trapped in local

coarse-
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minima to find appropriate escape paths while preserving the
relative escape probabilities to different states. Transition
path sampling9 generalizes importance sampling to trajectory
space and requires no prior knowledge of a suitable reaction
coordinate (see also transition interface sampling”).

Many energy landscape search methods have been de-
vised (too numerous to discuss in detail here). Single-ended
search approaches (where only the initial state is known) are
based on eigenvector following (mode following)z’]s_19 and
have been used to refine details of MEPs close to saddle
points;zo’21 methods purely for efficient saddle point identifi-
cation also exist.”*** Chain-of-state methods are a more re-
cent class of double-ended searches that evolve a chain of
replicas (system states or images), distributed between initial
and final states, in a concerted manner.” The original elastic
band method’**’ has been refined and extended many
times.”**’ More recently string methods,*** which evolve
smooth curves with intrinsic parametrization, have been used
to locate significant paths between two states. The global
terrain approach of Lucia et al ¥ exploits the inherent con-
nectedness of stationary points along valleys and ridges on
the landscape for their systematic identification.

We build here on the equation-free formalism of Ref. 35
whose purpose is to enable the performance of macroscopic
tasks using appropriately designed computational experi-
ments with microscopic models. The approach focuses on
systems for which the coarse-grained, effective evolution
equations are assumed to exist but are not available in closed
form. One example is the case of legacy or black-box codes:
Dynamic simulators which, given initial conditions, integrate
forward in time over an interval At. Alternatively, the effec-
tive evolution equation for the system may be the unknown
closure of a microscopic simulation model such as kinetic
MC or MD. Rico-Martinez et al.* used reverse integration
in conjunction with microscopic forward-in-time simulators
to access reverse time behavior of coarse variables (see also
Ref. 37). Hummer and Kevrekidis® used coarse reverse inte-
gration to trace a one-dimensional (1D) effective free energy
surface (and to escape from its minima) for alanine dipeptide
in water. In this paper we use reverse integration in two
dimensions: A ring of system initial states is evolved (for-
ward in time in the inner simulation and then reverse in the
outer, coarse integration) to explore two-dimensional (2D)
potential energy (and, ultimately, free energy) surfaces. The
ring is evolved along the component of the local energy gra-
dient (projected normal to the ring) while a nodal redistribu-
tion scheme is used that slides nodes along the ring so that
they remain equidistributed in ring arc length, ensuring effi-
cient sampling. Transformation of the independent variable
in our basic ring evolution equation results in several distinct
stepping modes. The work in this paper follows 2D surfaces
that can be “swept by” a ring. We mention the work of
Henderson™  for computational exploration of higher-
dimensional manifolds (up to dimension 6 has been re-
ported). The computational effort scales exponentially with
the manifold dimension (the number of coarse variables in
our case).

The paper is organized as follows. In Sec. II we present
our reverse ring integration approach. Ring evolution equa-
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FIG. 1. Schematic of reverse projective integration. The thick gray line
indicates the position on the slow manifold as a function of time on a
forward trajectory. The solid circles are configurations along microscopic
trajectories run forward in time, as indicated by the short solid arrows. The
long dashed arrows indicate the reverse projective steps, which result in an
initialization near, but slightly off, the slow manifold.

tions are developed with time, arc length, or (effective) po-
tential energy as the independent variable. We illustrate these
stepping modes for a deterministic problem with a smooth
energy landscape (Miiller—Brown potential). In Sec. III re-
verse ring integration is investigated for two “noisy” prob-
lems: A Gillespie-type stochastic simulation and a MD simu-
lation of a protein fragment in water. Estimates of the
numerical values of the quantities in the ring evolution equa-
tion are found by data processing of the results of appropri-
ately initialized short bursts of the black-box inner simulator.
The extension to stepping in free energy is discussed. We
conclude with a brief discussion of the results and of the
potential extension of the approach to more than two coarse
dimensions.

Il. REVERSE INTEGRATION ON ENERGY SURFACES

Here we present an algorithm for (low-dimensional)
landscape exploration motivated by reverse projective inte-
gration, on the one hand, and by algorithms for the compu-
tation of (low-dimensional) stable manifolds of dynamical
systems on the other. Reverse projective integration37 uses
short bursts of forward-in-time simulation of a dynamical
system to estimate a local time derivative of the system vari-
ables, which is then used to take a large reverse projective
time step via polynomial extrapolation. This type of compu-
tation is intended for problems with a large separation be-
tween many fast stable modes and a few (stable or unstable)
slow ones; the long-term dynamics of the problem will then
lie on an attracting, invariant slow (sub)manifold. Reverse
projective integration allows us to compute “in the past,”
approximating solutions on this slow manifold by only using
the forward-in-time simulation code.

After each reverse projective step the reverse solution
will be slightly off manifold (see Fig. 1); the initial part of
the next short forward burst will then bring the solution back
close to the manifold, while the latter part of the burst will
provide the time derivative estimate necessary for the next
backward step. One clearly does not integrate the full system
backward in time (the fast stable modes make this problem
very ill conditioned); it is the slow, on manifold backward
dynamics that we attempt to follow. The approach can be
used for deterministic dynamical systems of the type de-
scribed; however, it was developed having in mind problems
arising in atomistic/stochastic simulation where the dynamic
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FIG. 2. Schematic of forward and backward stepping of ring nodes (light
circles) in time on an energy landscape in the vicinity of fixed point (dark
circles). Solid lines are energy contours, dashed lines connect ring nodes at
each step, and arrows indicate the direction of the ring evolution.

simulator is a MD or kinetic MC code. When (and if) the
dynamics can be well described by an effective (low-
dimensional) ordinary differential equation (ODE), or an ef-
fective stochastic differential equation (SDE), characterized
by a potential [and by an effective (low-dimensional) free
energy surface], reverse projective integration can be imple-
mented as an outer algorithm, wrapped around the high-
dimensional inner deterministic/stochastic simulator. The
combination of short bursts of fine scale inner forward-in-
time simulation with data processing and estimation and then
with coarse-grained outer reverse integration can then be
used to systematically explore these effective potentials (and
associated effective free energy surfaces).

A natural set of protocols for such an exploration has
already been developed (in the deterministic case) in dy-
namical systems theory—indeed, algorithms for the compu-
tation of low-dimensional stable manifolds of vector fields
provide the “wrappers” in our context (see the review in Ref.
40). This is easily seen in the context of a 2D gradient dy-
namical system: An isolated local minimum of the associated
potential is a stable fixed point and, locally, the entire plane
is its stable manifold; the potential is a function of the points
on this plane. In our 2D case, we approximate this stable
manifold in the neighborhood of the fixed point by a
linearization—this could be in the form of a ring of points
surrounding the fixed point. One can then integrate the gra-
dient vector field forward or backward in time (see Fig. 2)
keeping track of the evolution of this initial ring; using the
gradient nature of the system, one can compute, as a by-
product, the potential profile.

