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Abstract

Embryonic stem cells (ES cells) can differentiate into cells derived from all three germ layers and extraembryonic tissues.
While transcription factors such as, Oct4 and Nanog are well known for their requirements for undifferentiated ES cell
growth, mechanisms of epigenetic repression of germ layer specific differentiation in ES cells are not well understood. Here,
we investigate functions of Mbd3, a component of nucleosome remodeling and histone deacetylation complex (NuRD/Mi-2)
in mouse ES cells. We find that compared to wild type ES cells, Mbd3 knockdown cells show elevated RNA expression of
trophectoderm markers, including Cdx2, Eomesodermin, and Hand1. In parallel, these cells show an increased acetylation
level of histone 3 in promoters of the respective genes, suggesting Mbd3 plays a role in repression of these genes in
undifferentiated ES cells. However, these changes are not sufficient for definitive differentiation to trophectoderm (TE) in
chimeric embryos. When further cultured in ES medium without LIF or in trophoblast stem (TS) cell medium, Mbd3
knockdown cells differentiate into TE cells, which express Cdx2 and, at later stages, trophoblast lineage specific marker
Cadherin 3. These results suggest that Mbd3 helps restrict ES cells from differentiating towards the trophectoderm lineage
and is an important epigenetic player in maintaining full pluripotency of mouse ES cells.
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Introduction

Embryonic stem (ES) cells are derived from the inner cell mass

(ICM) of growing blastocysts. They maintain an undifferentiated

state in defined culture conditions, but can also be induced to

differentiate into diverse cell types representative of all three germ

layers both in vitro and in vivo [1]. ES cells are powerful tools for

expanding our knowledge in mammalian early development and

are thought to hold great promise for regenerative medicine [2].

ES cells share many characteristics of ICM cells at the level of

transcriptional regulation. For example, they both express

pluripotent cell specific transcription factors, such as Oct4 and

Nanog [3–5]. In mouse, loss of Oct4 expression by targeted gene

deletion causes ES cells to develop into trophectoderm [6,7], while

deletion of Nanog causes ES cells to differentiate into primitive

endoderm [5] and to compromise PGC maturation [8].

Considerable efforts have been devoted to elucidate transcriptional

networks of these and other transcription factors and their

associated cofactors [9,10]. These transcription factors have been

implicated in cooperatively activating or repressing a broad range

of downstream target genes [11]. However, less attention has been

paid to epigenetic regulation of these lineage specific transcription

factors. Recent studies have shown that the ES cell pluripotent

state is critically maintained by Polycomb group (PcG) complexes

that mediate suppression of key differentiation genes [12–14].

Other epigenetic studies point to similar lineage restriction

schemes to govern ES cell pluripotency (reviewed in [15]). Despite

these studies, detailed mechanisms of how global epigenetic

control is achieved, especially how lineage specific transcription

programs are suppressed in ES cells, remain to be fully elucidated

(reviewed in [15,16]).

Major epigenetic modifications include DNA methylation,

histone acetylation and methylation which are often closely

coupled [17]. DNA methylation at the dinucleotide CpG in

regulatory regions is a hallmark of stable transcriptional silencing

[18]. Recruitment of specific binding proteins to methylated CpG

islands is believed to repress target gene transcription [19]. On the

other hand, acetylation of histone tails is critical for nucleosome

structure alterations that facilitate DNA accessibility to regulatory

factors [20–22].

Purification of nucleosome remodeling and histone deacetyla-

tion complex (NuRD, also known as Mi-2, NURD, or NRD) links

together two epigenetic modifications: DNA methylation and

histone deacetylation [23–27]. Several components of the NuRD

complex have been shown to be necessary for early embryonic

development. Methylated DNA-linked chromosomal remodeling

and gene silencing are thought to be mediated by methyl-CpG

binding (MBD) proteins [19,28]. Unlike other mammalian MBD

protein, Mbd3 does not bind to methyl-CpG biochemically.

Instead, Mbd3 is directly associated with Chd4 protein as core
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subunits of the NuRD complex. Study of Mbd3 null mice indicates

that it is essential for early embryogenesis while Mbd2 is

dispensable for viability [29]. Since dynamic epigenetic regulations

occur during ICM formation and differentiation of primary germ

layers, early embryonic lethality caused by Mbd3 deletion may be

attributed to abnormal epigenetic modifications, and therefore

dysregulation of gene expression in early embryos [30,31]. Mbd3

function was reported to be dispensable for ES cell growth in

culture, but essential for their commitment to a full spectrum of

embryonic lineages when aggregated with wild type embryos,

indicating pluripotency of these cells is indeed affected [15,32]. A

detailed mechanism for restricted differentiation of the Mbd3-

deficient cells remains to be elucidated. Interestingly, when

cultured in vitro to promote embryonic stem cell outgrowth,

Mbd3-deficient ICMs fail to generate pluripotent cells [33]. This

difference may be attributed to different sets of molecular factors

that are required for the derivation and maintenance of the

pluripotent state [15,33].

