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Abstract
Computational methods for predicting ligand affinity where no protein structure is known generally
take the form of regression analysis based on molecular features that have only a tangential
relationship to a protein/ligand binding event. Such methods have limited utility when structural
variation moves beyond congeneric series. We present a novel approach, based on the multiple-
instance learning method of Compass, where a physical model of a binding site is induced from
ligands and their corresponding activity data. The model consists of molecular fragments that can
account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a
ligands by training on a series with limited scaffold variation and testing on numerous ligands with
variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7–1.4 kcal/mol), with
statistically significant rank correlations. Accurate activity predictions of novel ligands were
demonstrated using a validation approach where a small number of ligands of limited structural
variation known at a fixed time point were used to make predictions on a blind test set of widely
varying molecules, some discovered at a much later time-point.

Introduction
Small molecule activity prediction for the purpose of lead optimization in drug discovery
remains an important and challenging problem. Physics-based approaches for affinity
prediction exist in cases where a reliable, high-resolution structure of the protein target is
available. While there have been some encouraging reports of success (1), the problem remains
unsolved, with prediction methods suffering from a lack of accuracy and high computational
cost (2;3;4). Also, for large classes of pharmaceutically relevant targets, high-resolution protein
structures are only rarely available (e.g. ligand-gated ion channels, membrane transporters, and
membrane spanning G-protein coupled receptors). Advances in techniques for protein
crystallography have begun to tackle some of these types of protein targets (5), but derivation
of such structures is far from routine (6). Increasingly, homology models have become used
in place of experimentally derived structures (7).

For these reasons, constructing predictive models of ligand activity based purely on structure
activity data is a long-studied problem. It is a classic machine-learning problem, that of model
induction from training data, and it not amenable to a direct physics-based approach. A crucial
challenge is that one does not know the relevant poses of ligands under study. Either one must
make use of an alignment-independent method, where molecular features used for model
induction and activity prediction are unrelated to molecular pose, or some approach must be
used to identify conformations and alignments of ligands. The 3D QSAR arena is dominated
by an approach introduced in the 1980’s: Comparative Molecular Field Analysis (CoMFA)
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(8). CoMFA employs grid-based field computations on a fixed alignment of ligands to yield
features related to the 3D shape and electrostatic character of the ligands. Partial-least-squares
is employed to developed a regression model based upon the activities of training ligands. Later
approaches introduced in the 1990s included multi-point pharmacophoric modeling (9;10;11;
12;13). Our own work in 3D QSAR yielded an approach that was sensitive to the detailed shape
and polarity of molecular surfaces and which constructed models in which ligand pose choice
was embedded as part of the learning procedure (14;15;16).

Each of these approaches shares a common feature: there is a direct link between the
representation of molecular structure and the physical events that govern binding of a ligand
to a protein. However, each approach has a distinct limitation. The CoMFA approach relies
upon a fixed choice of ligand poses, and the choice is generally made using structural
commonality among ligands (e.g. a shared ring system or substructure) as opposed to being
driven by the way in which ligand poses fit the model. Alignments in such approaches can be
productively driven by docking or molecular similarity (17;18), but treatment of ligand pose
as being model independent is still not ideal. The pharmacophoric approach identifies a set of
geometric constraints that are likely to represent necessary conditions for ligand activity, and
they can be used to produce ligand poses subject to the constraints. This represents an
improvement in the sense that the model can be used to predict the relative poses of ligands in
a way that is well-defined and related to activity. But pharmacophoric constraints are generally
not sufficient conditions for binding. In particular, variations in the hydrophobic shapes of
ligands are not captured well, yet such subtleties can be critical in determining the affinity of
an interaction. The Compass approach offered solutions to both the pose problem and the
detailed shape problem, but the models themselves were abstract, being similar to neural
networks. The models could be physically unrealizable, and this led to difficulties in
interpretation and visualization.

One key contribution of the Compass work, also employed here, was an approach to deriving
a virtual binding pocket at the same time as the precise relative poses of training ligands were
identified. The process iterated between model refinement and pose refinement, where the
model itself was used to choose the poses. Compass was the first to make use of this iterative
model refinement paradigm (14;15;16). A formalization of this early work, termed multiple-
instance learning (19), has found applications in many areas of machine learning, and we have
also used it in scoring function development for molecular docking (20;21;22).

The approach we report here builds upon the Compass approach by constructing physical
models of a protein binding site based upon ligand binding data. The result is a binding site
composed of molecular fragments that can be treated as a target for molecular docking. The
binding site model consists of molecular fragments that can account for multiple positions of
protein residues. It is not a literal reconstruction of a single configuration of protein residues.
New molecules are docked directly into the binding site, with their highest scoring poses
serving as the prediction of binding geometry and the corresponding score being the predicted
affinity. In deriving a virtual binding pocket at the same time as we identify the relative poses
of ligands, the key analogy is that one can treat a computational model of a binding site as one
treats a protein binding pocket. We seek the optimal fit of ligands into the binding site. One
begins with a guess as to the initial alignment of ligands, then constructs a model of activity
that depends on the ligands’ poses. The model can be thought of as a virtual receptor
(technically it need not have a physical manifestation). Next, one seeks poses for each ligand
that optimize their interaction with the virtual receptor. Then, the virtual receptor is refined,
making use of the new ligand poses, and the process iterates between pose refinement and
virtual receptor refinement. As the virtual receptor evolves, the changes in ligand scores due
to pose optimization decrease. When the iterative process converges, the final poses of the
ligands are optimal with respect to the final virtual receptor. The software implementing the
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algorithms for pocket construction and ligand activity prediction constitute a new module
within the Surflex platform, called Surflex-QMOD (Quantitative Modeling). The virtual
binding pockets constructed are called “pocketmols.”

We focused on derivation of a binding site model for the 5HT1a receptor, which was the subject
of an earlier Compass study (16). The training ligands consisted of just 20 molecules from two
chemical series with pKd spanning 6.0 to 10.0, an activity range of practical interest in lead
optimization. One binding site model (pocketmol) induced from these data was tested on three
different sets of new ligands: 1) the set of 35 holdout molecules from the original study; 2) a
set of 32 highly structurally divergent 5HT1a ligands; and 3) a set of 23 beta adrenergic drugs.
We also compared the pocketmol to a model of 5HT1a derived using a recently solved structure
of the human beta-2 adrenergic receptor as a template.

The structural variation among the 35 holdout ligands was limited but representative of typical
medicinal chemistry lead optimization. The prediction task was subtle, reflecting significant
changes in activity based on one or two-atom modifications or variations in scaffold chirality.
The 32 structurally diverse ligands were curated from the G-Protein-Coupled Receptor
Database (GPCRDB) (23) and PubChem (24) by an individual with no role in model derivation.
The mean error of prediction was between 0.5 and 1.0 log units (0.7–1.4 kcal/mol), and highly
significant rank correlations were obtained with both of these sets. Given two test ligands whose
experimentally determined pKd was one log unit or more apart, predictions of relative rank
were correct 75–85% of the time. With test ligand pairs two or more logs different in activity,
predicted ranks were correct nearly 95% of the time. The test of beta adrenergic drugs for
prediction of off-target affinity for the 5HT1a receptor correctly identified pindolol and several
others as having pharmacologically important serotonergic effects. The ligand-induced binding
site model showed important similarities to the modeled receptor structure, which provides a
degree of validation and also suggests that hybrid approaches combining formal machine
learning methods with protein structure modeling may be fruitful.

Methods and Data
The present study makes use of four groups of molecules used for training, validating, and
testing learned models of activity for the 5HT1a receptor. In machine-learning studies, where
data are used for model induction, care must be taken in order to avoid information leakage
from training procedures into testing procedures. Here, we employed a training set of molecules
along with a holdout set to assess the effects of training procedures. Then, a completely
independent blind prediction was made on two new groups of molecules. The following
describes the molecular data sets, computational methods, detailed computational procedures,
and quantification of performance.