Various versions of such reverse ring integration have
been previously used for visualizing 2D stable manifolds of
vector fields. Johnson er al*' evolved a ring stepping in
space-time arc length (see below) with empirical mesh adap-
tation and occasional addition of nodes to preserve ring res-
olution, building up a picture of the manifold as the ring
expands. Guckenheimer and Worfolk** used algorithms
based upon geodesic curve construction to evolve a circle of
points according to the underlying vector field. A survey of
methods for the computation of (un)stable manifolds of vec-
tor fields can be found in Ref. 40, including approaches for
the approximation of k-dimensional manifolds. In this paper
we will restrict ourselves to the 2D case (and thus, eventu-
ally, explore 2D effective free energy surfaces).

Clearly, forward integration of our ring constructed
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based on local linearization around an isolated minimum will
generate a sequence of shrinking rings converging to the
minimum (stable fixed point). For a 2D gradient vector field,
backward (reverse) ring integration will grow the ring—and
as it grows on the plane, the potential on the ring evolves
uphill in the initial well, possibly toward unstable (saddle-
type) stationary points.

A critical issue in tracking the reverse evolution of such
a ring is its distortion, as different portions of it evolve with
different rates along the stable manifold (here, the plane).
Dealing with the distortion of this closed curve and the de-
formation of an initially equidistributed mesh of discretiza-
tion points on it requires careful consideration; similar prob-
lems arise and are elegantly dealt with, in (forward-in-time)
computations with the string method.** While we will first
implement our reverse ring integration on a deterministic
gradient problem (for descriptive clarity), our aim is to use it
as a wrapper around atomistic/stochastic inner forward-in-
time simulators; two such illustrations will follow.

A. The deterministic two-dimensional case

Consider a simple, 2D gradient system of the form

dx {dx/dt

—= 2.1
dt dyl/dt @1)

] =-VV(x,y).
In this case, since the vector field is explicitly available, with
x in R?, we can perform reverse integration by simply revers-
ing the sign of the right-hand side of Eq. (2.1); reverse pro-
Jective integration will only become necessary in cases where
the (effective) potential is not known, and the corresponding
gradients need to be estimated from forward runs of a many-
degree-of-freedom atomistic/stochastic simulator. Note also
that here the dependent variables x and y are known (as are
the corresponding evolution equations). For high-
dimensional problems with a low-dimensional effective de-
scription, selection of such good reduced variables (observ-
ables) is nontrivial; we will briefly return to this in Sec. I'V.

We start with a simple illustrative example: The Miiller—
Brown potential energy surface,** which is often used to
evaluate landscape search methods since the MEP between
its minima deviates significantly from the chord between
them. We focus here on reverse ring evolution starting
around a local minimum in the landscape and approaching
the closest saddle point as the ring samples the well.

The potential is given by

4

Vix,y) = E A; expla;(x — x?)z +bi(x— x?)(y - )’?
i=1

+cily _y?)z], (2.2)

where A=(-200,-100,-170,15), a=(-1,-1,-6.5,0.7), b
=(0,0,11,0.6), c=(-10,-10,-6.5,0.7), x°=(1,0,-0.5,-1),
and y°=(0,0.5,1.5,1). The neighborhood of the Miiller—
Brown potential we explore is shown in Fig. 3 along with a
listing of the fixed points, their energy, and their classifica-
tion. We first discuss the initialization of the ring and then
three different forms of “backward stepping:” Time stepping,
arc length stepping in (phase space) X time and potential
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FIG. 3. Contour map of the Miiller—Brown potential for —1 <x<1 and
-0.5<y<1. Contour lines are shown in black (white) for V(x,y)<0
[V(x,y)>0]. Stationary points of the potential, their classification, and en-
ergy are tabulated for the region illustrated.

stepping. Our initial ring will be the V=-105 energy contour
surrounding the minimum at (0.62,0.03).

A ring is a smooth curve @, here in two dimensions. In
our implementation, we discretize this curve and denote the
instantaneous position of the discretized ring by the vectors
;=D (a;,1)=[x(a;,1),y(a;,1)] (with @, in R?, ; in R) for
the coordinates of the ith discretization node, where ¢; is a
suitable parametrization. A natural choice is the normalized
arc length along the ring with «; €[0,1], as in the string
method but now with periodic boundary conditions. Note
that one does not need to initialize on an exact isopotential
contour; keeping the analogy with local stable manifolds of a
dynamical system fixed point, one can use the local
linearization—and more generally, local Taylor series—to
approximate a closed curve on the manifold. Anticipating the
energy-stepping reverse evolution mode, however, we start
with an isopotential contour here. This requires an initial
point on the surface; we then trace the isopotential contour
passing through this point using a scheme which resembles
the sliding stage in the step and slide method of Miron and
Fichthorn® for saddle point identification. We simply “slide”
along the contour to generate a curve I', moving (in some
pseudotime 7) perpendicular to the local energy gradient ac-
cording to

@_{ aVidy ] 03

dr |- aVldx

Points along the curve I' provide initial conditions for ring
nodes. Figure 4(a) illustrates ring initialization starting in the
well, close to the isolated local minimum, resulting in a
closed ring.

We note that our approach is closely related to estab-
lished landscape search techniques based on following Hes-
sian eigenvectors;z’ls_19 here the computation is performed in
a dynamical system setting: We use a dynamic simulator to
estimate time derivatives (and through them local potential
gradients) on demand.

J. Chem. Phys. 131, 134104 (2009)

FIG. 4. Distribution of nodes produced by integration of Eq. (2.3) with
initial condition above (white nodes and contour lines) and below (black
nodes and contour lines) the saddle point energy. Below the saddle point
there is a separation of isopotential contours in each well—the saddle point
isopotential contours split into two.

B. Modes of reverse ring evolution
1. Time stepping

When every point on a curve evolves backward in time,
it makes sense to consider the evolution of the entire curve in
the direction of the component of the energy gradient normal
to it [as also happens for forward time evolution in string
methods, commonly used to identify MEPs (Ref. 30)]. Ring
nodal evolution is given by

d, )
(V@) + T

" (2.4)

where T is the unit tangent vector to ® at ®,, with T
=(0®/da)/|0®/da| evaluated at d,, and r is a Lagrange
multiplier field* (determined by the choice of ring param-
etrization) used to distribute nodes evenly along the ring. The
component of the potential gradient normal to the ring (VV)*+
is defined as follows:

(VW)L =VV-(VV-DT=VV-(VV), (2.5)

where (VV)! is the component of the gradient parallel to the
ring. For the general case where (VV(®,))* is unavailable in
closed form (e.g., the inner integrator is a black-box time
stepper) we use (multiple short replica) simulations for each
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discretization node on the ring to estimate it, as will be dis-
cussed in Sec. III. In practice, the tasks of node stepping and
redistribution are often split into separate stages. The term
involving r in Eq. (2.4) is first omitted, and nodal stepping is
performed solving, backward in time, the N-node spatially
discretized form

do;
— = F(P,1)=- VV((Di)l,

i=1,2,...,N,
dt

(2.6)

where ®; denotes the position of node i in the discretized
ring. The normalized arc-length coordinate «; associated
with the ith node is approximated using the linear distance
formula

S N(@ -7 )7+ (D) - D))’

[0 F.x X ) ’
S N(@F - ®F )P+ (D) - D) ))?