Specification of trophectoderm is the first sign of differentiation

of early mouse embryos. Studies of molecules required for the

specification of the trophectoderm have led to identification of

Oct4 as a negative regulator while Cdx2 as a positive transcription

factor in the process. Conditional deletion of Oct4 in mouse ES

cells leads to trophoblast differentiation and increased expression

of trophoblast-specific markers [6]. Trophoblast stem (TS) cells

can be derived when these cells are cultured under conditions that

promote trophoblast proliferation [34]. On the other hand, Cdx2

is specifically expressed in outer cells of the blastocyst, which are

destined to form trophectoderm [35]. Without functions of Cdx2,

transcription of Oct4 and Nanog are not downregulated in these

outer cells, thus resulting in the implantation failure of the mutant

embryos [35].

Interestingly, though Cdx2 is essential for TS cell self-renewal, it

is dispensable for trophectoderm differentiation induced by Oct4

repression [34]. Since Cdx2 and Oct4 form a complex in early

embryos, reciprocal inhibition of their respective target genes was

proposed to be important in achieving the correct segregation of

the ICM and trophectoderm lineages [34,36].

Although studies using Mbd32/2 ES cells have greatly helped us

to understand the roles of NuRD complex in maintaining full ES

pluripotency, the underlying molecular mechanism remains

obscure. In the present study, we selectively reduced expression

of Mbd3 in mouse ES cells by RNA interference to address why

Mbd3 is required for maintain mouse ES cell pluripotency. We find

that reduction of Mbd3 compromises the full differentiation

potential of ES cells. Moreover, with reduced Mbd3 expression,

mouse ES cells are set at an intermediate state and are more prone

to differentiate into trophectoderm. Our results suggest that Mbd3

is involved in maintaining pluripotency of mouse ES cells by

repressing trophectoderm differentiation.

Materials and Methods

Plasmids
Mbd3 and its control short hairpin RNA (shRNA) plasmids

were all placed into pSuper.retro.puro vector (Oligo Engine Inc.).

RNA interference (RNAi) target sequences for Mbd3 were selected

using Ambion siRNA converter online software (http://www.

ambion.com/techlib/misc/siRNA_finder.html). The target se-

quences are as follows:

Mbd3 shRNA1: 59-GATGAATAAGAGTCGCCAG-39

Mbd3 shRNA2: 59-AGCCTTCATGGTGACAGAT-39;

Mbd3 control shRNA: 59-GCGAAGTGCATTGTGTGGC-39.

Oligonucleotides were annealed and inserted into Bgl II/

HindIII sites of pSuper.retro.puro vector. EGFP fragment from

pEGFP-N1 (Clontech) was subcloned into the AccI site of the

RNAi plasmids to visualize transfected cells.

Mouse Mbd3 cDNA and full-length human Mbd3 cDNA were

cloned into XbaI and HindIII sites in pRK5-tkneo vector

(Genentech, South San Francisco, Calif. [37]).

Cell culture, plasmid transfection and cell proliferation
assay

Mouse ES cell line CGR8 (kindly provided by Dr. Austin Smith)

[6] was maintained in GMEM (Sigma G5154) supplemented with

10% fetal bovine serum (PAA, pre-tested for ES cells, A15-080),

1 mM sodium pyruvate (Sigma S8636), 2 mM L-glutamine

(Hyclone SH30034), 0.1 mM non-essential amino acids (Hyclone

SH30238), 0.1 mM 2-mercaptoethanol (Sigma M7522), 50 mg/ml

penicillin/streptomycin (Hyclone SV30010), 103 Units/ml leuke-

mia inhibitory factor (LIF, Chemicon ESG1107). CGR8 cells were

cultured in plates coated with 0.1% gelatin (Sigma G9391) without

feeder layer cells. NIH3T3 and mouse primary fibroblast cells

were maintained in DMEM (Hyclone SH30022) supplemented

with 10% fetal bovine serum (Hyclone SH30088), 50 mg/ml

penicillin/streptomycin, and 2 mM L-glutamine.

Plasmids were transfected into cells with PolyFect (Qiagen

301105) or Lipofectamin 2000 (Invitrogen 11668) according to the

manufactures’ instructions. All antibiotic selections were started at

24 hours after transfections. Mouse CGR8 ES cells were selected

with 1 mg/ml puromycin (Sigma P8833) and/or 300 mg/ml G418

(Invitrogen 11811-023).

For cell proliferation assays, transfected cells were maintained in

medium without antibiotic selection. Equal numbers of EGFP

positive cells were seeded in triplicate in 12-well plates one day

after transfection. Green fluorescent cells were counted in the

following days. Each experiment was repeated at least three times.