Molecular Data Sets
Two sets of ligands, a training set of 20 molecules and a holdout set of 35 molecules, came
from a previous 3D QSAR study using the Compass method (16). These structures had been
published by a group from Upjohn in 1993 (25;26;27). Figure 1 shows the structures and 5HT1a
activity for each of the 20 training molecules, which consist of two chemical series of angular
and linear tricyclic compounds each with an amino-tetralin substructure. The angular series
with the cis ring fusion will be referred to as body type A, and the linear series with the
trans fusion will be referred to as body type B. The 35 holdout molecules consisted of five
different body types, illustrated in Figure 2a. The holdouts contained 13 racemic mixtures of
body types A and B, with different substitution patterns. Also included were 9 compounds with
an angular trans configuration (body type C) and 9 with a linear cis configuration (type D).
Two examples of the angular cis configuration were present with a four-membered ring
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containing the nitrogen (type E) as well as two urea-based tricyclics (type F). All structures
are detailed in the original Compass paper (16), and they are part of the data archive associated
with this paper. Of note, there was no correlation between molecular weight and pKd in either
the training or holdout sets.

The 35 molecule set from our previous work was known, well studied, and also formed a test
for which we knew a priori that a Compass-like method could yield an excellent predictive
result. As such, it did not form a suitable challenge for a true test of prediction accuracy.
Additionally, since 16 years have elapsed since the original publication of the structures used
for model induction, a number of new and structurally quite divergent serotonergic agents have
been discovered. We identified all ligands with human 5HT1a assay data from Organon in
GPCRDB (23) for which we could unambiguously identify chemical identifiers and 3D
structures from PubChem (24). The curation was undertaken after the final model had been
constructed, and it was done by an individual not involved in algorithm development or model
refinement (author AEC). There was no possibility of contaminating knowledge of this test set
influencing the model nor of the characteristics of the model influencing curation of the test
set. The process yielded a list of 32 molecules, ranging in activity from approximately a Kd of
30 µM (paroxetine) to multiple ligands near 1 nM potency (e.g. 8-Hydroxy-N,N-dipropyl-2-
aminotetralin (8-OH-DPAT) and buspirone). A number of these were published after 1993
when the structures and activities of the training compounds became public. Apart from two
amino-tetralin compounds, these represent very different scaffolds from the training
compounds. Figure 2b shows examples of molecules from the Organon set.

The Organon set included a number of approved drugs whose primary therapeutic targets were
not the 5HT1a receptor. Of these, the most active was pindolol, whose primary target is the
beta adrenergic receptor. While pindolol has been identified as a competitive antagonist at the
5HT1a binding site, other adrenergic ligands (e.g. timolol) have been established as non-
binders. We identified 23 approved drugs which target the beta adrenergic receptor for their
primary therapeutic benefit from two previous studies of drugs and their targets (28;29). They
included both agonists and antagonists: albuterol, bitolterol, carteolol, carvedilol, dipivefrin,
ephedrine, epinephrine, isoetharine, isoproterenol, labetalol, levalbuterol, levobunolol,
metaproterenol, metipranolol, nadolol, penbutolol, pindolol, pirbuterol, propranolol, ritodrine,
sotalol, terbutaline, and timolol. Of these, five (carteolol, labetalol, penbutolol, pindolol, and
propranolol) are known to bind the 5HT1a receptor at pharmacologically relevant
concentrations, but only one (timolol) is known not to do so (30;31;32;33). The majority have
not been part of published studies of 5HT1a binding. This set was used to assess whether our
predictive model could be exploited in assessing off-target effects.

All ligand structures as well as preparation protocols are available for download (see
http://www.jainlab.org for details). Additional details regarding computational procedures for
training ligand alignment, model induction, and testing of novel ligands follows.

Computational Methods
The core computational methods for molecular alignment based upon molecular similarity
have been reported in previous papers and will be described only briefly here. The methods
for binding site model induction will be presented in detail. Overall, there are five steps to
construct and employ a physical binding pocket for activity prediction (a “pocketmol”):

1. Generation of an initial set of alignments for each training ligand.

a. Input: Structures of ligands, with 2 or 3 chosen to serve as the seed alignment
hypothesis.
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b. Output: At least one pose for each training ligand, all of which are plausible
ithin the same mutual alignment.

2. Generation of an initial set of molecular probes to form the binding pocket.

a. Input: One particular pose for each active training ligand, selected from the
pool from Step 1.

b. Output: A large set of molecular probes surrounding the ligands, where each
probe makes a near-optimal interaction with at least one active ligand’s pose.

3. Selection of an optimal minimal pocketmol followed by augmentation to provide
spatial coverage.

a. Input: The set of probes from Step 2, a single identified pose for each
training ligand (actives and inactives), and activity values for each ligand
specified as exact values or inequalities.

b. Output: A minimal set of probes such that nominal interaction scores against
this set lie within a specified accuracy (using the fixed single poses) along
with a set of additional probes that “cover” exposed areas of space.

4. Refinement of the pocketmol by modifying probe positions interleaved with refining
ligand poses.

a. Input: The initial pocketmol from Step 3, the full set of ligand poses for all
training ligands, and the molecular activities.

b. Output: A refined pocketmol with refined ligand poses such that further
local optimization of ligand poses against the pocketmol yields little change
in scores and where the final scores are close to the experimentally measured
ones.

5. Testing of new putative ligands within the pocketmol:

a. Input: A new molecular structure, the final pocketmol, and a selection of
training molecules for use in alignment generation.

b. Output: Predicted score and pose alternatives for the new ligand using a
procedure analogous to docking ligands into a protein active site.

The following several paragraphs describe in detail the algorithms and computational
procedures used for model building and testing. However, the process can be comprehended
by readers less interested in technical details based on the description above and with Figure
3–Figure 7.

Initial Alignment
Initial alignment of training ligands proceeds in two stages. First, a small number of molecules
(usually 2 or 3) are selected from which to build an alignment hypothesis. The methods used
for this procedure have been described in previous papers and consist of the morphological
similar- ity algorithm (34) along with the ligand-based structural hypothesis algorithm that
depends upon it (35). The former is a method to compute molecular surface similarity (both
shape and polar aspects) between two molecules along with algorithms to enable rapid
optimization of conformation and alignment of molecule onto a specific pose of another. The
latter uses this procedure in order to produce a joint superimposition of multiple ligands that
simultaneously maximizes mutual similarity while minimizing overall volume. Our previous
work has shown that such superimpositions can yield biologically relevant relative poses and
that such joint superimpositions can be used effectively as surrogates for protein structures in
virtual screening, even in cases where molecular flexibility is substantial (34;35;28;29). Note
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that it is also possible to select protonation and tautomeric states in this procedure if they are
ambiguous.

Figure 3 shows the highest-scoring alignment hypothesis of the boxed pair of ligands from
Figure 1, which served as the seed alignment for the model-building here. While making use
of a more sophisticated approach for alignment optimization, the resulting joint poses looked
remarkably similar to those derived in the original Compass work on 5HT1a (16). The protons
of the charged amines of the two ligands were in tight alignment, with the acceptors presented
by the hydroxyl and methoxy both aligned such that they could interact with a common putative
hydrogen bond donor. The hydrophobic envelopes of the two ligands were also concordant.
Figure 5 depicts the quantitative differences and similarities between these two molecules as
computed by the morphological similarity method. The differences included the lack of a donor
on 8b, minor changes in the steric envelope (primarily from the additional methyl group), and
some subtleties in the precise position of the acceptor functionality. The depiction of the
similarities shows strong surface concordance over the entire ligands.

This initial seed hypothesis served as a template for generation of multiple alternative poses
for all training ligands. Since the similarity computation makes no use of activity data, and the
relative importance of specific molecular features is not known a priori, the gross balance of
the importance of shape vs. polar characteristics is also not known. The learning paradigm
chooses ligand poses as the model of activity is developed, so the issue at the outset is to have
a pool of poses for each training ligand that covers the reasonable possibilities. The procedure
aligns each training ligand to each of the molecules in the seed hypothesis, using M different
weightings of the relative strength of polar versus steric surface features (default weightings:
1.0 and 0.1).