(2.7)

i =

where (®7,®?) are the coordinates of node i. Periodicity of
the ring (which has N-2 distinct nodes) is imposed by the
set of algebraic equations

((I)i)r = ((I)N—2+i)n (2.8)
where evaluation at time ¢ is indicated by the subscript out-
side the parentheses. An explicit, backward in time, Euler
discretization for the N—2 distinct nodes reads

(D)ip = (D), - AtF(Dy1), i=2,3,...,N-1. (2.9)
Backward stepping in time is followed by a redistribution
step that slides nodes along the ring so that they are equally
spaced (or, generally, spaced in a desirable manner) in the
normalized ring arc length coordinate. These two basic steps
are also present in the (phase space) X time arc length or
potential stepping of the ring discussed below; they are sche-
matically summarized in Fig. 5.

Figure 6 shows snapshots of the ring as it evolves back-
ward in time—in the time-stepping mode—on the Miiller—
Brown potential. The ring quickly deviates from isopotential
contours as it climbs up the well. The local speed is propor-
tional to the local component of the potential gradient normal
to the ring; wide variation in nodal speeds causes the ring to
evolve unevenly, elongating along the directions of steepest
ascent. Initially equispaced ring nodes would, if not redis-
tributed, rapidly converge toward regions of high potential
gradients in our parametrization, resulting in poor resolution
in other areas. Even the redistribution of nodes, however,
will not suffice to accurately capture the ring shape as the
ring perimeter quickly grows, unless new nodes are added.

J. Chem. Phys. 131, 134104 (2009)

FIG. 6. Reverse time stepping on Miiller-Brown potential with Ar=5
X 107° and N=80 (successive rings are shown at intervals of ten steps and
arrows indicate direction of ring evolution).

2. Arc length stepping

Integration with respect to arc length in (phase) space
X time is a well known approach for problems where some
of the dependent variables change rapidly with the indepen-
dent variable (time). Johnson et al.*' used this vector field
rescaling to offset the concentration of flow lines in comput-
ing 2D invariant manifolds of vector fields whose fixed
points have disparate eigenvalues. Ring evolution by integra-
tion along the solution arc s is used here by transformation of
the independent variable for the system in Eq. (2.4). Details
of the transformation relation are provided in Appendix A.

In such an arc-length stepping mode, the ring evolution
for our potential (Fig. 7) is more robust to potential gradient
nonuniformities. However, ring growth now does not couple
to the actual topography of the landscape: In Fig. 7(b) it
“sags” along the y-direction and there is considerable varia-
tion in potential values along any instantaneous ring.

3. Potential stepping

Evolving in constant potential steps enables the ring to
directly track isopotential contours of the landscape. Poten-
tial stepping is shown schematically in one dimension in Fig.
8 for a potential minimum bracketed by a sharp incline on
one side and a more gradual one on the other. A (reverse)
step in the potential results in small variations in the
x-variable [(Ax);,(Ax),] when the terrain is steep and in
large x increments [ (Ax);, (Ax),] when it is shallow. A quali-
tatively different approach is that of Laio and Parinello"
who employed a history-dependent bias as part of free en-
ergy surface searching that fills free energy wells; using re-
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FIG. 7. Arc length stepping on Miiller—Brown potential with As=0.01 and
N=80 (successive rings are shown at intervals of ten steps and arrows indi-
cate direction of ring evolution).

pulsive markers actively prevents revisiting locations during
further exploration. Irikura and Johnson* used a combina-
tion of steps parallel and perpendicular to the energy gradient
in a version of isopotential searching to identify chemical
reaction products from a reactant configuration.

Here we directly transform the independent variable of
the evolution equations using the chain rule

(ﬂ) [a_VQ v )

-1
= Fy(®@,0, (210
av), " oot dr o0 dr ] U@at), - (2.10)

so that, as long as the quantity above is finite (e.g., away
from critical points), the ring evolution equations now be-
come
d®; do;( dt
—= —’(—) =F(D, )F/(D,,1), i=23,....N-1.
dv  dt \dV/,

2.11)
Note that F(®;,r) — in regions where the potential is flat

(dV/dt—0); we impose an upper limit on the change in the
variables ®; at each step of Eq. (2.11) when a threshold is

FIG. 8. Energy stepping in a smooth, asymmetric 1D energy well.

J. Chem. Phys. 131, 134104 (2009)

FIG. 9. Potential stepping on Miiller—Brown potential with AV=1.45 and
N=80 (successive rings are shown at intervals of ten steps and arrows indi-
cate direction of ring evolution).

exceeded. Potential-stepping ring evolution on the Miiller—
Brown potential is shown in Fig. 9: The ring rises in a bal-
anced manner within the well and successive rings are in-
dicative of the topology of the local landscape. The energy
well is sampled evenly, tracking the potential contours. The
almost linear segment of the ring visible in the final snapshot
in Fig. 9(a) is formed as the ring approaches the (stable
manifold of the) saddle point on the potential at (0.21,0.29);
no further uphill motion, normal to the ring, is possible in
this region. When such a situation is detected, one actively
intervenes and modifies the evolution to assist the landscape
search; examples of this will be given below.

C. Adjacent basins

The reverse integration for the example in Sec. II B con-
sisted in initialization close to the bottom of a single well,
ring evolution uphill, and approach to the neighboring saddle
point. We now discuss a reasonable strategy for transitioning
between neighboring energy wells.

