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Abstract
Apolipoprotein E4 (ApoE4) is a risk factor for Alzheimer's disease (AD). Whether this risk arises
from a deficient function of E4 or the lack of protection provided by E2 ir E3 is unclear. Previous
studies demonstrate that deprivation of folate and vitamin E, coupled with dietary iron as a pro-
oxidant, for 1 month displayed increased PS-1 expression, gamma-secretase and Abeta generation
in mice lacking ApoE (ApoE-/- mice). While ApoE-/- mice are a model for ApoE deficiency, they
may not reflect the entire range of consequences of E4 expression. We therefore compared herein
the impact of the above deficient diet on mice expressing human E2, E3 or E4. Since folate
deficiency is accompanied by a decrease in the major methyl donor, S-adenosyl methionine
(SAM), additional mice received the deficient diet plus SAM. E2 was more protective than murine
ApoE or E3 and E4. Surprisingly, PS-1 and gamma-secretase were over-expressed in E3 to the
same extent as in E4 even under a complete diet, and were not alleviated by SAM
supplementation. Abeta increased only in E4 mice maintained under the complete diet, and was
alleviated by SAM supplementation. These findings suggest dietary compromise can potentiate
latent risk factors for AD.
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Introduction
The E4 allele of apolipoprotein E (ApoE) increases the incidence and can hasten the onset of
Alzheimer's disease (AD; Cedazo-Minguez, 2007; Growdon, 2001; Rebeck et al., 2002). In
addition to impaired lipid homeostasis, the E4 allele is associated with multiple risk factors
and hallmarks of AD, including Abeta deposition, neurofibrillary tangle formation, impaired
synaptic plasticity, cholinergic dysfunction and increased oxidative damage (for review, see
Cedazo-Minguez, 2007). ApoE deficiency can augment the deleterious consequences of
presenilin 1 (PS-1) overexpression (Pastor et al., 2003), increase gamma-secretase activity
(Irizarry et al., 2004) and impair clearance of Abeta (Hone et al., 2003). This apparent
pivotal role is consistent with the notion that oxidative stress represents an early event in AD
pathology (Berr, 2002; Perry et al., 2002). The extent of brain oxidative damage in AD is
correlated with E4 (Ramassamy et al., 1999).
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AD has a multifactoral etiology encompassing nutritional, environmental and genetic risk
factors (Brouwers et al., 2008; Lahiri et al., 2007; Migliore and Coppede, 2008; Pratico,
2008; Solfrizzi et al., 2008). No one known factor can account for all cases of the disease,
suggesting that the interaction of two or more risk factors may be necessary to promote
clinical manifestation. The combined impact of genetic and dietary risk factors have been
examined in mouse models, where key dietary deficiency and/or oxidative challenge have
been demonstrated to provoke neurodegeneration in mice harboring known genetic
neurodegenerative risk factors under conditions where neither dietary nor genetic factors
alone exhibited detectable impact. Dietary folate and vitamin E deficiency, coupled with
iron-induced oxidative stress, increased neuronal oxidative damage, homocysteine levels,
PS-1 expression, gamma-secretase activity, Abeta and phospho-tau levels, inhibited
glutathione S-transferase activity, acetylcholine production, synaptic activity and spatial
memory, and increased aggression in mice lacking ApoE (ApoE-/-) or in some cases
expressing human E4 (Chan and Shea, 2006, 2007a,b; Chan et al., 2008a,b; Tchantchou et
al., 2006, 2008). Notably, all of these deleterious effects were attenuated by supplementation
with S-adenosyl methionine (SAM), which is noteworthy since SAM declines during aging
and AD (Kennedy et al., 2004; Morrison, 1996; Shea and Chan, 2008).

While cognitive impairment and increased aggression were documented in both ApoE-/- and
mice expressing E4, the majority of the above studies were examined only in ApoE-/- mice.
ApoE-/- mice represent a useful model for the impact of oxidative stress, but do not
necessarily encompass the full range of consequences of E4 expression (e.g., Huang et al.,
2000; Ramassamy et al., 1999). We therefore compared herein the impact of the above
deficient diet ± SAM on PS-1, gamma-secretase and Abeta in mice expressing human E2,
E3 or E4 alleles.