For each training ligand, N poses are generated (default 100), which include the N/M highest
joint similarity values to the alignment seed hypothesis for each of the M different weighting
choices. We have shown previously that the numerical scores of joint similarity to an alignment
hypothesis is effective in virtual screening (35;28). This amounts to a distinction between
ligands with measurable activity (roughly pKd > 6.0) and non-ligands (roughly pKd < 4.0) that
is sufficiently quantitative to yield an enrichment of active compounds at the top of a ranked
list. Figure 5 shows that similarity to the seed hypothesis yields distributions of similarity scores
for random compounds much lower than for the 20 compounds from Figure 1, as expected.
However, the relationship was not sufficiently accurate to rank ligands in a lead-optimization
exercise, where distinctions of a single log unit can be important. In fact, there was no
significant correlation between computed similarity and activity for the 20 training compounds.

The poses generated in this manner do provide an adequate pool from which to derive a more
detailed model of activity. Note that when model construction begins, a particular ligand may
have very different alternative poses in the initial pool. Figure 6 shows the alignments of
training ligands arising from different weights for polar surface features. For molecules 1a and
3a, the optimal alignments under the different weightings were very similar to one another.
But for 1b (the enantiomer of 1a), the two different alignments were very different. The pose
shown in gray carbons resulted from the equal polar weighting, which yielded an excellent
alignment of the amine and acceptor functionality of 1b onto the joint superimposition of 4a
and 8b. The pose shown with blue carbons was much more concordant in the steric envelope,
but the amine was poorly oriented. At this stage, one cannot distinguish which of the two poses
is preferable, since no activity data have come into play. It is possible that the amine is
geometrically tightly constrained by a specific interaction with a non-flexible pocket element
and the steric envelope of the pocket is large and forgiving. It is also possible that the pocket
itself is tight, with flexibility in the functionality that interacts with the amines of the ligands.
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Pocketmol Probe Generation
Our procedure must accommodate a multiplicity of choices for what the ultimate pocket will
look like. In general, we should expect that multiple solutions are possible, all of which may
yield equally good fits to the training data. Our approach is to generate a large number of
potential probe positions, any of which may be selected and refined in subsequent steps of the
procedure. Figure 7 illustrates the procedure. We choose a single pose for each active training
ligand (defined here as those ligands with pKd ≥ 7.0) using the highest scoring alignment from
the polar surface feature weighting of 1.0 (Figure 7a). For each ligand, we tessellate its surface
using probes of three types: hydrophobic (methane), donor (N-H), and acceptor (C=O). These
probes are precisely those used in the Surflex-Dock “protomol” approach for characterizing
protein cavities (36). As in that approach, the probes are subjected to local optimization using
the Surflex-Dock intermolecular scoring function, and probes having high scores are retained
unless they are redundant with another probe that has already been accepted. Figure 7b shows
the resulting probes (with the methane probes devoid of hydrogen atoms for clarity) along with
the alignments of 4a and 8b. The positions of the probes represent reasonable possibilities as
to where an interaction from a pocket may lie, but they are too numerous to form a reasonable
pocket in a physical sense.

Pocketmol Initialization
At this point, we have a pool of poses for each training ligand, both active and inactive, as well
as a pool of pocketmol probes. Thus far, activity information has been used only minimally
(e.g. by using only the active ligands for probe generation). To select a small set of probes that
makes use of the activity data, both active and inactive ligands in the training set are used. We
construct a matrix of scores between a pose for each ligand and each of the pocket probes
generated. Given such a matrix, selection of a subset of probes that yields scores close to
experimental activities can be treated as a mathematical programming problem, since the
predicted activity for a molecule is simply the sum of its scores against a set of chosen probes.
For this work, we used the SCIP 1.1.0 (Solving Constraint Integer Programs) solver (37) to
select a minimal subset of probes that would yield a Surflex-Dock score for each of the ligands
within 0.5 log units of the experimentally measured activity. For the probe selection, we used
the top scoring poses from the polar weighting of 1.0 (as described above). Note that the
requirement of identifying single poses stems from the use of this constraint satisfaction
method. We are exploring approaches where the initial probe set may be chosen using the full
pool of ligand poses, which are used in any case in the subsequent model refinement process.

The resulting small set of probes is shown with thick sticks in Figure 7c. This parsimonious
set of probes (highlighted with arrows) captures the key interactions that have been described
in numerous pharmacophoric representations of the requirements for 5HT1a activity (e.g.
(27)). Pocket probes complementing the acceptor, the charged amine, and multiple
hydrophobic elements were automatically selected based upon the requirement to match the
activity pattern of the molecules. The small set of selected probes leaves large gaps in the
pocket surface, so additional probes from the larger pool are added back to fill in sparse areas.
This requirement is a consequence of using the multiple-instance learning approach. Since
ligand poses will change in order to optimize activity relative to the model, overly sparse
models allow too much freedom in alignment adaptation. For example, a ligand that is inactive
due to a large steric protrusion can adapt to occupy empty space with its extra bulk. To allow
the model freedom to cover all parts of space surrounding the training molecules, probes are
added back from the larger pool iteratively, including new probes not near any existing ones.
In this work, the tolerances for nearness were 4.5 for steric probes and 3.0 for polar probes,
measured using RMSD in Angstroms. Figure 7c shows the added-back probes with thin sticks.
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Pocketmol Refinement
At this point, we have a pool of poses for each training ligand and an initial pocketmol
consisting of donor, acceptor, and steric probes (roughly 30 total in the 5HT1a case). The
problem now involves local optimization of both the probes and the ligand poses. The goal is
a binding site model in which computed activity is close to experimentally measured activity
(while allowing for ligands to optimize their poses within the model). We optimize the probe
positions in order to minimize the mean-squared-error (MSE) of computed vs. actual activity
across all ligands. We employ a steepest descent procedure based on the gradient of the MSE
with respect to probe positions. Activity is computed for each molecule using the Surflex-Dock
scoring function. A single step of gradient descent requires computation of the change in MSE
across all ligands with respect to probe position and orientation for each probe in the pocketmol.
This gradient computation is made using the maximally scoring pose for each ligand, where
the procedure maintains a set of the poses of each ligand explored during model refinement
(this is called the pose cache). Gradient steps for the probes are made simultaneously for all
probes, using a step size that ensures small movements (less than 0.1Å).

After 100 steps of gradient optimization of probe positions (or if the computed MSE is less
than 0.05), the positions are fixed as the current model. Then, using the current model, each of
the ligands’ pose caches are optimized. Poses for each ligand are subjected to all-atom
optimization to maximize the Surflex-Dock scoring function. Note that the function contains
both intermolecular as well as intramolecular terms, so ligand internal strain is quantitatively
traded for interaction with the binding pocket. The processes are repeated (probe position
optimization followed by ligand pose optimization). Early in learning, the scores of the ligands
change substantially during pose cache optimization. In cases where the learning procedure
converges, as the learning progresses, these changes decrease in magnitude, and the overall
MSE reaches a plateau. We have not observed situations where ligand scores fail to stabilize
during iterative refinement. The process terminates when the MSE based on ligand scores (after
pose cache updating) is less than 0.05. A maximum of 50 rounds of probe and ligand
optimization are used. Figure 7D shows the final pocketmol (atom colored sticks) along with
the initial probe positions (blue). The changes were subtle, with the most significant
rearrangements being in the positions of the acceptor probes that interact with the amines of
the training ligands. The refinement procedure takes a few hours on standard desktop hardware
and is the lengthiest step in the overall process.