Figure 10 shows the results of reverse ring integration
for three different initial rings, one close to the bottom of
each of the wells of the Miiller-Brown potential. Reverse
integration here maps out the basin of attraction of each of
the wells. For each initial condition, the reverse integration
stalls in the vicinity of neighboring saddle points and ring
nodes flow along the stable manifold of the corresponding
saddle. As the ring nodes approach a saddle point the com-
ponent of the energy gradient normal to the ring [(VV(®,))*]
starts becoming negligible. To examine transitions between
neighboring basins on the landscape we can employ global
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2

FIG. 10. Potential stepping on the Miiller—Brown potential with AV=0.75 and N=160 [(successive (colored) rings are shown at intervals of ten steps].
Successive rings obtained by reverse integration starting from each of the minima on the landscape are shown.

terrain methods™ that exploit the inherent connectedness of
stationary points along valleys and ridges on the landscape.
Figure 11 indicates the basins of attraction for each of the
minima (identified using reverse integration) along with a
red curve, which connects points that minimize the gradient
norm along level curves of the potential (a MEP). This in-
formation is accumulated as the ring integration proceeds
and suggests the direction to follow to locate neighboring
minima. Upon detecting a local stagnation of ring evolution,
caused by the approach to a saddle, a simple strategy is to (a)
perform a local search for the saddle, through a fixed point
algorithm, (b) compute the dynamically unstable eigenvector
of this saddle, and (c) initialize a downhill search on the
other side along this eigenvector away from the saddle point.
This search for the nearby minimum may be through simple
forward simulation or (in a global terrain context) by follow-
ing points that minimize the gradient norm along level po-
tential curves as above. This leads to the detection of a
neighboring minimum, from which a new ring can be initial-
ized and a further round of reverse integration performed.
We reiterate that the procedure described so far (for purposes
of easier exposition) is only for 2D, deterministic landscapes.

lil. ILLUSTRATIVE PROBLEMS FOR EFFECTIVE
POTENTIAL SURFACES

In this section we present coarse reverse integration us-
ing effective potential stepping for two noisy problems: A

(@)

Gillespie-type stochastic simulation algorithm (SSA) and a
MD problem (alanine dipeptide in water). We assume that
the problems we consider—in the regime we study them
computationally—may be effectively modeled by the follow-
ing bivariate SDE (all the examples studied are effectively
2D):

dX:d{Xl]z[vl(X)]dt+[D O]d{wlt], 3.1)
X, v, (X) 0 DJ [Wy

where v,(X) and v,(X) are drift coefficients, the diffusion
matrix D is proportional to the unit matrix &; with
D;;=Dé;; (a scalar matrix), where D is a constant, and Wy,
and W,, are independent Wiener processes. We previously
considered (Sec. II B) a deterministic example where nu-
merical estimates for potential gradients were used to imple-
ment potential stepping. In the deterministic case, the drift
coefficients are equal to minus the gradient of a potential V.
For stochastic problems, such as those considered in this
section, the drift coefficients are not so simply related to the
gradient of an effective (generalized) potential (see Appendix
C for additional discussion of this for 1D stochastic sys-
tems). In general, for reverse integration with steps in effec-
tive potential, we require estimates of all drift coefficients
and all entries in the diffusion matrix (and even their partial
derivatives). Here we discuss effective potential stepping for
a system of the form given in Eq. (3.1) and also briefly

0.51

(b)

FIG. 11. Potential stepping on Miiller-Brown potential with AV=0.75 and N=160 [successive (colored) rings are shown at intervals of 30 steps]. Positions
(red circles) of the minimum in gradient norm along the ring are shown at intervals of five steps in ring integration. Two different viewpoints of the same ring
evolution are shown (consistent coloring of rings in each viewpoint). Black arrows indicate the direction of ring evolution out of each minimum. Left:
Three-dimensional (3D) view; right: 2D overhead view (gray arrow indicates position of 3D view shown left).
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discuss the general case where entries of the diffusion matrix
are nonzero and dependent on X.

We assume Eq. (3.1) exists but is unavailable in closed
form; estimates are therefore obtained by observing the pro-
cess X and using v (X)=limy,_([AX,])/Ar, vy(X)
=lim,,_([AX,])/ At and 2D =lim,, o{([AX,]?)/At
=limy,_o([AX,]*)/ At. Here AX,=X,(t+Af)—X,(t) and, by the
form of Eq. (3.1), limy, ,o(AX;AX,)/At=0. We note that the
limit corresponds to A¢ small but nonzero because the short
bursts are short with respect to the time scale of the slow/
coarse variable but sufficiently long for equilibration of the
remaining system variables. Additionally, the time step size
required for accurate estimation of the drift coefficient differs
from that required for the diffusion coefficient
estimation.***’

These formulas, especially the ones for the drifts, sug-
gest the construction of a useful coarse “pseudodynamical”
evolution for our ring—a coarse evolution that follows the
potential of mean force (PMF). The simplest version of these
pseudodynamics evolves each point on the ring based on the
local estimated drift—for the constant scalar diffusion men-
tioned above this evolution follows the PMF, and it becomes
a true dynamical evolution at the deterministic limit.

For a black-box code implementing Eq. (3.1) this in-
volves initializing at X, running an ensemble of realizations
of the dynamics for a short time ¢, estimating the local drift
components of the SDE using the above formulas, perform-
ing a (forward or backward) projective step Ar in time
[AX;=v;(X)Ar], and repeating the process. Further details of
our estimation approach are provided in Appendix B.

We will argue that this accelerated pseudodynamical
evolution (which we emphasize does nor correspond to real-
izations of the SDE itself) can assist in the exploration of
effective potential surfaces. The easiest approach would be to
use reverse time stepping, or reverse arc length stepping in
these pseudodynamics, and then (using formulas that will be
discussed below and in Appendix C) finding the effective
potential corresponding to each node visited. It is also pos-
sible, as we will see, to directly make upward steps in the
effective potential; indeed, for the constant diffusion coeffi-
cient case we are studying, a proportionality exists between
backward steps in time (for the pseudodynamics based on the
drifts) and upward steps in the effective potential.

If the system in Eq. (3.1), with scalar diffusion matrix,
has drift coefficients that satisfy the following potential con-
dition:

v (X) _ Iv,(X)

b 3 .2
X, oxX, (3:2)

it follows that the probability current vanishes at equilibrium,
the drift coefficients (the time derivatives in our ring pseudo-
dynamics) satisfy

JI(BE™)

—_pP— 3.3
vi==D=C (3.3)

l

and the difference in effective generalized potential (free en-
ergy) between a reference state (X(l) ,Xg) and the state (X,,X,)
may be directly computed from the following line integral:48
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X
ﬂAEeff=_D—1< f (X X9)ax]
X
X
+ f 0 vz(xl,x;)dx;). (3.4)

X3

The analogy with the deterministic case [Egs. (2.10) and
(2.11)] carries through: The estimated drifts are proportional
(via the constant D) to the effective potential gradients, and
evolution following the drifts directly corresponds (modulo
the proportionality constant) to evolution in the effective po-
tential (PMF). Estimates of the local effective diffusion co-
efficients are typically necessary for exploration of the effec-
tive potential surface. We note that for a diagonal diffusion
tensor with identical entries, Eq. (3.1), the size of the step
BAE®T is scaled [in Eq. (3.4)] by the diffusion constant D. It
follows that estimation of only the drift coefficients v,(X)
and v,(X) allows us to perform reverse integration in our
coarse dynamics [associated with the potential of mean force
(PMF)]. A backward in time step Az, leading to the state
change AX;=v;(X)A¢, is, in effect, an “upward” step in the
effective potential with the (unknown) scaled step size
DBAE®™. This approach is analogous to (and, in the appro-
priate limit will approximate) the deterministic potential
stepping previously described (Sec. II B). Here, for a sto-
chastic problem, we need to additionally estimate diffusion
coefficients to compute the potential change associated with
each ring step uphill and, thereby, the effective free energy
change associated with each ring.