Materials and Methods
Mouse strains and Diets

Mice used in this study were C57B/6 mice 9-12 months of age lacking murine ApoE and
expressing human ApoE2 (b6.129P2-TgH/ApoE2/N8), E3 (b6.129P2-TgH/Apoe3/N8) or
E4 (b6.129P2-TgH/Apoe4/N8), obtained from Taconic Farms (Germantown, NY;Chan and
Shea, 2007a).

Mice were maintained for 1 month on a diet (“AIN-76”; Purina/Mother Hubbard, Inc.) either
lacking folate and vitamin E (previously defined as a “deficient diet”) or supplemented with
folic acid (2 mg/kg), and vitamin E (50IU/kg total diet wet weight; the “complete diet”). The
deficient diet was also supplemented in all cases with a high concentration of iron (50g/500g
total diet) as a pro-oxidant (Chan and Shea, 2007a, b; Shea and Rogers, 2002). Additional
groups on the deficient diet also received SAM (100mg/kg diet) for the entire month (Chan
and Shea, 2007a, b). Mice were sacrificed by cervical dislocation, and the frontal portion of
the brain (encompassing cortex and hippocampus) was immediately removed. All animal
procedures were approved by our Institutional Animal Care and Use Committee.

Biochemical analyses
To analyze PS-1 expression, total mRNA was extracted from the above homogenate using
an RNA isolation kit (Ambion, Inc.) and stored at -20° C as described (Chan and Shea,
2007a). PS-1 transcription was analyzed using of the primers 5′-
ACGGTTTCCAACATCCATCG-3″ and 5′-GATGACAGGGACTGTTGAGCAA-3,″
respectively, which yielded a product of 557 base pairs (bp). As in our prior studies, the
“housekeeping gene” glyceraldehyde phosphate dehydrogenase (GADPH), used as a
normalization factor, was amplified using the primers 5′-
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ACCACAGTCCATGCCATCAC-3″, and 5′-TCCACCACCCTGTTGCTGTA-3′
respectively, which yielded a product of 451bp. Sequences were verified using the BLAST
algorithm function (available on the GenBank website). RT-PCR was carried out in a single
tube using the Access RT-PCR kit (Promega, CA). Purified mRNA (2μg in 3μl) and 0.5 mM
each of forward and reverse primers were used in each reaction, with amplification for 35
cycles. RT-PCR products were electrophoresed, visualized under UV and analyzed using
Quantity One software. The 557bp and 451bp products were eluted from the gel, cloned, and
verified as PS-1 and GAPDH via sequencing.

Gamma secretase activity was quantified by fluorescent spectroscopy using a kit according
to the manufacturer's instructions (R&D Systems, Minneapolis, MN) as described
previously (Chan and Shea, 2007a).

As in our prior studies (Chan and Shea, 2007a), a portion (40-50mg) of the above cortical/
hippocampal sample was homogenized with 4 volumes of Tris-saline (50mmol/L Tris HCl,
pH 7.4, 150mmol/L NaCl containing 1mmol/L EGTA, 0.5 mmol diisopropyl
fluorophosphate, 0.5mmol phenylmethylsulfonyl fluoride, 1ug/ml N-p-tosyl-L-lysine
chloromethylketone, 0.1 ug/ml pepstatin, 1 ug/ml antipain, and 1 ug/ml leupeptin). The
homogenate was centrifuged at 500,000RPM for 50 minutes at 4oC. Pellets were
resuspended by brief sonication in 10 volumes of 6 mol/L guanidine HCl in 50mmol/L Tris-
HCl, pH 7.6, followed by centrifugation at 450,000 RPM for 22 minutes at 4 C. The
insoluble pellet was dilapidated with chloroform/methanol (2:1) and then with chloroform/
methanol/water (1:2:0.8). The residue was extracted with 70% formic acid, and dried using a
SpeedVac (Savant Instuments, Farmingdale, NY). Replicate samples of the resulting pellet,
normalized for protein content, were subjected to SDS-gel electrophoresis, transferred to
PVDF membrane, and visualized by chemiluminescent reaction with anti-Abeta antibody
BC05 (Morishima-Kawashima et al., 2000).