Testing New Ligands
New ligands are simply docked into the final pocketmol and are scored as if it were a protein
binding site. While the process can be carried out with Surflex-Dock directly, we have
implemented a procedure to enable the direct use of training ligand poses to help guide the
alignment of test ligands, which results in more reliable pose generation at a reasonable
computational cost. Testing a new ligand takes less than a few minutes. The procedure is
analogous to the initial alignment procedure above, with the exception that the top scoring
alignments based upon similarity to the specified ligands are subject to scoring and local
optimization within the pocketmol itself. The default parameters make use of two similarity
weightings (1.0 and 0.1 for polar surface features), 100 best poses from each alignment to each
input alignment target, and 5 final poses representing the best optimized fit to the pocketmol
for each input ligand.

Computational Procedures
Detailed scripts for generating the results presented here are available in the data archive
associated with this paper. Briefly, the procedures were as follows:

1. sf-sim.exe +misc_ring −misc_outconfs 10 +fp prot LigList protlig
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This command protonates and performs a ring search on the input ligand list, yielding
low energy ring conformations (maximum of 10 per ligand), including nitrogen
anomers. This process is applied to the training molecules and the testing molecules.

2. sf-sim.exe hypo SeedList loghypo

Produces a set of mutual alignments of the ligands in SeedList (up to 100). The top
scoring such hypothesis superimposing 4a and 8b was used for all model construction
(shown in Figure 2).

3. sf-qmod.exe initalign TrainLigList hypo.mol2 logalign

Generates initial alignments for all training ligands (hypo.mol2 from the prior step).
The default parameters make use of 2 weightings of polar surface features (1.0 and
0.1) and yields up to 100 poses for each ligand.

4. sf-qmod.exe initprobes ActiveTrainPoseList outprobes

Generates a dense set of initial probes based upon the top scoring alignments of the
active ligands specified.

5. sf-qmod.exe makesolverscript TrainData outprobes

Generates a problem definition file (pmol.zpl) for input to the SCIP solver. TrainData
contains file paths and corresponding activity data for the input molecules. The SCIP
solver is then run on the problem definition file pmol.zpl, and it generates a solution
file soln.scip if a feasible solution is found.

6. sf-qmod.exe readsolveroutput TrainData outprobes soln.scip

Reads the solver output and writes a file subsetList describing the probes that comprise
the minimal subset.

7. sf-qmod.exe probeaddback TrainData outprobes subsetList

Adds probes back to the subset pocketmol in areas whose coverage is sparse and writes
the resulting set of probes to startingProbes.

8. sf-qmod.exe refinepocketmol TrainData startingProbes

Refines the pocketmol and the ligand poses using gradient optimization in the
multiple-instance learning paradigm.

9. sf-qmod.exe scorepocketmol TestLigList align-targets.mol2 pocket-mol.mol2
logscore

Scores the ligands in TestLigList based upon alignments guided by the poses provided
in align-targets.mol2, scored against the pocketmol specified in pocketmol.mol2.
Scores are listed for each molecule in logscore, with the final poses in logscore-
results.mol2. This procedure makes use of the all-atom optimization procedure
implemented within Surflex-Dock, so ligand strain enters into the pose optimization
process explicitly and prevents excessive deformation of ligands. The final scores
represent the intermolecular interaction energy along with the entropic fixation terms
and do not include internal strain directly.

The data and scripts required to replicate these procedures are available from
www.jainlab.org.

Structural Model of 5HT1a
In addition to pocketmol induction and scoring, we generated a protein structural model of
human 5HT1a based on the recently solved structure of the beta-2 adrenergic receptor bound
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to timolol (PDB code 3D4S (5)). Models of 5HT1a were produced using the software
MODELLER (38). The experimentally determined structure for the adrenergic receptor was
an engineered fusion protein, so the sequence alignment of 5HT1a to the protein sequence of
3D4S was done by hand. It was based upon the relationship between human 5HT1a and beta-2
adrenergic sequences from the multiple sequence alignment of the amine GPCR family in
GPCRDB (23). The top twenty models from MODELLER were retained in order to ensure
adequate representation of alternate conformations of the ligand binding site. Models were
assessed using two metrics of model quality: DOPE and GA341 (39). Both of the metrics
returned favorable results (GA341 > .99 and negative DOPE scores) for all 20 models created,
yielding confidence that they are a reasonable representation of the human 5HT1a structure.

Results and Discussion
At a minimum, the goal of QSAR approaches is to make accurate predictions of ligand activity.
Preferably, the methods should also yield predictions of relative binding modes, be amenable
to visualization, and offer some guidance as to the confidence associated with specific
predictions. Figure 8a depicts the final learned pocketmol (atom-colored sticks with a
translucent surface) along with the solvent-accessible surface explored by the final optimal
poses of the training ligands that had measureable activity (solid orange surface). The overall
pocket was well enclosed, except for the bottom and upper right. These open areas
accommodated the phenyl groups of molecules 6a and 7b (see Figure 1), both of which had
sub-micromolar activity and whose pendant phenyls required extra space (one ligand preferred
the phenyl up and one down).

The interplay between the evolving pocket and the ligand poses was generally subtle, with
most ligands showing only minor movement when comparing the initial preferred poses to the
final optimal poses. However, for some ligands, the final optimal pose was very different,
resulting from one of the 100 initial poses available. Figure 8b shows the initial preferred pose
of 5a (cyan carbons), a compound with 50 nM Kd, along with its final pose (atom color). The
initial pose fit an underspecified “pharmacophore” for 5HT1a (the amine, acceptor, and
hydrophobic cleft), but it was not concordant in steric shape with the most active ligands, and
it protruded slightly beyond the active envelope (gray arrow). The initial preferred pose did
not make favorable interactions with the pocket probes that surrounded the aromatic component
of the training ligands. The final optimal pose traded off a suboptimal amine orientation for a
much improved fit to the pocket. Other methods that do not allow for rigorous pose selection
during model induction must adjust model parameters to accommodate errors in initial ligand
alignment, which leads to inaccuracies in prediction.

Performance on the Holdout Set: Comparison to Compass
Figure 9 shows plots of experimental vs. computed pKd for the 20 molecule training set using
the final pocketmol. Predictions are shown for the 35 molecule holdout set from the pocketmol
and from Compass (16). Note that plot A reports the fit to the data, whereas plots B and C
report predictions on ligands not used in model induction. For both the pocketmol and Compass
predictions, the activity of racemic mixtures was reported as the maximum pKd of either
enantiomer less log10(2) (there is an extensive discussion of some subtleties involving this
issue in the original paper (16)). It is not surprising that the fit to the data was excellent.
Nominally, there were roughly 180 parameters to estimate (6 translation and rotation
parameters for each of 30 molecular probes) given just 20 training ligands. However, it is
important to recall that each training ligand had a manifold of different poses, the best scoring
of which was involved in the reported score. Comparing parameter count to data set size is not
straightforward in multiple-instance learning, so overfitting may or may not be a problem here
and must be judged by careful model testing.
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The pocketmol predictions averaged 0.8 log units of error, with Compass yielding 0.6. The
average error magnitudes were not statistically different by t-test (p > 0.05). The pocketmol
predictions yielded a Kendall’s tau rank correlation of 0.34, with Compass yielding a
correlation of 0.36. Both rank correlation values were statistically significant (p < 0.01), but
they were not statistically different from one another. While the statistical model quality
measures were very similar, the character of model prediction errors was quite different, with
the pocketmol yielding higher scores for less active holdouts and Compass yielding lower
scores for holdouts with mid-range activities. The difference between pocketmol score and
Compass score was rank-correlated with actual activity, with p < 0.01 by Kendall’s tau. Table
I details the experimental and predicted values for the holdouts. Learning systems have
different biases in transforming input data into models. The bias of the pocketmol regime we
have used is to form a minimal physical model, where missing data will tend to lead toward a
literal vacuum. The bias of the Compass approach was to form a tightly enclosed virtual pocket
around all training molecules, due to the manner of construction of the neural network that
implemented the virtual receptor model. These differences were reflected in the errors observed
in the holdout set.