For the general diffusion matrix D(X), with all entries
possibly nonzero and dependent on X, we would compute
the following partial derivatives of the effective potential:

I(BE oD, oD
AEE) )EA1=<D(X))I%<—“+—”—v1)
X, X, 0X,
oD>, 9D
+(D(X ‘1( L ) 3.5
(D(X))1, X, T, Uy (3.5)
I(BE oD, D
ABET) EA2=(D(X))5%(—” = —vl)
X, X, oX,
_1[ ¥D21 9Dy, )
+(D(X 1(—+—— , 3.6
(D(X))3, x, tx, vy (3.6)

and test whether the following potential condition is
satisfied:*

9AL(X)  9ALX)

3.7
X, oxX, (3.7)

If these potential conditions are satisfied then the effective
generalized potential (free energy) may again be directly cal-
culated from the following line integral:4



134104-9 Coarse reverse integration
X
BE(X,,X,) = BE*(X).X9) + f | XL X5)dX]
X

X
+ fxo Ay(X1,X5)dX]. (3.8)

2

We do not consider the case when Eq. (3.7) does not hold;
we refer the reader to Ref. 48.

In the same spirit with reverse ring stepping in potential
(Sec. II B), reverse ring stepping in effective potential may
also be accomplished, subject to the stated assumptions, us-
ing the inner integrator as a black box: We run multiple
replicas for particular initial conditions (the positions of
nodes in the ring), observe (inner) forward time evolution,
and, for a scalar diffusion matrix, use the estimated drifts and
Eq. (3.4) to approximate changes in the effective potential
numerically. We note that for a constant and isotropic diffu-
sion tensor if we estimate only the drift coefficients we can
still perform reverse ring stepping in the correct uphill direc-
tion and follow isopotential surfaces but the actual step size
(and thus the actual value of the potential on the isopotential
surfaces) will be unknown. As reverse ring integration pro-
ceeds, we store all calculated effective gradient values at
each set of coarse-variable values, thereby building a data-
base. Smoothed gradient estimates may be obtained for each
ring node by using a weighted gradient average that includes
estimates at nearby coarse-variable values in the database;
we use kernel smoothing49 to select appropriate weights. For
the more general case of state-dependent diffusion the drift
dynamics do not simply correspond to dynamics in the ef-
fective potential [see Appendix C for corrections to d®;/dr
required to retain the analogy to the deterministic equations
(2.10) and (2.11)]. One could still employ the uncorrected
drift dynamics as an ad hoc search tool (especially for prob-
lems close to scalar diffusion matrices) and postcompute the
effective potential values the ring visits. In this case, how-
ever, the time parametrization of the effective potential evo-
lution will not be meaningful and will even dramatically fail
in the neighborhood of drift steady states that do not corre-
spond to critical points in the effective potential (and vice
versa).

A. A Gillespie-type SSA inner simulator example

The stochastic description of a spatially homogeneous
set of chemical reactions, which treats the collisions of spe-
cies in the system as essentially random events, is based on
the chemical master equation.so The Gillespie SSA is a MC
procedure used to simulate a stochastic formulation of
chemical reaction dynamics that accounts for inherent sys-
tem fluctuations and correlations—this procedure numeri-
cally simulates the stochastic process described by the spa-
tially homogeneous master equation.51 At each step in the
simulation a reaction event is selected (based on the reaction
probabilities), the species numbers updated (according to the
stoichiometry of the reactions), and the time to the next re-
action event computed. The reaction probabilities used in the
algorithm are determined by the species concentrations and
reaction rate constants as described in Ref. 51. The inner
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stochastic simulation routine we use here happens to employ
an explicit tau-leaping scheme that takes larger time steps to
encompass more reaction events while still ensuring that
none of the propensity (reaction probability) functions in the
algorithm changes signiﬁcantly.52 The reaction events we
simulate are chosen to implement a mechanism which, at the
limit of infinitely many particles, would be described by the
deterministic gradient system with potential V(x,y) defined
as follows:

Vix,y)=10(x*> - 1)*+ 2x + %(y—x)z. (3.9)

Consider the following deterministic rate equations:

dx ) 5
—=—k1x+k2x —k3x +k4—k5x+k6y,

i (3.10)

d
L o kx—kgy + k. (3.11)

dt
This set of deterministic (coarse) rate equations may be writ-
ten, for this problem, in the form of the following gradient
system:

dx )
— ==-VV*(x,y),

0 (3.12)

where x may be interpreted here as a vector of chemical
species concentrations, and the potential energy function
V*(x,y) is given by

_ (ky +k5)x2— ky 5 ks

+ —=x* — kyx — ksxy

Vix.y) 2 ER

k
+ 2V =kt kg, (3.13)

with

k5=k6. (314)

Values for the rate constants are selected by requiring
Vi(x,y)=V(x=5,y=20) [i.e., V¥(x,y) is selected as a shifted
version of the V(x,y) from the previous example, with its
fixed points in the positive xy quadrant, in an attempt to
enforce positivity of the reaction probabilities required by
the Gillespie algorithm]. The rate constant values chosen are
k1=2960, k,=600, k3=40, ky=4783, ks=k¢=1, and k,=15.
This models the following hypothetical set of elementary
reactions:

ky

X—T, (3.15)
_k
2X + U=3X, (3.16)
k3
_Ka
V—X, (3.17)
ks
X=Y, (3.18)
ke
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FIG. 12. Left: 100 rounds of drift potential-stepping ring evolution using an explicit tau-leaping inner Gillespie simulator with N=200; nodal redistribution
is performed every ten reverse ring integration (coarse Euler) steps. The ring is initially centered at (—1,—1). Fifty replica Gillespie simulation runs are
performed, each run with 10 000 particles and the explicit tau-leaping parameter €=0.03. For the reverse integration AV=5X 1072, Contours of the function
V(x,y) [defined in Eq. (3.9)] are shown. Right: 3D view of reverse ring integration shown left with estimated potential of each node shown according to the
color bar. Evolving ring nodes with x<<—1.2 are omitted for clarity. Contours of the function V(x,y) [defined in Eq. (3.9)] are shown in 3D. Points on a single
representative potential contour (as computed using reverse integration) are plotted as black symbols in the V(x,y)=-10 plane at the base of the figure; points

along the actual potential contour are shown as red symbols.

kg

W—Y, (3.19)

where species X (Y) has concentration x (y), the species T,
U, V, and W are assumed to have unchanging concentration
1, and the reactions in Egs. (3.17) and (3.19) follow zeroth
order kinetics.