Lentivirus construction, package and infection
For generation of ES cell lines stably overexpressing shRNA, the

oligonucleotides used for Mbd3 shRNA1 were cloned into

pLentilox3.7 vector. For lentivirus production, pLentilox3.7

plasmids were co-transfected with packaging vectors into 293T

cells, and the supernatant was harvested after 48 hours. After

centrifugation and filtration, the supernatant was added into ES

cell suspension for infection. Single colonies were then picked and

propagated.

Western blotting
Cells were collected after trypsinization and washed twice with

cold PBS. Cell lysate was extracted with five times volume of cold

EBC buffer (120 mM NaCl, 50 mM Tris-Cl PH 8.0, 0.5%

Nonidet P-40) containing protease inhibition cocktails (Roche

1697498) and 1 mM PMSF (Amersco 0754). Protocols used

for protein fractionation in SDS-PAGE, blotting and antibody

incubation were essentially the same as those described in

Molecular Cloning [38]. Anti-MBD3 (C-18) (sc-9402) was

purchased from Santa Cruz and anti-a-Tubulin (T5168) antibod-

ies was from Sigma. The protein signals were detected using Pierce

SuperSignal kit (Pierce 34095) and chemiluminescent images were

captured using a cold CCD camera (UVP BioImaging Systems).

Real-time RT-PCR
Total RNAs were extracted with Trizol reagent (Invitrogen

15596-026) followed by DNase I (Roche 11994020) treatment.

Reverse transcription reactions from 2 mg RNA were carried out

Mbd3 and ES Cell Pluripotency
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with MMLV reverse transcriptase (Invitrogen 28025-013). cDNAs

from 25 ng of RNA were used as templates for quantitative PCR

amplification using SYBR PCR Master Mix (ABI 4367659) in ABI

Prism 7900 HT sequence detection system (Applied Biosystems).

Data were analyzed by SDS2.2 software. Reactions were set up in

triplicate for each sample. Gene expressions were normalized to

b-actin expression. Data are shown as fold inductions relative to

control. Primers are shown in Table S1.

Chromatin immunoprecipitation (ChIP)
About 106 cells for ChIP were treated with shRNA for six days

while selected with puromycin for five days. ChIP assays with an

acetylated histone 3 (AcH3) antibody (Upstate, Catalog # 17–245)

were carried out following the manufacture’s protocol. Briefly,

cells were cross-linked with 1% formaldehyde for 10 min at 37uC.

Cell lysates were sonicated at 100 w for 10 s with ultrasonic

apparatus (Scientz JY92-2D). The sonication step was repeated

four times with 30 s intervals. Chromatin extracts containing DNA

fragments with an average size of 500 bp were immunoprecipi-

tated using 5 mg AcH3 antibody. Quantitative PCR was carried

out as described in real-time RT-PCR section. Primers are shown

in Table S2.

Embryoid body (EB) formation and chimeric embryo
production

For EB formation assays, 26105 cells were seeded into 35 mm

low attachment sterile cell plate (Ai Si Jin Co., China) in 2 ml ES

cell medium without LIF. Fresh medium was exchanged every two

days.

For chimera production, eight-cell stage embryos were collected

from ICR female mice. Embryos were treated with acidified

Tyrode’s solution (Sigma T1788) for 10 sec. to remove the zona

pellucida. Naked embryos were washed through four droplets of

M2 medium (Sigma M7167) and subsequently cultured in the

‘‘well-in-well’’ of 50 ml KSOM-AA medium (Chemicon MR-106-

D) individually to maintain the developmental competency and

embryonic integration. One small cluster of Mbd3 knockdown

stable cells (10–20 cells) was gently put into the culture droplet

which contained the naked embryo. After 24 h, either aggregated

morula or blastocyst stage embryos were selected. Morula-stage

embryos were further cultured in 50ml droplet of fresh KSOM

medium until the blastocyst stage [39].

Trophoblast stem (TS) cell derivation and cell
immunostaining

CGR8 cells were treated with Mbd3 shRNAs for at least three

days then cultured in TS cell culture condition. TS cells were

derived and maintained in 30% fresh TS medium [GMEM

(Sigma G5154) supplemented with 20% (v/v) of FBS (Hyclone

SH30396), 1 mM sodium pyruvate (Sigma S8636), 2 mM L-

glutamine (Hyclone SH30034), 0.1 mM 2-mercaptoethanol

(Sigma M7522), 50mg/ml penicillin/streptomycin (Hyclone

SV30010), 1mg/ml of sodium heparin (Sigma H3149), and

25 ng/ml of recombinant FGF4 (Sigma F8424)] and 70% (v/v)

of the MEF-conditioned TS medium [40]. MEF-conditioned

medium was collected from mitomycin C-treated MEF cells

cultured in TS medium for 3 days.