In Figure 9, two molecules that typified the pocketmol’s high predictions of relatively inactive
molecules were 39b and 41b, both of body type D. These were linear tricyclic compounds with
a cis ring fusion, a scaffold not seen in the training set. The pocketmol was permissive toward
variations in that part of the ligands, having had no significant variation in the bodies of the
training ligands on which to establish physical boundaries. Conversely, in the case of 21b (an
underprediction), the training ligands had significant variation in the nitrogen substituents, but
all of the ideal substituents were roughly the size of a propyl group. No smaller groups were
observed in the training data, and larger ones tended to be less active. The low prediction for
21b reflected an overgeneralization of a preference for propyl-sized substituents from the
limited variation in the training set. Molecule 32a, another underprediction, was of body type
C (a trans fused angular tricyclic), again illustrating that a lack of variation in geometry among
the training ligands can lead to limitations in predictive ability. Overall, accuracy for holdout
molecules of body types A and B (13 molecules) was 0.6, but for body types C and D (18
molecules) was 1.0, with the difference being weakly significant (p = 0.05 by t-test).

Accuracy for molecules of body types E and F (just 2 molecules each) averaged 0.7, with
molecules 45 and 46 (both type F) yielding predictions within 0.5 log units of the experimental
values. These were the most structurally novel ligands within the 35 molecule holdout set.
Their predicted alignments were as expected, with the more active isomer of 45 illustrated in
Figure 10 with 4a (cyan carbons). The amines corresponded well, and the carbonyl oxygen
was able to make similar interactions to those of the acceptors in the amino-tetralin series. The
donor from the urea of 45 was able to mimic the interaction made by the hydroxyl proton of
4a.

Performance on the Organon Set
In the foregoing, we established that performance on the holdout set paralleled that of Compass,
with sensible predictions of binding poses as well as affinities. However, the bulk of the holdout
molecules were similar to the 20 training ligands, representing R-group variations and some
variation in chemical scaffolding. It is important to note that there was no correlation between
molecular weight and affinity in the holdout set, and also that the types of variations are typical
of work in a medicinal chemistry lead optimization exercise. So, the prediction task was
relatively subtle and was also relevant in a practical sense. However, the conformation and
alignment questions posed by the holdout set were challenging only in a few cases. Perhaps
more importantly, the holdout set was not truly “blind” (either for the pocketmol predictions
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or for Compass) since the structures of the molecules along with their activities were known
at the time that the methods were being developed.

Consequently, we tested the model on a separate objectively constructed blind set (as detailed
in the Methods section). The set consisted of 32 molecules total, with 17 having data from 3
binding assays or more and 15 having data from 1 or 2 assays. These compounds exhibited
tremendous structural variability, including just 2 classic amino-tetralins. Multiple assay values
also afforded the ability to estimate the experimental uncertainty in pKd measurements. Among
the compounds with more than 1 assay value, the mean difference between high and low
pKd values was 0.7 log units, providing a bound on reasonable expectations for computational
predictions. Table II shows the experimental and predicted values for the pocketmol on the
Organon set, along with information regarding number of assays. For these predictions, values
that fell within the assay range were assigned an error of 0.0, and predictions that fell outside
of the assay range were assigned an error in the amount of their excursion beyond the range.
Computations of correlation were made using mean assay values. For the 17 ligands having 3
or more assay values, Kendall’s tau was 0.51 (p < 0.01) with a mean error of 0.6 log units. For
the full set of 32 ligands, Kendall’s tau was 0.29 (p = 0.01) and the mean error was 1.0 log
units. The difference in errors between the two sets of compounds was statistically significant,
and we have focused our analyses on the set of compounds with 3 or more assays.

Figure 11 shows a plot of experimental vs. predicted pKd for these 17 Organon ligands (r2 was
0.7 with a linear fit slope of 0.92). Three examples are shown: 8-OH-DPAT, 47, and buspirone.
The former is a canonical amino-tetralin (generally this is the ligand used in displacement
assays for measuring 5HT1a binding). The latter two represent different aryl-piperazines, a
scaffold that has received extensive study in serotonergic development. The numerical
prediction and alignment for 8-OH-DPAT is not surprising, since it constitutes a
straightforward ring opening (plus a carbon) of the most active ligand from the training set
(4a). However, the predictions for the latter two molecules represent very significant leaps
both in terms of alignment and prediction of numerical activity. Compound 47 essentially filled
the entire active envelope of the model, and it made the interactions expected. The protonated
amine interacted with the collection of carbonyl probes of the pocketmol, and the methoxy
acted as the acceptor. Buspirone could have yielded several different options for alignment.
However, the optimal fit to the pocketmol comports with our understanding of aryl-piperazine
SAR, where it is the pyrimidine nitrogen that serves as the hydrogen bond acceptor (40; 41).
Note that ipsapirone and spiperone were also among this group and were accurately predicted
in analogous poses, but gepirone was overpredicted. It is clear from Figure 11, however, that
variations in the distal moiety of such ligands extend beyond that which the model can
confidently predict. The bias of the pocketmol model, to treat such excursions as reaching into
a vacuum as opposed to violating an implicit constraint, seems preferable to the Compass
approach. While it is not possible to test the Compass model (its parameters were not
published), we believe that it would have failed in many cases where the pocketmol correctly
yielded predictions of high activity for extended ligands.

Off Target Effects of Adrenergic Ligands
Among the Organon set were a number of marketed drugs, with pindolol, a beta adrenergic
antagonist, being the most active against 5HT1a. Pindolol was correctly predicted by the model
to have activity better than 100 nM (see Table II). Antagonist activity against the 5HT1a
receptor by adrenergic ligands is an important pharmacological phenomenon that relates to the
effectiveness of selective serotonin reuptake inhibitors (SSRIs). Specifically, clinical studies
showed that co-administration of pindolol enhanced the antidepressant effect of SSRIs (42),
and subsequent radiotracer experiments in healthy volunteers showed that, at pharmacological
concentrations, pindolol displaced a potent and selective 5HT1a radioligand from its binding
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sites in the brain (43). The binding of pindolol in the human brain showed selectivity for the
dorsal raphe nuclei (DRN) region. The DRN region is rich in serotonergic nerves, and it is the
major source of serotonin innervation to the forebrain. The DRN region has very high
expression levels of both the serotonin reuptake transporter and 5HT1a receptor and is a major
site of action for the therapeutic effects of SSRIs (for a review, see (44)).

Within the DRN region, SSRIs increase the extracellular concentration of 5HT, but initially
the 5HT binds to 5HT1a receptors present in the same presynaptic neurons in which the
reuptake transporters reside. These 5HT1a receptors act in an inhibitory feedback loop, so
activation of these 5HT1a receptors causes a decrease in 5HT release, thereby opposing the
effects of the SSRI. With SSRI treatment alone, the inhibitory 5HT1a receptors become
desensitized over a roughly 2–3 week period, whereupon there is a therapeutic benefit.
However, co-administration of a 5HT1a antagonist such as pindolol markedly speeds onset of
the SSRI antidepressant effects (43). Although inter-patient variability exists with respect to
the benefits of pindolol antagonism of the 5HT1a receptor, pindolol represents a proof-of-
concept that beta adrenergic ligands as 5HT1a receptor antagonists can enhance SSRI therapy.

We identified all beta adrenergic ligands from our previous work on comprehensive drug target
modeling (28;29). The status of 5HT1a activity for most of these compounds has not been
published. However, there are clear data for six of them: five (carteolol, labetalol, penbutolol,
pindolol, and propranolol) are known to bind the 5HT1a receptor at pharmacologically relevant
concentrations and one (timolol) is known not to do so (30;31;32;33). Of the 5 drugs with
known 5HT1a activity, 3 scored better than 100 nM: pindolol, carteolol, and labetalol. Timolol
(closely related to pindolol and carteolol but inactive against 5HT1a) was predicted by the
model to have pKd < 6.0. Figure 12 shows the predicted alignment of three adrenergic ligands
to the pocketmol. Pindolol and carteolol exhibited similar binding modes, with the ether oxygen
in their linkers providing the required acceptor functionality to interact with the donor surface
of the pocketmol. Timolol was unable to adopt a pose that makes this interaction while fitting
into the aromatic groove of the model.