For the number of particles used in this Gillespie simu-
lation, the drift coefficients estimated from the simulation
practically coincide with the right-hand side of the determin-
istic rate equations, which happen to embody the gradient of
the deterministic potential V(x,y) [Eq. (3.9)]. The results of
reverse ring integration up this deterministic potential, with
drifts estimated from our Gillespie simulation, are shown in
Fig. 12. The left panel shows nodal evolution over 100
rounds of reverse integration. In the right panel we superim-
pose the nodal evolution (with estimated potential indicated
by color) on contours of the potential V(x,y) [defined in Eq.
(3.9)] for the deterministic gradient system in the form of Eq.
(2.1). Since we are using an explicit tau-leaping Gillespie
scheme, we do not have accurate estimates of the diffusion
coefficients of the underlying chemical Fokker—Planck equa-
tion (FPE).” For this problem these entries in the diffusion
matrix cannot be well approximated as state independent,
and a more involved process that includes their estimation is
required in order to construct the true effective potential.

B. Alanine dipeptide in water

In this subsection we study the coarse effective potential
landscape of alanine dipeptide (i.e., N-acetyl alanine
N'-methyl amide) dissolved in water using coarse reverse
(effective potential-stepping) integration. This system is a
basic fragment of protein backbones with two main torsion
angle degrees of freedom ¢ (C-N-C,~C) and ¢
(N-C,—C-N), and with polar groups that interact strongly
with each other and with the solvent. Extensive theoretical

and experimental investigation of the alanine dipeptide has
suggested good coarse observables (dihedral angles) for this
system.54_5 6 Figure 13 shows the effective free energy land-
scape as a function of the dihedral angles ¢ and ¢ of the
alanine dipeptide. The structures of the alanine dipeptide in
the a-helical (/=-0.3) and extended (/=) states (corre-
sponding to minima on the landscape) and at the transition
state between them are also shown. We will use reverse in-
tegration on the effective potential energy landscape param-
etrized by these coarse coordinates. The coarse reverse inte-
gration is “wrapped around” a conventional forward-in-time
MD simulator. It provides protocols for where (i.e., at what
starting values of the coarse variables) to execute short bursts
of MD, so as to map the main features of the effective po-
tential surface (minima and connecting saddle points). These

FIG. 13. Free energy landscape for the alanine dipeptide in the ¢-¢ plane
(1kgT contour lines). Structures are shown corresponding to the right-
handed a-helical minimum (left), the extended minimum (right), and the
transition state between them (middle).
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short bursts of appropriately initialized MD simulations pro-
vide [via estimation of the coefficients in Eq. (3.1)] the de-
terministic and stochastic components of the alanine dipep-
tide coarse dynamics parametrized by the selected coarse
variables. The current work assumes a diffusion matrix [Eq.
(3.1)] that is diagonal with identical constant entries. Our
MD simulations of the alanine dipeptide in explicit water are
performed using AMBER 6.0 and the PARM94 force field. The
system is simulated at constant volume corresponding to 1
bar pressure, and the temperature is maintained at 300 K by
weak coupling to a Berendsen thermostat. All simulations
use a time step of 0.001 ps. The “true” effective potential
here is the one obtained from the stationary probability dis-
tribution as approximated by a long MD simulation (24 ns).

A preparatory “lifting” step is required at each reverse
integration step for each ring node. Each coarse initial con-
dition is lifted to many microscopic copies conditioned on
the coarse variables ¢ and . This step is not unique, since
many configurations may be constructed having the same
values of the coarse variables. Here we lift by performing a
short MD run with an added potential V°™" that biases (as in
umbrella sampling) the coarse variables toward their target
values (€, p'e),

yeonstr _ ki//(l/I_ lﬁtarg)Z/z + k¢(¢ — ¢targ)2/27 (320)

with k,=k,=100 kcal mol~! rad™!. The short lifting phase
provides sufficient time for the fast variables to equilibrate
following changes in the coarse variables. Following initial-
ization we run and monitor the detailed MD simulations over
short times (0.5 ps) and estimate, for each node in the coarse
variables, the local drifts over multiple replicas. Each coarse
backward Euler step of the ring evolution provides new
coarse-variable values at which to initialize short bursts of
the MD simulator. Each step in the reverse integration pro-
cedure consists of lifting from coarse variables (the coordi-
nates of the ring nodes) to an ensemble of consistent micro-
scopic configurations, execution of multiple short MD runs
from such configurations, restriction to coarse variables, es-
timation of coarse drifts and diffusivities, and reverse Euler
stepping of the ring in the chosen evolution mode.

Figure 14 (left panel) shows ring nodes for 30 steps of
reverse ring integration (using N=12 nodes) initialized
around the extended structure minimum. Successive rings
evolve up the well and are representative of the well topol-
ogy. Reverse integration stalls, as expected, at the saddle
points neighboring the extended structure minimum and
identifies candidate saddle points in these regions. We note
that, in the current context of (assumed) constant diffusion
coefficients we can think of these saddles as steady states of
the set of deterministic ODEs, coinciding with the drift terms
of the effective Fokker—Planck. Then the “dynamically un-
stable” directions in a saddle (the downhill ones) are charac-
terized by positive eigenvalues of the Jacobian of the drift
equations; yet since these equations are proportional to the
negative of the gradient of a potential, positive eigenvalues
of the dynamical Jacobian correspond to negative eigenval-
ues of the Hessian. The eigenvectors associated with the un-
stable (for our PMF-related coarse dynamics) eigenvalue at
these candidate saddles are also indicated in Fig. 14 and
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FIG. 14. Alanine dipeptide ring integration. Left panel: Extended structure
minimum: 30 rounds of reverse (coarse Euler) ring integration (number of
ring nodes N=12) with scaled effective potential steps. Note that the scaled
steps correspond to constant steps in free energy only if the effective diffu-
sion tensor is diagonal with identical, constant entries, which appears to be
a good approximation here. Eigenvectors corresponding to positive eigen-
values for candidate saddle points determined from ring integration are
shown (long red arrows). Right panel: Downhill runs initialized at transition
regions suggested by the reverse ring integration from the extended structure
minimum. Initial conditions (black dots) are generated by umbrella sam-
pling at a target coarse point selected by perturbation along the unstable
eigenvector at the saddle. Final conditions for these downhill runs (red dots)
suggest starting points for new rounds of reverse integration from adjacent
minima. (1kzT contour lines used in both plots). Note that both wells are
plotted rotated by 90° relative to Fig. 13.

suggest the directions to dynamically follow to locate neigh-
boring minima. We perturbed in the direction of the unstable
eigenvector (associated with positive eigenvalue) away from
one of the candidate saddle points and initialized (using a
constrained potential, as before) multiple MD runs from this
location. In Fig. 14 (right panel) we plot the observed evo-
lution from these initial conditions down into the basin of the
adjacent a-helical minimum.