For immunostaining, cells were fixed in 4% paraformaldehyde

at room temperature for 10 min. After rinsing twice with PBS,

cells were blocked with blocking buffer (PBS+0.1% Gelatin+1%

BSA+0.02% NaN3+0.4% TritonX-100) for 30 min at room

temperature (for Cdh3 staining, withdrawal of TritonX-100 from

blocking buffer). Primary antibodies anti-Cdh3 (Neomarkers,

MS-1741) and anti-Cdx2 (BioGenex, MU392-UC) were diluted

at 1:100 and 1:50 in blocking buffer, respectively. Secondary

antibody detecting mouse IgG conjugated with TRITC or FITC

(ZhongShanJinQiao, ZF-0313, 0312) were diluted at 1:100 in

blocking buffer. Fixed cells were stained with primary and

secondary antibodies for 1 hour, respectively. Hoechst (Sigma

B2261) were used for cell nuclei staining. Images were captured

with a fluorescence microscope (Nikon Eclipse TE2000-U) or Zeiss

confocal microscope (LSM510META).

Results

Mbd3 is required in mouse ES cells for suppressing
expression of trophectoderm specific genes

Much progress has been made in defining requirements for

maintenance and differentiation of ES cells, but only limited

information is available as to how lineage restriction is achieved

epigenetically [41]. One of the major epigenetic regulations is

modulation of histone acetylation levels at genes required for

certain biological processes. The NuRD complex uniquely

processes both nucleosome remodeling and histone deacetylase

activities and functions primarily in transcriptional repression [42].

To better understand the functions of the NuRD complex in

maintaining pluripotency of mouse ES cells, we investigated its

functional components. We chose to inhibit expression of Chd4

(will be reported elsewhere) and Mbd3 which is essential for very

early development as demonstrated in mouse Mbd3 knock-out

experiments [29]. More recent studies by Kaji and colleagues

strongly suggest that Mbd3 is critically required for mouse

embryonic stem cells both in vitro and in vivo [32,33]. However,

the underlying mechanisms for the requirement remain to be fully

elucidated.

Two RNA interference plasmids were made against mouse

Mbd3. Transfection of either shRNA plasmids can efficiently

reduce both Mbd3 RNA expression and its protein expression in

CGR8 cells (Figure 1A, B). We first asked if Mbd3 shRNAs

treatment influences ES cell proliferation. Mbd3 shRNAs trans-

fected cells (thereafter referred as Mbd3 shRNA cells) showed only

a slightly lower proliferation rate compared with wild type ES cells

(Figure 1C). However, the majority of the Mbd3 shRNA cells

displayed marked differentiated morphology when compared to

control shRNA cells. In contrast to tightly packed ES cell colonies

with smooth edges, Mbd3 shRNA cells showed morphological

changes ranging from a fibroblast-like shape to loosely associated

cell aggregations (Figure 1D, compare a,a9 to b,b9 and c,c9). Minor

cell proliferation changes after Mbd3 shRNA transfection may be

partially explained by ES cell differentiation into other cell types.

These results indicate that Mbd3 may be essential for maintaining

mouse ES cells in an undifferentiated state.

Although mouse ES cells can give rise to all types of cells in an

embryo, they can only differentiate directly into three cell lineages:

trophectoderm, primitive endoderm and primitive ectoderm

(reviewed in [41]). The observed morphological changes after

knockdown of Mbd3 in ES cells did not clearly indicate into which

lineages they may have differentiated. Therefore, we analyzed

specific molecular markers for the three cell lineages in ES cells

after Mbd3 knockdown. Quantitative RT-PCR analysis confirmed

that Mbd3 RNA levels were decreased to about twenty five

percent of controls. Noticeably, the trophectoderm markers Cdx2,

Eomes and Hand1 were upregulated dramatically in Mbd3 shRNA

cells (Figure 2A). Transcription of primitive endoderm markers,

Gata4 and Hnf4 (Figure 2A), Sox7, tPA and AFP (data not shown)

did not show obvious changes. Expression of Gata6, which has

been used as a marker for primitive endoderm, increased at least

Mbd3 and ES Cell Pluripotency
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four fold (Figure 2A). It should be noticed, however, that Gata6 is

also expressed in early trophectoderm [43]. There were no

meaningful changes at the RNA level of primitive ectoderm

marker Fgf5 and its derivative mesoderm marker T. It appears that

knockdown of Mbd3 promotes ES cells to differentiate towards

trophectoderm based on these molecular studies. The differenti-

ation of ES cells into trophectoderm cells is usually accompanied

by downregulation of pluripotent genes, such as Oct4 and Nanog.

However, we did not observe transcriptional changes for Oct4,

Nanog and Esrrb (Figure 2A), suggesting the observed upregulation

of trophectoderm genes may not be a sufficient indicator of a full

commitment to the trophectoderm lineage.