While this analysis is anecdotal due to the lack of comprehensive and comparable assay data
for the adrenergics, it is encouraging that the pocketmol approach is sufficiently predictive to
suggest off-target effects of ligands earlier in the development process than they are typically
found at present. The effects of pindolol on the 5HT1a receptor were discovered long after
marketing of the drug. Systematic computational modeling of many targets may offer
information at time points in drug discovery where biological investigation of a possible off-
target effect is both inexpensive and likely to modify the course of a lead optimization exercise.

Relationship to Protein Binding Pockets
The pocketmol that was developed is physical in the sense that it represents real atomic
positions of molecular fragments. However, it does not correspond to a pocket that could be
formed by a single protein conformation. Rather, it offers multiple positions for some
interacting moieties. The group of acceptor probes that interact with the basic nitrogen in the
serotonin ligands represents multiple conformations of the aspartic acid sidechain that is known
to be critical in binding within aminergic GPCRs. Similarly, the donor probes that interact with
the acceptor in the serotonin ligands represent multiple positions of a donor, believed by some
to be a hydroxyl proton from a serine residue in 5HT1a.

No experimental structure has been determined for 5HT1a, but the recently solved structure
of the beta-2 adrenergic receptor (5) offers an excellent template. We used it to generate 20
alternative conformations of human 5HT1a receptor (see Methods). We then used the Surflex-
Dock multi-structure docking protocol to dock 8-OH-DPAT to these protein conformations,
followed by all-atom protein pocket refinement (45). This process yielded a single high-scoring
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family of related ligand poses. Figure 13 shows the different contributing protein
conformations (panels A and B) along with the single best scoring pose of 8-OH-DPAT. The
result was quite consistent with a recent report taking a related approach but using rhodopsin
as the modeling template (7). The similarities included interaction with Asp3.32, Phe6.52, and
Cys3.36 closing the bottom of the pocket (using the numbering scheme of Ballesteros and
Weinstein as in (7)). Interactions with the acceptor functionality of serotonergics (here the
hydroxyl oxygen of the ligand) in our model structure can be accommodated by Ser5.42 as
proposed by others. However, Thr5.43, Tyr5.38, and Lys5.35 all offered the potential to interact
with ligand acceptors. In our preferred binding mode, the lysine was the agent of interaction
with the ligand’s acceptor. We propose that the network of hydroxyls and the lysine collectively
offer a multitude of different donors and acceptors within 5HT1a. The lysine is conserved in
all mammalian 5HT1a receptor sequences, and the consensus amino acid for this position
among the full family of serotonin receptors is glutamine. It is possible that the true preference
for the lysine is to be in solvent, in which case Tyr5.38 rotates into the binding site in our
models. We have made note of the potential for a lysine binding site interaction since it may
offer some insight into selectivity of ligands among the different receptor subtypes.

Panels C and D of Figure 13 show the 5HT1a pocketmol superimposed upon two conformations
of the protein. The alignment transformation was derived by a rigid alignment of the preferred
pose of 8-OH-DPAT in the model to that preferred in the protein structure. The family of
acceptor probes nicely corresponds to Asp3.32, and the donor probes appear to correspond best
with Lys5.35, but there is some correspondence with Tyr5.38. It is more difficult to visualize
the relationship between the hydrophobic methane probes and the shape of the pocket, but there
are clear surface correspondences for Phe6.52, Cys3.36, Asn7.49, and Ile5.33.

Figure 14 illustrates the surface correspondence differently. In blue is shown the
solventaccessible surface of the union of all pose families of 8-OH-DPAT from the docking
study, which effectively filled the model protein pocket in multiple configurations. The
pocketmol with an orange translucent surface is shown with molecule 4a (pKd of 10.0, shown
with white sticks) and its enantiomer 4b (pKd of 7.8, shown with green sticks). Except for the
single methane probe inside the blue surface (red arrow), the two surfaces were complementary.
The bottom panel illustrates the thickness of the pocketmol, which extended far beyond what
is required to accommodate ligands such as 4a. Alternate binding modes for a number of
training ligands were predicted by the model where the aromatic ring was nearly 90° rotated,
including the prediction for M4b. This alternate binding mode accounts for the pocket’s girth
and remarkable correspondence to the modeled protein active site.

Relationship to Other Approaches
As discussed in the Introduction, the field of QSAR (even just 3D QSAR) has a long history.
The widely used methods that address aspects of ligand binding in a 3D sense include field-
based approaches such as CoMFA (8;46;47) as well as numerous variations of pharmacophoric
methods (9;10;11;12;13). The field-based methods treat the ligand alignment problem as a
separate procedure from model derivation or application and are facilely applied in cases where
a common scaffold exists and activity variation relative to substituents is of interest. Systematic
substituent analysis is beneficial in understanding SAR for lead optimization, but such methods
cannot address activity modeling in the general case across multiple scaffolds. The
pharmacophoric methods address the ligand pose problem directly, but the type of subtle
activity variation based on hydrophobic shape studied here is beyond the capability of such
sparse models. The method we report here has three advantages. First, it addresses the
alignment problem as an intrinsic part of model building. Second, predictions of activity (and
binding mode) take into account aspects of molecular shape and polarity at a level of detail
comparable to that done with structure-based design. Third, the models themselves are
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physical, which makes them visualizable and leads to intuitive notions of prediction
confidence.

The work done by groups to employ data fitting approaches to select and refine homology
models of proteins for activity prediction is the closest in spirit to what we report here (7;48;
49). These approaches have been applied with some success to GPCR ligand discovery. The
general idea is to use template-based modeling to generate possible structures of a target and
to select and refine protein conformations through consideration of docked poses of known
ligands. Our approaches for addressing multiple-instances of ligands could be applied
profitably to such refinement protocols. They offer a formal method to address the question of
model refinement in the presence of ligand activity data and uncertainty in precise ligand pose.

In a historical sense, the present work is also related to the work of Snyder and Rao on
pseudoreceptors (50), further refinements including Vedani (51), and the work of Zbinden with
Vedani on PrGen (52). The pseudoreceptor idea was to construct an actual protein binding
pocket based upon a hypothesized alignment of ligands that would allow prediction of binding
affinities, but it required a number of manual steps. Our approach systematically addresses
automated molecular alignment, iterative model and ligand pose refinement, and automated
flexible docking of new ligands to predict activity. The PrGen approach made a significant
improvement over earlier pseudoreceptor work by use of a “ligand equilibration protocol”
which interleaved optimization of the pseudoreceptor (both for fit to ligand binding data and
for internal geometry) with relaxation of the ligands in the pseudoreceptor. This formulation
is analogous to the multiple instance approach that we introduced (14;19) in the time between
the early pseudoreceptor work (50) and the more refined PrGen approach (52).

We plan to explore hybrid approaches where our pocketmols make direct use of actual or
modeled protein binding pockets. A slight generalization of our procedure, allowing for
multiple discrete protein conformations, will probably be necessary. The pocketmols we have
observed clearly show spatial variation in the preferences of receptor moieties, and the docking
study against the 5HT1a model showed many plausible alternative protein conformations.
While this could theoretically be treated by allowing the joint configuration of protein and
ligand to represent individual instances, we do not believe that the internal energetics of protein
conformation variation are easy to model. Instead, the set of protein conformations would be
refined such that, when any training ligand was optimized against all of them, the best resulting
score would be close to the experimental activity. It is important to note that our approach does
not require a modeled structure at all though. So, for complex targets such as ligand-gated ion
channels and membrane-bound transporters, where structures are still generally unavailable,
the pocketmol method offers a systematic way to build predictive models.