NIH Image software (v1.62) was utilized to determine the density of the RT-PCR PS-1 and
GADPH housekeeping gene and levels of Abeta. PS-1 expression was normalized for each
sample according to GADPH expression from the same mouse in adjacent lanes of the same
gel using the formula (PS-1 densitometric units/GADPH densitometric units). Statistical
analyses were completed with ANOVA and Student's t test (Chan et al., 2006).

Results
Expression of PS-1, activity of gamma-secretase and levels of Abeta differed among the
genotypes and diets utilized herein, and were differentially affected by dietary manipulation.

Expression of PS-1 in E2 mice was virtually identical to that previously demonstrated for
ApoE+/+ mice on the complete diet (Chan et al., 2007a). Maintenance of E2 mice on the
deficient diet statistically increased expression, which was prevented in all cases by
supplementation with SAM (Fig. 1). By contrast, PS-1 expression was significantly elevated
to an identical extent in E3 and E4 mice versus E2 mice prior to dietary challenge, and was
not further elevated following maintenance on the deficient diet. Supplementation of the
deficient diet with SAM statistically-reduced PS-1 expression in E3 and E4 mice versus
their respective levels on the complete diet; however, these levels remained statistically-
increased relative to E2 mice maintained on the complete diet (Fig. 1).

Gamma-secretase activities were statistically-identical among all genotypes prior to dietary
challenge, and were statistically increased in E3 and E4 following maintenance on the
deficient diet (Fig. 1). Supplementation of the deficient diet with SAM decreased levels in
E2 mice below those observed for the complete diet alone. By contrast, SAM did not
attenuate the impact of the deficient diet gamma-secretase levels in on E3 or E4 mice.
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Endogenous Abeta was monitored by immunoblot analyses. Notably, while Abeta is readily
detectable in transgenics that overexpress APP (e.g., Kruman et al., 2002), endogenous
levels remain more difficulty to quantify. Little Abeta was detected in any genotype prior to
dietary challenge (Fig. 1). The deficient diet significantly increased Abeta levels in E4 mice.
Supplementation with SAM in all cases restored Abeta levels to those observed on the
complete diet.

Discussion
We provide further evidence of the interaction of dietary and genetic risk factors for AD,
demonstrating that a deficient diet can potentiate an apparent otherwise latent genetic
predisposition, and, conversely, that key supplementation may attenuate an otherwise critical
genetic deficiency.

The findings herein are consistent with E2 as being the most neuroprotective allele.
However, they leave open the possibility that E3 may not provide superior neuroprotection
under all parameters as compared to that provided by E4. Notably, while E4 is most strongly
associated with AD, it can at best only account for a minority of the total incidence of AD,
which leaves the vast majority of AD associated with the other alleles. While one reasonable
interpretation is that all other cases are independent of any association with ApoE, the
findings of the present and previous (Chan and Shea, 2007b; Chan et al., 2008b) studies
demonstrate that the combined impact of dietary deficiency and oxidative challenge can
provoke similar neuropathogenic effects in mice expressing E3 or E4. This may represent a
more widespread phenomenon than previously appreciated. For example, E2 was more
effective at suppressing fibrillar Abeta deposition than E3, which in turn was more
protective than E4 (Fagan et al., 2002; Holtzman, 2004). Our demonstration herein that only
E2 prevented increased PS-1 and gamma-secretase (both of which can contribute to Abeta
generation) leaves open the possibility that additional, undisclosed factors might preclude
Abeta clearance by E3 (Hone et al., 2003). Moreover, mice expressing E3 demonstrated
deficits as severe as those expressing E4 in certain memory tasks (Grootendorst et al., 2005)
and demonstrated levels of aggression comparable to that of mice expressing E4 while mice
expressing E2 displayed no aggression (Chan et al., 2008a). The generally-accepted notion
that E3 is neuroprotective is largely derived from studies which compare only the E3 and E4
allele; individuals heterozytogic and homozygotic for E4 are typically pooled out of
necessity due to limiting numbers, which unfortunately precludes direct comparison of E3/4
and E4/4 genotypes. In this regard, while E3 is more neuroprotective than E4, it is less
neuroprotective than E2; indeed, E3/3 is associated with a higher incidence of AD than is
2/4 (Ashford, 2004; Crutcher, 2004; Roses, 1997).