To test the specificity of the Mbd3 RNA interference effect on

ES cells, we co-transfected human Mbd3 and mouse Mbd3 shRNA

plasmids into ES cells and attempted to rescue the observed

upregulation of trophectoderm markers. Human Mbd3 and

mouse Mbd3 exhibit 95.8% identity at the amino acid level based

on protein alignment. Human Mbd3 cannot be targeted by either

mouse Mbd3 shRNAs as judged by significant DNA sequence

divergence. Quantitative RT-PCR results indicated that human

Mbd3 clearly rescued expression of the trophectoderm markers to

control levels (Figure 2B). To rule out that what we observed was

unique to CGR8 ES cells, we repeated the Mbd3 RNAi

experiment in another mouse ES cell line, R1. Unlike CGR8,

R1 cells are usually maintained on a mouse embryonic fibroblast

feeder layer. Similar to CGR8 cells, expression of trophectoderm

specific genes in R1 cells was increased upon Mbd3 downregula-

tion; however, the morphological changes were less obvious (data

not shown).

Since the NuRD complex is involved in histone deacetylation,

we further examined the histone acetylation status of those genes

that showed upregulation upon Mbd3 knockdown. By scanning

promoter regions of Cdx2, Eomes and Gata6 using chromatin

immunoprecipitation (ChIP) coupled with quantitative PCR

analysis, we uncovered specific regions in these promoters that

show significantly higher acetylated histone 3 modification in

Mbd3 shRNA cells compared with the control (Figure 2C). High

levels of histone 3 acetylation in a promoter are usually correlated

with active gene transcription [44,45]. Thus the ChIP results are

consistent with the upregulated transcription of these genes.

Together, our data suggest that Mbd3 expression is critical to

suppress TE lineage specific gene expression in mouse ES cells.

Suppression of Mbd3 expression is not sufficient for ES
cell differentiation to TE lineage

Since Mbd3 suppression results in ES cell morphological

changes and upregulated trophectoderm associated gene expres-

sion, we next set out to examine whether compromised Mbd3

expression can cause definitive trophectoderm differentiation. We

carried out a chimeric embryo assay in which cells to be tested are

fluorescently labeled and aggregated with early wild type embryos.

By checking distributions of the labeled cells in the chimeras, one

can assign differentiation lineages to the cells [46,47].

Figure 1. Reduced Mbd3 expression in CGR8 cells results in morphological differentiation. A) Quantitative RT-PCR analysis Mbd3 mRNA
expression in Mbd3 shRNA transfected CGR8 cells, which were selected with puromycin for five days. Gene expressions are normalized to internal
control b -actin and presented as the fold induction relative to control shRNA. Error bars represent standard deviation from three technical repeats. B)
Mbd3 shRNA transfections downregulates endogenous Mbd3 protein expression in CGR8 cells detected on western blots. Cells were transfected with
indicated shRNA plasmids. C) Growth curves of CGR8 cells transfected with shRNA plasmids. Only GFP positive cells were counted. Error bars
represent standard deviation. D) CGR8 cells were transfected either with control shRNA(a, a9) or Mbd3 shRNA1/2 (b, b9 and c, c9) and selected for five
days with puromycin. GFP fluorescence in a9, b9, c9 indicate that the cells harbor shRNA plasmids. The scale bar represents 50mm.
doi:10.1371/journal.pone.0007684.g001

Mbd3 and ES Cell Pluripotency
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Transient transfection might result in loss of plasmids during the

chimera development, and thus could make it difficult to interpret

the differentiation potential of labeled Mbd3 shRNA cells. To

circumvent this drawback of transient transfection for in vivo

assays, we made stable Mbd3 knockdown ES cell lines by lentivirus

infection. These cell lines show consistent and stable Mbd3 mRNA

knockdown during the course of the study (Figure 3A), thus

avoiding any significant phenotypic variations possible with

transient cell knockdowns. Among the Mbd3 knockdown stable

lines, the upregulation of Cdx2 is inversely correlated with Mbd3

RNA level. Consistent with the previous transient knockdown

result, the expression level of pluripotency marker Oct4 shows no

obvious change among the stable lines (Figure 3A). We also

observed that these cells showed fibroblast-like morphology with

loose cell-cell contacts (Figure 3B–n, o, p). We aggregated cells

from three independent Mbd3 knockdown stable lines (ESL D8, E8

and G11) and wild type mouse embryos to form chimeras. We

examined which cell lineage the Mbd3 stable cells can associate

with. Mbd3 cells, including those cell lines with obvious

differentiated morphology (ESL G11), were shown to integrate

Figure 2. Suppression of Mbd3 results in the upregulated gene expressions of trophectoderm lineage markers in CGR8 cells. Equal
amounts of DNase-treated total RNA were subjected to quantitative RT-PCR analysis (A, B). A) Cells were transfected with shRNA plasmids and
selected for six days with puromycin. B) Cells were co-transfected with a shRNA plasmid and human Mbd3 or control plasmid and selected with both
puromycin and G418 for five days. The target sequences in Mbd3 shRNA1 and 2 do not exist in human Mbd3 sequence. C) Chromatin
immunoprecipitation (ChIP) analysis using acetylated histone 3 antibody. CGR8 cells were transfected with shRNA plasmids and selected for five days
with puromycin. Various pairs of PCR primer were designed to scan respective promoters. Gene expressions were normalized to internal control b -
actin and presented as the fold induction relative to control samples. Error bars in panel A, B and C represent standard deviation from three technical
repeats.
doi:10.1371/journal.pone.0007684.g002

Mbd3 and ES Cell Pluripotency
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into the ICM of chimeric embryos in almost all cases (Figure 3B).