The work being done by many groups using physics-based approaches in cases where protein
structures are well-determined is, to a degree, addressing a different problem. While the
nominal goal is activity prediction, an overriding concern is fidelity to physical modeling. Our
focus is on functionally predictive models that have a basis in the physical binding events we
are modeling, but the overriding goal is accurate and practically useful predictions. We believe
that empirically derived models based on ligand-binding data offer a practical and potentially
more accurate alternative to physics-based approaches. The potential for higher accuracy stems
from the fact that we are addressing an easier problem. The derivation of a predictive model
of activity for a particular protein target given carefully measured ligand activity data is
fundamentally less challenging than deriving a general theoretical and computational protocol
for calculating free energies of binding in physically realistic simulation models.
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Limitations and Future Directions
The most significant limitation in what we report here is the question of generality and
validation on multiple targets. This will take time, but in principle there is no barrier to inducing
predictive models for which competitive non-covalent binding drives the biological activity of
ligands under study. The most significant methodological limitation is that there are many
models that may yield nominally equivalent performance on a set of training data. This results
in two problems. First, only some of the models may be truly predictive. Second, among the
models that are predictive in a numerical sense for many compounds, only a single model may
have a direct correspondence to the true bioactive interactions between ligands and the binding
pocket under study. The practical solution to the former issue is a common one in machine
learning, where a training set is split into a subset used for model induction and a subset used
for model selection. In the case of ligand activity prediction, the best way to make this split is
temporally, using compounds synthesized first for model induction and subsequent molecules
for model selection. The latter issue is more complex, where two models, for example, yield
equally good predictions on a validation set but have quite different geometrical underpinnings.
Two such models will disagree in predictions on some new molecules, but this can be taken
as an advantage. The existence of two such models indicates that the known ligands do not
uniquely disambiguate a particular binding site. Molecules should be tested where predictions
from the two models disagree in order to identify which model is closer to being correct and
refine it. For example where all known ligands share a common flexible linker, multiple models
will exist that constitute variation in the conformations of the linker. Disambiguation could be
done by making compounds with different partially rigid linkers that yield non-superimposable
ligands.

A related issue is the case where groups of training ligands partially overlap in their true binding
site. If the overlap is sufficient to exclude simultaneous occupancy, biochemical experiments
will indicate competitive binding. Our seed hypothesis approach has a bias toward minimal
volumes, which will tend to incorrectly align molecules in this case. Beginning from such a
seed hypothesis may well yield a model with reasonable fit to activity data, and it may be
predictive for ligands having either binding mode. Our hope is that in such cases model
convergence will be difficult due to the incorrect alignments, but the possibility remains that
models will pass nominal convergence tests. A ligand synthesized based on the apparent
correspondence of parts between a pair of ligands with different binding modes will not be
correctly predicted.

This highlights the importance of formal estimation of prediction confidence. A conservative
approach would partially address the case just described, where high confidence would arise
only in cases where a new ligand was predicted to have similar activity to a similar known
ligand (in a surface-based sense). This is quite limiting though, and we need a general method
to decide which parts of a pocket have explicit “support” based on actual exploration with
training ligands. It is not sufficient for a part of the pocket simply to interact with some of the
training ligands in their final predicted optimal poses, since the training ligands may not have
varied at all in some places. Pocket probes may exist as artifacts of the learning procedure, for
example providing a constant interaction value for all ligands. Instead, we need to see where
molecular structure varied relative to the pocket. The idea is to compare the alignments and
scores of ligands based purely on molecular similarity to those that make use of the induced
binding site model. Probes in the pocket that result in sharp changes in activity among highly
similar molecules exist because they are needed to explain activity and thus have explicit
experimental support from assayed compounds.
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Conclusions
Practical approaches for ligand activity prediction in lead optimization that do not rely upon
well-determined protein structures must address predictions of ligand pose as well as ligand
activity. In this study, the multiple-instance learning approach developed for Compass has been
adapted for induction of physical models of binding sites. In the challenging test case on 5HT1a
presented here, predictive accuracy on diverse chemical series was excellent, both in terms of
numerical accuracy and in terms of geometric concordance with accepted models of
serotonergic SAR. The approach appears to meet the bar required for operational use in
medicinal chemistry lead optimization exercises. Important challenges remain, including
validation on large numbers of targets, comparison of induced model binding sites to sites of
known structure, development of rigorous approaches for model selection, and implementation
of formal methods for estimation of confidence.
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Figure 1.
Structures and experimentally determined pKd of training ligands for 5HT1a. The molecules
are shown as enantiomeric pairs, with a/b designating the isomers. The boxed ligands in the
top row were the most active of the two scaffold types and were used to guide initial alignments
for pocket induction (see Figure 3). The remaining molecules are shown by decreasing potency
of the more active isomer. The differences in potency among isomers range from nearly 2 log
units to zero. There is a complex interaction between sidechains, scaffold, and chirality that is
difficult to model without contemplation of a full 3D model. Compounds numbers are as in
ref 16.
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Figure 2.
Example structures and activities of holdout ligands (left) and blind testing ligands from the
Organon set (right). The body types A–D indicated for the former describe, respectively, the
angular cis, linear trans, angular trans, and linear cis ring configurations. Type E describes a
variant of type A in which the nitrogen-containing ring has four members, and type F describes
a cyclic urea scaffold. The Organon set contained diverse scaffolds, which included the
prototypical amino-tetralin 8-OH-DPAT, multiple aryl-piperazines, as well as drugs such as
pindolol and sumatriptan. Compound numbers are as in ref 16.

Langham et al. Page 21

J Med Chem. Author manuscript; available in PMC 2010 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The highest scoring mutual alignment of 4a (atom color) and 8b (blue carbons) is shown, with
the panel at right being the view from the bottom of the panel at left. The procedure seeks to
maximize joint molecular similarity while minimizing overall volume. Despite significant
differences in the underlying scaffolds, the procedure is able to identify joint poses where the
steric envelopes are remarkably similar, with the charged amines tightly aligned, and the
oxygens of both ligands being able to accept hydrogen bonds from the same part of space.
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Figure 4.
The similarity function makes use of “observer points” (small spheres surrounding each
molecule) in order to compare molecular surfaces. In the optimized alignments, the differences
are very minor, resulting in a similarity of 0.82 (scale of 0 to 1). These small differences
manifest as rods in the upper panels, with length proportional to the magnitude of the difference.
The gray rods indicate steric differences. The longer gray rods stem from the protrusion of the
methyl group on 8b relative to 4a. The blue rods indicate differences due to positive polar
moieties. The longer blue rods are due to a missing hydrogen bond donor on 8b where 4a has
a hydroxyl. The other differences are minor, with very slight differences in position and
orientation of the acceptor functionality of both molecules, as shown by the red rods. The
bottom panels illustrate similarity of the surface of 8b to the surface of 4a, with green rods
indicating high shape similarity, red indicating high similarity for negative polar moieties, and
blue indicating high similarity for positive polar moieties.
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Figure 5.
Using the alignment of Figure 3 as a target, the similarity of all training molecules from Figure
1 are plotted against experimentally measured activity (left). There is no correlation between
similarity and activity, either by rank or by linear correlation. However, as shown on the right,
the similarity computation yields highly separable distributions of scores for random screening
compounds (dotted line) compared with the training ligands (solid line). Over 99% of the
screening compounds had scores of 7.3 or less, but all of the training compounds met or
exceeded that threshold. Lead optimization is typified by quantitative distinctions between 6.0
and 10.0 pKd, which exceeds the accuracy of pure unweighted molecular similarity. However,
virtual screening requires enrichment of active ligands in a background of completely inactive
ligands, which requires much less in terms of quantitative accuracy.
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Figure 6.
The parent alignment (upper left) is shown along with three examples of training molecules.
Molecule 1a is a minor variation of 4a (propyl to allyl and hydroxyl to methoxy). Molecule
3a moves the methoxy of 1a, resulting in vastly decreased potency. In both of these cases,
alignment with full weighting of polar features (gray carbons) and alignment with a 90%
reduction in the polar component of the similarity function (blue carbons) yielded concordant
top-scoring poses. However, molecule 1b (the enantiomer of 1a) shows highly discordant
alignments, depending on whether the steric envelope dominates (blue carbons) or the precise
orientation of the charged proton on the nitrogen dominates (gray carbons). The union of poses
resulting from both alignment strategies are used in learning.

