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Abstract

The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity.
Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases
catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is
achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also
requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase
PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers
through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The
formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important
implications for the regulation of Src kinase activity.
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Introduction

Members of the Src family of protein tyrosine kinases, such as c-

Src, Lck, Fyn and Hck, are key players in many signalling

pathways that regulate cell growth, proliferation and motility [1].

Src kinase activity is tightly controlled through phosphorylation at

two regulatory sites, Tyr 416 and Tyr 527 (chicken c-Src

numbering) [2]. Autophosphorylation of the Src family kinases

on Tyr 416, located within a central regulatory element in the

kinase domain known as the activation loop, increases activity by

stabilizing the kinase domain in a conformation that promotes

catalysis [3]. In contrast, the phosphorylation of Tyr 527 in the C-

terminal tail of the Src family kinases by Csk (C-terminal Src

Kinase) results in the intramolecular engagement of the tail by the

Src Homology 2 (SH2) domain and the concomitant docking of

the Src Homology 3 (SH3) domain onto the SH2-kinase linker,

which together stabilize the kinase domain in an inactive

conformation [4,5,6,7,8]. Full inactivation of the Src family

kinases consequently requires both dephosphorylation of the

activation loop and phosphorylation of the C-terminal tail [9].

The kinase domain of Csk is responsible for the recognition of

the Src family kinases as its specific substrates, resulting in

phosphorylation of the C-terminal tail [10]. The ability of Csk to

regulate Src kinase activity in vivo also depends on both the SH2

and SH3 domains of Csk [11,12]. Unlike the Src family kinases,

Csk is not constitutively membrane-localized, and the SH2

domain is required for the recruitment of Csk to the plasma

membrane. Several different proteins have been shown to recruit

Csk through its SH2 domain, including paxillin [12] and the

transmembrane adapter protein Cbp (Csk-binding protein) [13].

The SH3 domain of Csk interacts with several tyrosine

phosphatases [14,15]. In T-cells, Csk associates with the tyrosine

phosphatase PEP, which dephosphorylates the activation loop of

the Src family kinase Lck [16]. The association of Csk and PEP

provides for a coordinated downregulation of Lck through

simultaneous phosphorylation of the C-terminus and dephosphor-

ylation of the activation loop. Csk has also been reported to

associate with the widely expressed tyrosine phosphatase PTP-

PEST in non-haematopoietic cells [15], suggesting that such a

coordinated mechanism may be widespread.

Pursuing the observation that Csk is dimeric at high protein

concentration (i.e., ,1 mg/ml or greater) in vitro [17], we have

discovered that Csk dimerizes in a manner that is incompatible

with the binding of ligands to the SH3 domain. By interfering with

the recruitment of tyrosine phosphatases, Csk dimerization could

serve to modulate the degree of activation loop phosphorylation

and activity of the Src family kinases.

Results and Discussion

Dimerization of Csk Requires the SH3 Domain
Csk protein is dimeric in solution, as indicated by analytical

ultra-centrifugation and gel filtration chromatography [17], but

the molecular nature of this dimer interaction is unknown. We
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performed size exclusion chromatography with different constructs

of Csk (see figure 1), and found that while the full-length protein

(CskFL) migrates as a dimer by size exclusion, the removal of the

SH3 domain (CskSH2KD) or the SH3 and SH2 domains (CskKD)

resulted in proteins that no longer appear to dimerize and instead

elute as apparent monomers by gel filtration (figure 1). This

suggests that the SH3 domain of Csk is involved in the dimer

interface.

The SH3 Domain Mediates Dimerization of Csk
Analysis of the crystal packing interactions in the crystal

structure of full-length Csk [17] reveals an interaction that is

consistent with the requirement of the SH3 domain for

dimerization. The crystal structure contains 6 molecules of Csk

in the asymmetric unit, and pairs of SH3 domains form symmetric

interactions consistent with dimer formation. The interaction

buries a total of 946 Å2 of surface area between the two domains

and includes several hydrophobic contacts (figure 2). Despite the

fact that the six molecules of Csk in the asymmetric unit of this

structure are in somewhat different conformations, the SH3

domains of each molecule participate in identical dimer

interactions with adjacent molecules in the crystal lattice.

Intriguingly the same interaction is also observed in the crystal

structure of the isolated SH3 domain of Csk [18], suggesting that

this interaction might be physiologically relevant.

We mutated the surface of the SH3 domain of Csk that

mediates the putative dimer interaction extensively, and assessed

the ability of the mutant proteins to dimerize by size exclusion

chromatography (figure 2). Of the six mutant proteins tested, five

migrate as monomers, while the protein bearing the Asn 63 Ala

mutation migrates mostly as a dimer, with a small shoulder

corresponding to a monomer species. This is consistent with the

observation from the structure that Asn 63 makes only very weak

interactions in the interface (i.e., it does not form tight hydrogen

bonds with neighboring residues). These results indicate that the

dimers of Csk observed in solution rely on the SH3–SH3 interface

seen in the crystal structures of full-length Csk and the isolated

SH3 domain.