At a minimum, this observation suggests that Mbd3 shRNA cells

and ICM cells share similar cell surface molecules essential for cell

sorting. In previous studies [32], Oct4 and Nanog expression

changes little in Mbd3 shRNA cells, which may partially explain

why these cells remain associated with the ICM in the chimera

embryos (Figure 3B). Moreover, we failed to detect Cdx2 protein

expression in these cells (Figure 4b, c), although Cdx2 mRNA levels

were consistently upregulated many fold (Figure 3A), suggesting

that either there is not sufficient mRNA transcription or that

translational regulation plays a role in these cells. Taken together,

these results indicate that reduction of Mbd3 expression is not

sufficient for fully committed TE lineage differentiation.

Mbd3 is required for maintaining full differentiation
potential of ES cells

Although the Mbd3 knockdown ES cells retain the ability to

remain associated with the ICM, whether they retain ES cell like

differentiation capability is not known. Previously, Mbd32/2 cells

were shown to retain self-renewal capability upon withdraw of LIF

Figure 3. Knockdown Mbd3 is not sufficient for ES cell differentiation. A) Quantitative RT-PCR analysis of Cdx2 and Oct4 in Mbd3 knockdown
stable lines. Control ESL represents control siRNA stably transfected mouse ES cells; ESL F5, ESL D3 ESL E8, ESL D8, and ESL G11 represent five
independent Mdb3 siRNA stably transfected mouse ES cells. Error bars represent standard deviation from three technical repeats. B) Chimeric analysis
of control and three independent siRNA ES cells in wild type mouse embryos. siRNA stably trasnfected cells were aggregated with wild type mouse
embryos at the eight-cell stage and cultured to the blastocyst stage (a–l). in vitro morphology of the siRNA ES cells used in aggregations (m–p).
Aggregated cells marked by DsRed. Scale bars: l, 200mm (also applies to a to k); p, 100mm (also applies to m, n, o).
doi:10.1371/journal.pone.0007684.g003

Mbd3 and ES Cell Pluripotency
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and also to show defective differentiation potential [32]. However,

which specific early lineages are compromised is unclear for

Mbd32/2 cells.

If Mbd3 shRNA cells show upregulated trophectodermal

markers, an indication of greater potential for re-specification

towards the trophectoderm lineage, we reasoned their capability to

form primitive ectoderm, precursor of three germ layers, might be

compromised. To investigate this possibility, we tried to induce

Mbd3 shRNA-transduced cells to differentiate by adding retinoic

acid (RA, all-trans), an agent which causes wild type ES cells to

convert into cells comprising all three germ layers [48]. Compared

with control shRNA cells, Mbd3 knockdown cells showed reduced

induction of fgf5 (ectoderm) and gata4 (endoderm) (Figure 5A). This

result indicates Mbd3 indeed is required for full differentiation

potential of primitive ectoderm layers.

We also used embryoid body (EB) formation by suspension

culture of ES cells to examine their differentiation capability.

Successfully differentiated EB is a three-dimensional spheroid

structure that mimics post-implantation embryos and contains

three germ layers [49]. Since Mbd3 seems to regulate ES cell

differentiation, it is possible that reduction of Mbd3 expression in

ES cells may also cause abnormal differentiation in EB. We used

three separate Mbd3 knockdown cell lines (ESL D8, E8 and G11)

in the assay. All cell lines except ESL G11 form aggregates by day

five (Figure 5B–e, f, g). By day twelve, in contrast to control cells

which form heterogeneous spheroids in the aggregates, ESL D8

and ESL E8 cells only show aggregated solid ‘‘cell balls’ similar to

those at day five, suggesting the lack of robust differentiation

shown by control ES cells (Figure 5B, i–q). Moreover, even

the ESL G11 cell line with the most severe differentiation

morphology failed to generate obvious EB by day five, suggesting

severely compromised differentiation capability (Figure 5B–h).

Before day twelve, the remaining small ESL G11 cell aggregates

are all disintegrated (data not shown). It is clear that Mbd3 is

required for the formation of normal EB, another indication of

full differentiation potential. Together, these results strongly

suggest that Mbd3 is essential for mouse ES cells to maintain full

pluripotency.