In Fig. 15 we show reverse ring evolution initialized
close to both a-helical and extended minima. Clearly reverse
ring evolution in this a-helical minimum well takes larger

V [rad]

FIG. 15. Alanine dipeptide in water: 30 rounds of coarse reverse ring evo-
lution (number of ring nodes N=12, DBAE*"=0.05k;T) initialized in the
neighborhood of both the right-handed a-helical minimum (bottom ring)
and the extended minimum (top ring). Rings (gray lines) connecting nodes
(black solid circles) are shown. Colored energy contours are plotted at in-
crements of 1kgT.
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steps in ¢, in which direction the effective potential is shal-
lowest. We repeat that the reverse integration steps corre-
spond to constant steps in free energy only if the effective
diffusion tensor is diagonal and constant in both directions.
The ring evolution shown in Fig. 15 appears to accurately
track equal free energy contours suggesting that these as-
sumptions (on the form of the diffusion tensor) may provide
a suitable approximation here.

IV. SUMMARY AND CONCLUSIONS

We have presented a coarse-grained computational ap-
proach (coarse reverse integration) for exploration of low-
dimensional effective landscapes. In our two-coarse-
dimensional examples an integration (outer) scheme evolves
a ring of replica simulations backward by exploiting short
bursts of a conventional forward-in-time (inner) simulator.
The results of small periods of forward inner simulation are
processed to enable large steps backward in time
(pseudotime in the stochastic case), in (phase space) X time
or in potential in the outer integration. We first illustrated
these different modes of reverse integration for smooth, de-
terministic landscapes. We extended the most promising ap-
proach for an illustrative deterministic problem, isopotential
stepping, to relatively simple noisy (or effectively noisy) sys-
tems where closed-form evolution equations are not avail-
able. Simple estimation techniques were applied here to the
results of appropriately initialized short bursts of forward
simulation used locally to extract stochastic models with
constant diffusion coefficients. Reverse integration in a
single well and the approach to/detection of neighboring
coarse saddles was demonstrated. A brief discussion of glo-
bal terrain approaches for exploring potential surfaces was
included, along with a short demonstration of linking our
approach to them. The main idea is to combine the compu-
tation of primary features of the energy landscape (saddles,
minima) with more global mapping of the terrain in which
they are embedded and the ability to progressively explore
nearby basins and their connectivity.

We have presented here ring exploration using an effec-
tive potential using only estimation of the drift coefficients of
our effective coarse model equations. Estimation of the dif-
fusion coefficients (and their derivatives) is additionally re-
quired to quantitatively trace the effective potential surface.
More sophisticated estimation techniquesS7’58 allow for reli-
able estimation of both the stochastic and deterministic com-
ponents of the coarse model equations. This permits a quan-
titative reconstruction of the effective free energy surface
(and thereby the equilibrium density) using our reverse inte-
gration approach. The latter reconstruction is possible pro-
vided that the potential conditions discussed in Sec. III hold;
testing this hypothesis should become an integral part of the
algorithm.

In studies of high-dimensional systems, a central ques-
tion is the appropriate choice of coarse variables used in the
reverse integration. For high-dimensional systems, such as
those arising in molecular simulations, the dynamics can
typically be monitored only along a few chosen “coarse”
coordinates. Formally, an exact evolution equation can be

J. Chem. Phys. 131, 134104 (2009)

derived for these coordinates with the help of the projection-
operator formalism,” but that equation will be non-
Markovian even if the time evolution in the full space is
Markovian. To minimize the resulting memory effects, one
can attempt to identify good (i.e., nearly Markovian) coordi-
nates a priori, e.g., based on the extensive experience with
the problem (as, say, in hydrodynamics) or by data
analysis.60’61 Alternatively, one can monitor the dynamics in
a large space of trial coordinates and select a suitable low-
dimensional space on the fly (e.g., from principal component
analysis62). In general problems, where good coordinates are
not immediately obvious, careful testing of the Markovian
character of the projected dynamics on the time scale of the
coarse forward or reverse integration will be an important
component of the computation.f’l’63

For the alanine dipeptide in water, we assumed that the
effective dynamics could be described in terms of a few
coarse variables known from previous experience with the
problem: The two dihedral angles. We are also exploring the
use of diffusion map techniques64 for data-based detection of
such coarse observables, in effect trying to reconstruct Fig.
15 without previous knowledge of the dihedral angle coarse
variables. An example of mining large data sets from protein
folding simulations to detect good coarse variables using a
scaled isomap approach can be found in Ref. 65; linking
coarse variables with reverse integration for this example is
discussed further in an upcoming publication.66 All the work
in this paper was in two coarse dimensions. In the context of
invariant manifold computations for dynamical systems
(which provided the motivation for this work) more sophis-
ticated algorithms exist for the computer-assisted exploration
of higher-dimensional manifolds (as high as six
dimensional).**™ It should be possible—and interesting!—to
use these manifold parametrization and approximation tech-
niques in combination with the approach presented here to
test the coarse dimensionality of effective free energy sur-
faces one can usefully explore.
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APPENDIX A: ARC LENGTH TRANSFORMATION
RELATION

Consider a phase space-time arc length s that allows a
projection
A7=A7+AT+A] (A1)

. . . 67 -
The required transformation relation”" is

x\2 y\2]-12
) 2 ()T .
ds/; dt dt

with coordinates (P}, ®;) for node i. The transformed nodal
evolution equation, with solution arc length as the indepen-
dent variable, is given by
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dd; do;( dt
_=_<_) ZF(q)i,t)FS(CDi,t), i=2,3,...,N—1,
ds dt \ds/;

1

(A3)

where F is as defined in Eq. (2.6), and the ring boundary
conditions remain periodic.

APPENDIX B: ESTIMATION

In the Gillespie case (Sec. IIl A) we only allow our-
selves to observe sample paths generated by the simulator
which is treated as a black box (similarly for the MD simu-
lator). A simple approach to estimating effective potential
gradients (and eventually free energy gradients) is to perform
sets of M-replica bursts of inner (Gillespie, MD) simulation
initialized at each of the N ring nodes. For short replica
simulation bursts (with n time steps), we can assume a local
first order in time model® for the mean ¥ (an n X2 matrix,
with entries averaged using multiple replicas, rows corre-
sponding to time abscissas, and columns corresponding to
each coarse variable),

x=1IC+e€, (B1)

where 7=[1 ] is an n X 2 matrix, 1 is a vector of n ones, # is
a vector of n time abscissas, € is the n X2 matrix of model
errors, and C is the 2 X 2 matrix of parameters computed (for
each node) using least-squares estimation. The (pseudotime)
derivative information (in the matrix C) is required, along
with approximations of the tangent vectors at each node (ring
geometry) to update the ring node positions in a reverse in-
tegration step; diffusion coefficients are also required, as dis-
cussed further below, to compute the relation between a re-
verse integration step size in pseudotime and the
corresponding change in the effective potential. In the paper
reverse ring time stepping is always meant in terms of the
drift-based pseudodynamics (it only becomes true time step-
ping in the deterministic limit).