Langham et al. Page 25

J Med Chem. Author manuscript; available in PMC 2010 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The overall procedure begins with an initial alignment hypothesis, as shown in Figure 2, which
is used to generate initial alignments of all training ligands, possibly using multiple approaches
(panel A shows a single alignment for each active training ligand). The initial alignments of
active ligands are used to produce a large number of molecular probes that interact well with
at least one pose of one active ligand (panel B, with hydrophobic probes shown without
hydrogens for clarity). A subset of the probes are chosen to optimize concordance with activity
(panel C, thick sticks). These identify the known pharmacophore, characterized by interactions
with a donor (blue arrow), a charged acceptor (red arrow), and hydrophobic interactions (gray
arrows). Additional probes are added back in order to provide “coverage” of the entire possible
pocket (probes shown with thin sticks). Panel D shows the final optimized pocket (atom color)
along with the initial probe positions (blue).
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Figure 8.
The final pocket, depicted in sticks with a translucent atom colored surface, encloses the volume
of the final poses of the active training ligands, depicted with a solid orange surface (Panel A).
In some cases, the final optimal pose of a training ligand changes significantly from the initial
one, illustrated in Panel B with molecule 3b. The initial pose (thin sticks with cyan carbons)
was chosen based purely on molecular similarity to the initial alignment hypothesis. The final
pose (thick sticks in atom color) was selected based on interaction with the virtual binding
pocket. Note that the initial pose extended slightly beyond the active envelope (gray arrow).
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Figure 9.
Plots of experimental (X-axis) versus computed/predicted pKd for the final optimized binding
pocket for the 20 molecule training set (Panel A) and the 35 molecule holdout set (Panel B).
Predictions from Compass on the same holdout set (using the same training molecules) are
shown in Panel C. Mean error of fit for the training set was 0.4 pKd units. Prediction error on
the 35 molecule holdout set was 0.8 units, with a Kendall’s tau rank correlation of 0.34 (p <
0.01 by permutation). The Compass predictions had a mean error of 0.6 units, with a Kendall’s
tau rank correlation of 0.36 (p < 0.01 by permutation). The differences between the prediction
quality for the pocketmol and for Compass were not statistically significant. However, the
pocketmol predictions tended to be high for inactive molecules, and the Compass predictions
were low for mid-range actives, apparently reflecting a significant difference in the bias of the
learning approaches. Examples of structures with accurate, low, and high predictions from the
pocketmol are shown (predicted/actual pKd are shown in parentheses with molecule names).
Note: there is a slightly negative but insignificant correlation between molecular weight and
pKd for the 35 holdout molecules.
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Figure 10.
The predicted pose of holdout molecule 45 (thick sticks with atom color) along with the optimal
pose of training ligand 4a (cyan carbons) rendered inside the surface enclosing the volume of
the active training ligands. The chemical structure is novel, but the prediction is accurate
(pKd of 8.4 compared with the experimental value of 8.7).
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Figure 11.
The plot shows fully blind predictions for the pocketmol on 17 molecules from GPCRDB’s
Organon assay data where three or more assays were present for human 5HT1a receptor. Mean
error was 0.6 log units, with Kendall’s tau of 0.51 (p < 0.01). Including those ligands with
fewer than 3 assays (plot not shown, see Table II), the mean error was 1.0 log units and
Kendall’s tau was 0.29 (p = 0.01). For those molecules with more than 1 assay value, the
average assay uncertainty was 0.7 units. Panels A, B, and C show three ligands (names and
predicted/actual pKd as indicated). In the case of 8-OH-DPAT, the ligand is quite similar to
those used for model construction; 4a (cyan carbons) is shown to be essentially a cyclization
of a propyl group from 8-OH-DPAT. But for 47 and buspirone, the core element containing
the critical amine and acceptor combination as well as the hydrophobic components are all
very different. Only in the last case does the ligand extend significantly beyond the area
explored by active training ligands. There is no correlation between molecular weight and
pKd for the Organon ligands (either for the full set or those with three or more assays).
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Figure 12.
The beta adrenergic antagonist pindolol was among the accurate predictions from the Organon
binding data, shown in Panel A along with 4a (cyan carbons) and the pocketmol surface colored
to reflect polarity. Panel B shows the view from the bottom, without 4a. The interaction
between the amine and hydroxyl to the large negative pocket surface is apparent, as is the
interaction of the ether oxygen with the donor surface. Panel C shows carteolol (atom color),
which mimics the binding mode of pindolol (shown in blue), and also scores greater than 7.0.
The ether oxygens of pindolol and carteolol are able to act as the critical acceptor functionality
within the 5HT1a pocket while making proper interactions with their protonated amines.
Timolol (Panel D, atom color with pindolol in blue), by contrast, while being a structural
analog, is correctly predicted to be inactive (predicted pKd of 5.2). It appears that the additional
bulk and non-planarity of the morpholine renders timolol unable to make the correct
interactions. See text for additional details on adrenergic ligand predictions.
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Figure 13.
Panel A shows a model of the 5HT1a receptor, with protein conformations chosen based on
docking of 8-OH-DPAT (panel B shows the view from the bottom of A). Panels C and D show
the same views, with two selected protein conformations along with the pocketmol. The
pocketmol was superimposed by applying the transform that yielded a maximally similar rigid
alignment of 8-OH-DPAT bound to the pocketmol to the pose shown within the protein model.
The correspondence of key residues within the protein model to pocketmol probes varies
somewhat, but it is striking for Asp3.32, Lys5.35, Cys3.36, and Phe6.52 (green arrows).
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Figure 14.
Panel A shows the pocketmol and surface (orange) is shown surrounding the union of high-
scoring poses of 8-OH-DPAT in docking to the model 5HT1a receptor (blue). Panel B is the
view from the bottom of A. The blue surface essentially traces the maximal volume of the
protein binding pocket under the different conformations of the protein that are energetically
feasible when bound to 8-OH-DPAT. The orange surface was derived purely from ligand
activity data, and the blue surface reflects the ligand binding pocket of the protein structural
model of 5HT1a based on the 3D4S beta adrenergic structure. Except for the marked probe
(red arrows) which resides inside the blue surface, the surfaces are complementary. The poses
of training molecules 4a (white sticks) and 4b (green sticks) are predicted to have alternate
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binding modes with a nearly 90° rotation along the body of the arenes, which explains the
width of the pocketmol and the remarkable concordance of the two surfaces.
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Table 1
Performance of the virtual binding pocket on a holdout set of 35 molecules (compound numbers as in ref 16).

Molecule Body Experimental Predicted Error

16 A 9.5 8.5 1.0
18 A 9.0 9.2 0.2
19 A 7.8 8.4 0.6
12 A 7.5 7.7 0.2
14 A 7.4 8.0 0.6
15 A 7.0 7.1 0.1
13 A 6.0 6.8 0.8
17 A 6.0 7.6 1.6

21 B 7.5 6.0 1.6
22 B 7.5 7.0 0.6
23 B 7.2 7.2 0.1
24 B 7.0 7.6 0.6
20 B 6.9 6.8 0.1

26 C 8.3 9.1 0.8
31 C 8.3 7.7 0.6
25 C 8.0 7.5 0.5
27 C 7.8 6.5 1.3
32 C 7.8 6.0 1.8
29 C 7.4 8.1 0.7
28 C 7.2 6.3 0.9
30 C 7.2 6.8 0.4
33 C 6.5 6.6 0.1

42 D 8.0 8.2 0.2
40 D 6.8 8.1 1.2
41 D 6.4 8.5 2.1
39 D 6.1 8.0 1.8
34 D 6.0 7.4 1.4
35 D 6.0 6.8 0.8
36 D 6.0 6.7 0.7
37 D 6.0 7.4 1.4
38 D 6.0 6.6 0.6

43 E 9.5 8.0 1.6
44 E 8.2 8.9 0.7

45 F 8.7 8.4 0.2
46 F 7.6 8.0 0.4

Experimental, Predicted, and Error values are in units of pKd.
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