Figure 4. Withdrawal of LIF or cultured under TS cell condition promotes Mbd3 knockdown ES cells to differentiate towards
trophectoderm lineage. Cdx2 staining of control or Mbd3 knockdown stable cells with or without LIF, or cultured under TS culture condition. (a–f)
Cells were cultured in normal ES cell condition with LIF; (g–l) Cells were withdrawal of LIF for 4 days; (m–r) Cells were cultured under TS culture
condition for 6 days. Hoechst stains the cell nuclei. The scale bar represents 50mm.
doi:10.1371/journal.pone.0007684.g004
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Mbd3 reduced ES cells are prone to differentiate into
trophectoderm lineage

Mbd3 knockdown cells showed substantial increased mRNA

expression of trophectoderm lineage markers, a strong indication

of trophectoderm differentiation. However, we did not detect

Cdx2 protein expression in Mbd3 knockdown cells (Figure 4b, c).

These cells were shown to integrate into the ICM of chimera

embryos (Figure 3) which indicates no definitive differentiation to

trophectoderm lineage at least in the chimeras. Although we can

not rule out that the Mbd3 knockdown cells have reverted to a

more pluripotent state by in vivo factors when placed in the mileu

of a developing embryo, it is also possible that reduction of Mbd3

in ES cells may reduce the intrinsic threshold for these cells to

differentiate towards TE lineage.

Leukemia inhibitory factor (LIF) is one of the key components in

suppression of spontaneous differentiation for mouse ES cells.

Figure 5. Full differentiation potential of mouse of ES cells is compromised when Mbd3 expression is reduced. A) ES cells cultured with
or without retinoic acid for three days were subjected to real-time RT-PCR analysis. For differentiations, 1mM retinoic acid (RA) was used or LIF was
withdrawn from the medium. ES cells were transfected with respective plasmids for three days before RA addition and selected with antibiotics for
five days. Error bars represent standard deviation from three technical repeats. B) Embryoid body (EB) formation of control or Mbd3 knockdown stable
cells. Stable cells (26105) were suspension cultured in ES cell medium without LIF in 35 mm cell dishes. Scale bars: k, 200mm (also applies to a to j); q,
50mm (also applies to l to p).
doi:10.1371/journal.pone.0007684.g005
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Withdrawal of LIF from the culture medium allows ES cells to

differentiate randomly into multiple lineages [50]. However,

mouse ES cells rarely differentiate into trophectoderm in various

culture conditions. Alterations of Cdx2 and Eomes were reported

to trigger trophectoderm differentiation of mouse ES cells [34,51].

We attempted to test whether Mbd3 knockdown cells have a

tendency to differentiate into trophectoderm in the absence of LIF.

After removal of LIF from the culture medium for 4 days, we

detected Cdx2 protein expression in the nuclei of Mbd3 shRNA

cells, but not in the control cells (Figure 4). These results indicate

that Mbd3 knockdown cells seem to be biased to the trophecto-

derm lineage.

Previously, overexpression of Cdx2 in mouse ES cells was

shown to induce trophectoderm differentiation, likely by directly

inhibiting Oct4 functions [34,52]. When ES cells are induced to

differentiate toward trophectoderm, trophoblast stem (TS) cells

can be derived from these cells in appropriate culture conditions

[34,47]. To further confirm that Mbd3 knockdown cells are indeed

biased towards trophectoderm differentiation, we cultured control

and Mbd3 shRNA stable cells under TS culture conditions

containing FGF4 and MEF-conditioned medium [40] for 6 days.

Although we did not observe representative TS colonies, the Cdx2

proteins were detected in Mbd3 shRNA stable cells (Figure 4n, o).

Moreover, with prolonged culture of Mbd3 knockdown cells three

days after shRNAs transfection in TS cell medium, we observed

formation of flattened TS-like colonies by passage two (Figure 6a,

f) which expressed trophectoderm cell surface marker Cadherin3

(Cdh3, also known as placenta Cadherin) (Figure 6d, i). In

contrast, there were no Cadherin3 positive cells in control shRNA

cells under the same culture condition (Figure 6n). It is likely that

both TS culture condition and withdrawal of LIF further promote

Mbd3 shRNA cells towards a trophectoderm lineage. These results

suggest Mbd3 helps mouse ES cells maintain pluripotency by

partial suppression of the trophectoderm lineage.

Discussion

The NuRD complex exists as a co-repressor of gene expression

in a broad range of different cells [23–27; 30–31]. In this study, we

selectively reduced the expression of Mbd3 and further investigated

its epigenetic functions in mouse ES cells. We find that reduction

of Mbd3 expression lowers the threshold of ES cells to differentiate

towards the trophectoderm lineage. Our results thus indicate that

Mbd3 is essential to maintain full mouse ES cell pluripotency

by helping repress the trophectoderm specific differentiation

program.