This derivative information may also be used to confirm
the existence of an effective potential. For the case of two
effective coarse dimensions, we locally compare, computing
on a stencil of points, the X,-variation in dX,/dt with the
X;-variation in dX,/dt (testing for equality of mixed partial
derivatives of the effective potential). Alternatively, we may
use a locally affine model for the drift coefficients of the
following form:

|:UI(X)

vz(X)} =AX+B, (B2)

with A € R**? and B € R?, and employ maximum likelihood
estimation techniques to obtain A and B (an effective poten-
tial exists provided A,=A,;). In this context, recently devel-
oped maximum likelihood® or Bayesian58 estimation ap-
proaches are particularly promising, allowing for
simultaneous estimation of both the drift and diffusion coef-
ficients. These approaches assume that the data are generated
by a (multivariate) parametric diffusion; they employ a
closed-form approximation to the transition density for this

diffusion. For the case of a 1D diffusion process )?
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dX = w(X; 0)dt + o(X; 0)dW,, (B3)

where W, is the Wiener process, 6 is a parameter vector, w is
the drift coefficient, and o is the diffusion coefficient, the
corresponding log likelihood function 7,(6) is defined as

1,(0) = 2 In[pg(A, Xl X(i_1)as 0)], (B4)
i=1

where n is the number of time abscissas, fm is the ith
sample, and A is the time step between observations in the
time series. The derivation of a closed-form expression for
the transition density py (and thereby the log likelihood func-
tion) allows for maximization of [, with respect to the pa-
rameter vector @ providing “optimal” estimates for the drift
and diffusion coefficients associated with the time series. For
higher-dimensional problems (such as the 2D ones consid-
ered here) see Ref. 57.

APPENDIX C: STATIONARY PROBABILITY
DISTRIBUTION AND EFFECTIVE FREE ENERGY

We discuss here the effective potential [effective free
energy E(4)] we attempt to compute through reverse inte-
gration and its relation to the form of the stationary probabil-
ity distribution Py(i) for a 1D FPE.

In one dimension we write the FPE [with drift

Kip(t; )

v(’lfo)=T (Cn

and diffusion coefficient

1Kt o)) — (e o))
2 ot ’

D(ip) = (C2)

where i(t; iy is a sample path of duration ¢ initialized at i,
when r=0] as follows:

IP(¢t)
a

AS(ip,1)
Iy

b}

- (?il//v(l//) + %D(lﬂ) P(i,1) =—
(C3)

where the probability current S(i,1) is given by
S(p.t) =v ()P (1) = (91dp) D() P(ih1). (C4)

In one dimension, the stationary probability distribution cor-
responds to a constant probability current;”® for natural
boundary conditions this constant is zero and stationary so-
lutions of the FPE satisfy

V() Py(4) = (910h)D(h) Py(h) = 0, (C5)
which is readily solved for (the logarithm of) Py,
In Py() =—1In D(¢)+f¢—v(d/)d¢’+const. (C6)
’ D(y/')

The connection between the stationary probability distribu-
tion and the effective potential (effective free energy) for
systems with a characteristic temperature/energy scale (given
by the parameter B'=kgT) is provided by the ansatz
Py ()% PE" ) Substitution of the ansatz into Eq. (C6)
gives
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v(¥')
D(y/')

In Sec. III, after the fitting of model SDEs, we discussed
the use of local estimates of the drift and diffusion coeffi-
cients in taking steps in some form of the effective potential
for two example systems; we consider the basis of this ap-
proach here in one dimension. For the Gillespie problem of
Sec. III reverse ring stepping results were compared to par-
ticular deterministic potentials V() [Eq. (3.9)]. For the ala-
nine dipeptide problem the results of reverse ring stepping
were compared to an effective potential derived from the
stationary probability distribution of the system (with the
additional assumption of state-independent diffusion coeffi-
cients).

If, alternatively, we start from the Langevin equation

gr=— YW+ fo(p) + T(1),

where (i) is the friction coefficient, f,(#) is a deterministic
force [minus the gradient of a deterministic potential func-
tion V()], ()4 is a drag force, and I'(r) is the stochastic
force, and take the high friction (overdamped) limit we ob-
tain

———dy/ + const. (C7)

BE () =1n D(¢) - f

(C8)

flp)  I@)
Yy  wp)

The fluctuation-dissipation relation connects (correlations of)
the stochastic force to the drag force as follows:

298t — 1)
B

for a system at “temperature” T (energy scale kzT=8").
Using It6 calculus we interpret Eq. (C9) as

= (C9)

T (t+7)= (C10)

R [T
dg=" i AW (C11)
with
fo(@ 1 dv(y)
Y= T W) du (c12)
T 1
= = Cl13
DW= = B (C13)

This establishes a correspondence of the Langevin equation
with the FPE in Eq. (C3).

For the case of additive noise, where D(i)=D=const
(implying [by Eq. (C13)] that y(i)=y=const), we find [by
differentiation of Eq. (C7) with respect to ] that the drift
coefficient v(¢) is simply related to the effective potential
E°* as follows:

d<¢>>_ LAEy) _dBE(9) C14)

y dy dy
In this case, pseudodynamical reverse integration following

drifts (as performed for the model SDE problem) coincides
with stepping in effective potential (appropriately scaled

(d/)(
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with the constant diffusion coefficient). Using Eq. (C12) in
Eq. (C14) we find

dBv(Y) _dBE" (W) 14y
d¢ ~  dy D dt’

(C15)

For the case of multiplicative (state-dependent) noise the
drift coefficient v(#) is not directly related to the gradient of
the effective potential E°T extracted from the equilibrium
density; instead, it satisfies

_d<¢/>) _ L e d(ﬁEefW))
”(@(‘ a )= aw P
(C16)
where
1 ’
reff __ U(lﬂ) ’
BE () = fD(W)dtp + const. (C17)

with BE® differing from BE by the state-dependent con-
tribution In D(¢). For such systems with state-dependent
noise we require (local) estimates of both drift and diffusion
coefficients for effective potential stepping. These can be
used in Eq. (C7) [Eq. (C17)] to compute (differences in) the
true effective potential E° (the “auxiliary” effective poten-

tial Ee“),
dBE(y) _ 1 dp) 1 dD(y)
dys D(yp) dt  D(y) dy

When temperature is not part of the problem description one
considers the SDE

(C13)

di=A(p)dt + B()dW,, (C19)
which has the following stationary distribution:

Py() = (C20)
¢ being a normalization constant chosen such that

I P (' )dy' =1. Local estimates of A() and B(i) can
then, in a similar approach as above, be used to step back-
ward in effective potential.
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