The Csk Dimer Is Incompatible with the Binding of
Ligands to the SH3 Domain

SH3 domains bind to peptides containing PXXP sequences that

readily form polyproline type II helices [19,20,21]. The SH3

domain of Csk binds to a polyproline motif (referred to as 3BP1,

for SH3 binding peptide 1) in the C-terminus of the protein

tyrosine phosphatase PEP [22], and the recruitment of PEP and

Csk to the membrane is required for inhibition of T-cell signaling

[16]. The 3BP1 motif of PEP binds to Csk with an unusually high

affinity compared to most SH3-peptide interactions, and the high

affinity interaction depends on a hydrophobic motif C-terminal to

the polyproline motif [22]. The solution structure of the SH3

domain of Csk in complex with a peptide comprising the 3BP1

motif demonstrated that in addition to the canonical polyproline

helix-SH3 interaction, the hydrophobic residues in the 3BP1 motif

also form interactions with the SH3 domain [23].

In the Csk SH3-SH3 homodimer the ligand binding surface on

both SH3 domains is occluded. This is demonstrated by a

comparison between the Csk residues involved in the SH3-SH3

dimer interface with those involved in binding the 3BP1 peptide

(figure 3). It is therefore expected that the formation of the SH3-

SH3 dimer would prevent the binding of the 3BP1 peptide and

vice versa. This is consistent with the observation that the addition

of the 3BP1 peptide to the isolated SH3 domain prevents

oligomerization of the SH3 domain [23]. Interestingly, the

secondary binding site for the hydrophobic residues of 3BP1 is

not occluded by the SH3-SH3 dimer (figure 3). It is possible that

PEP might still be able to interact weakly with a Csk dimer

through this secondary binding site, although the binding of other

phosphatases, such as PTP-PEST, to the Csk SH3 domain would

be completely blocked by the formation of the dimer.

A Speculative Model for the Functional Role of the Csk
Homodimer

The recruitment of both Csk and PEP to the plasma membrane

is critical for the inhibition of T-cell signaling [16]. The

observation that the Csk homodimer should interfere with the

binding of the PEP phosphatase to the SH3 domain suggests that

the two interactions may compete in cells. The dimerization of Csk

could therefore have a profound influence on the recruitment of

phosphatases to sites of Src kinase activity, with important

implications for the regulation of the Src kinases.

The 3BP1 element of PEP interacts with the SH3 domain of

Csk with a KD value of ,800 nM [23]. The affinity of the SH3-

SH3 interaction is unknown, but our gel filtration data indicate

that the dimer is formed at 20 mM. The question therefore

remains whether the SH3-SH3 interaction can effectively

compete with the relatively high affinity SH3-PEP interaction.

The recruitment of proteins to the cell membrane may increase

their effective concentration by as much as 1000-fold [24],

allowing interactions that are weak in solution to play a significant

role [25]. The phosphorylated cytoplasmic domain of Cbp is

known to form oligomers that bind multiple molecules of Csk [26],

potentially providing a platform on which Csk molecules are

Figure 1. The SH3 domain of Csk is required for dimerization.
A) The constructs used in this paper. B) The results of size exclusion
chromatography performed with the constructs shown in A. The elution
volumes of molecular weight standards are indicated by black arrows.
doi:10.1371/journal.pone.0007683.g001
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recruited in close proximity. This could further promote the

formation of dimers, resulting in the displacement of the

phosphatase, and allowing for the activation of Lck through

autophosphorylation. In this light it would be interesting to see

how mutations that disrupt the Csk SH3-SH3 dimer interface

affect signaling in cells.

Figure 2. The Csk SH3-SH3 dimer. A) A representative SH3-SH3 dimer from the crystal structure of full-length Csk (PDB code: 1K9A). Residues in
the interface are highlighted. B) The results of size exclusion chromatography performed with constructs of Csk bearing mutations in the putative
dimer interface.
doi:10.1371/journal.pone.0007683.g002
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Methods

Expression and Purification of Csk Constructs
The constructs of human Csk, CskFL (residues 1–450),

CskSH2KD (residues 68–450) and CskKD (residues 187–450) were

expressed in bacteria and purified as described [10]. The SH3

domain mutations were prepared using the Quikchange protocol

(Statagene) and verified by DNA sequencing.

Gel Filtration Chromatography
Purified Csk proteins were subjected to analytical gel filtration

using a Superdex S200 column (GE Healthcare) or SMART S200

column (GE Healthcare). Column calibration was performed

using molecular weight standards (Ferritin, Catalase, GST,

Ribonuclease).
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