Trophectoderm specification is the very first cellular differenti-

ation of early mouse embryos. The upregulation of Cdx2 expression

has been shown to be important for the formation of trophectoderm

[35]. In addition, Oct4 is normally downregulated in trophecto-

derm cells in vivo and in vitro. Cdx2 and Oct4 also antagonize each

other at the transcription level [34,35]. However, knockdown of

Mbd3 in mouse ES cells upregulates Cdx2 RNA while Oct4 RNA

remains unchanged (Figure 2A, 3A). Similarly, Oct4 expression was

previously shown to be unchanged in Mbd32/2 ES cells [32]. Lack

of Cdx2 expression data in Mbd32/2 ES cells precludes direct

comparison of Cdx2 expression in the two studies. Several

observations may be used to explain why Oct4 remains constant

in Mbd3 compromised cells. First, Oct4-null ES cells with constitutive

expression of transfected Oct4 and overexpression of Cdx2 were

differentiated into TE lineage, suggesting expression of Oct4 alone

is not sufficient for blocking trophectoderm differentiation triggered

by Cdx2 overexpression [34]. Second, Oct4 downregulation during

normal trophectoderm differentiation may require epigenetic

regulations, which may be positively influenced by the NuRD

complex. In fact, Gu and colleagues recently found that Mbd3 was

recruited by GCNF to the Oct4 promoter to repress its expression

through DNA methylation in the process of ES cell differentiation

[53]. Thus loss of Mbd3 in ES cells may lead to deregulation of Oct4

transcription during ES cell differentiation. Furthermore, in the

Mbd3 knockdown cells, Cdx2 protein was not appreciably increased,

indicating that alteration of Mbd3 mRNA level may not significantly

alter Cdx2 translation.

The morphological change and expression of trophectoderm

genes in Mbd3 knockdown cells (Figure 1D, 2, 3A, and 3B m–p)

are considered as early indicators of TE differentiation, but further

chimera analysis (Figure 3B a–l) suggest that these cells have

properties that resemble those of ICM. However, further

Figure 6. Reduction of Mbd3 expression in mouse ES cells promotes trophectoderm stem (TS) cell derivation. Mouse ES cells transfected with
contro or Mbd3 shRNAs for three days were cultured in trophoblast stem cell medium to promote differentiation into TS cells. GFP expression was used to
monitor shRNA plasmids transfection (b, c, g, h, l, and m). Hoechst stains the cell nuclei. Red fluorescence shown on cell boundaries indicates the expression of
cadherin 3, a surface antigen specific to trophoblast cells (d, e, i, j). Scale bars: l, 50mm (also applies to a, b, f, g, k); o, 50mm (also applies to c–e, h–j, m–n).
doi:10.1371/journal.pone.0007684.g006
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subjection of Mbd3 knockdown cells to differentiation challenges,

such as withdrawal of LIF or TS culture medium resulted in Cdx2

protein expression, indicating that Mbd3 knockdown cells are

biased to differentiation. In contrast, Mbd32/2 ES cells could be

maintained in the absence of LIF. The discrepancy between these

two studies appears to be significant, but it should be emphasized

that in both cases disruption of Mbd3 function did not affect cell

proliferation and only affected some differentiation potential. We

showed that in the absence of LIF, Mbd3 shRNA cells express

Cdx2 protein, which might explain why trophoblast markers

Tpbpa and Pl-1 were observed in Mbd32/2 ES cells ([32] and

Figure 2A). It would be interesting to test whether Mbd32/2 ES

cells are also biased towards TE lineage. It is surprising that Cdx2

protein did not shown increased expression upon MBD3 knock

down despite strong upregulation of its mRNA. It is possible that

translation efficiency of elevated Cdx2 mRNA is negatively

controlled by unknown mechanisms, such as micro RNAs. Future

experiments may help us elucidate the discrepancy between

mRNA and protein expression.

In the embryoid body formation assay, the Mbd32/2 ES cells

showed restricted differentiation potential, and this was correlated

with upregulation of trophoblast markers Tpbpa and Pl-1 and

primitive ectoderm marker Fgf5. The embryoid body formation

result using Mbd3 knockdown cells is consistent with that of

Mbd32/2 ES cells. Mbd3 shRNA cells are also partially resistant to

retinoic acid induced differentiation towards embryonic ectoderm,

mesoderm and endoderm cells (Figure 4A). We reason that Mbd3

shRNA cells may have undergone necessary, albeit not fully

sufficient, changes towards trophectoderm lineage even though

their morphological changes are obvious. This may also explain

why Mbd32/2 ES cells and Mbd3 shRNA cells fail to differentiate

normally upon RA addition or in EB formation ([32], Figure 5).

Therefore, it would be interesting to examine expression of early

trophectoderm markers in Mbd32/2 ES cells in addition to

markers of mature trophectoderm. Our results also raise an

interesting point in that morphological change alone, in certain ES

cell lines, cannot be used to judge their differentiation potentials.

The reason why Mbd3 reduction introduces differentiation bias

towards trophectoderm lineage, but not definite commitment is

worthy of further investigation.

Investigation of how the NuRD complex regulates target genes

in ES cells should help elucidate epigenetic mechanisms in

maintaining ES cell pluripotency. Understanding what and how

NuRD complex components are assembled in ES cells and how

they function during lineage specific differentiations will be helpful

in understanding epigenetic controls in general.
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