Importantly, these findings in transgenic mouse models cannot simply be extrapolated to the
human population. Moreover, the dietary regimen utilized herein is extreme compared to
what would normally be encountered; e.g., individuals may consume a diet with suboptimal
folate and/or vitamin E, but are unlikely to ingest no folate or vitamin E at all. We have
previously demonstrated that supplementation with vitamin E alone was unable to prevent
neuronal oxidative damage in mice maintained on the deficient diet (Shea et al., 2003). The
month-long experimental regimen carried out herein is also extreme, since one month of
murine life span corresponds to a substantial length of time for humans. Nevertheless, these
findings underscore that, while E3 may be benign and perhaps relatively beneficial in
isolation, it may provide insufficient neuroprotection in the presence of other mitigating
factors. This highlights the potential importance of considering the interaction of ApoE
alleles with other risk factors (Lahiri et al., 2004), and developing therapeutic strategies
based on improving the potential beneficial effects of E3 (e.g., Cedazo-Minguez, 2007).
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The results of this and prior studies (Chan and Shea, 2007a,b; Chan et al., 2008a,b; Fuso et
al., 2005; Kuzuya et al., 2007; Scarpa et al., 2003; Serra et al., 2008; Sontag et al., 2007)
demonstrate that dietary deficiency and oxidative challenge can foster a cascade of
deleterious events related to AD including increased PS-1 expression, gamma-secretase
activity, beta-secretase activity and Abeta generation, increased tau phosphorylation,
decreased phosphatase activity, decreased acetylcholine levels, decreased synaptic activity,
impaired cognitive performance, and increased aggression, and that this cascade is
exacerbated under conditions of impaired ApoE function. The inter-relationship/
convergence of the various elements of this cascade remain unclear and are the subject of
debate, but these findings remain consistent with the notion that oxidative stress may be a
pivotal early event in AD (Berr, 2002; Perry et al., 2002; Pratico, 2008); resultant increase in
HC has been shown to potentiate the impact of Abeta-induced oxidative damage (Ho et al.,
2001, 2002, 2003) as well as impair hydrolysis of SAM, which will further potentiate
oxidative damage by diminishing glutathione-mediated quenching of reactive oxygen
species (Tchantchou et al., 2006, 2008).

Folate deficiency induces a deleterious cascade of events relevant to AD. The decline in
SAM that accompanies folate deficiency promotes overexpression of PS-1, due to impaired
DNA methylation, leading to increased activity of BACE and production of Abeta (Fuso et
al., 2005, 2007; Scarpa et al., 2003). B vitamin deprivation, which also resulted in decreased
SAM, had similar effects (Fuso et al., 2008). HC, which increases following folate
deprivation and decreases SAM-dependent methylation via feedback inhibition, was
recently demonstrated to increasePS-1 expression of PS-1 and Abeta generation in rats that
could be prevented by folate supplementation (Zhang et al., 2009). SAM deficiency has a
far-reaching impact with relation to AD in that resultant impaired methylation of protein
phosphatase 2A reduces its activity, and fosters an increase in phospho-tau levels and Abeta
(Sontag et al., 2007). In addition, HC-induced increase in calcium influx, which leads to tau
phosphorylation via calcium-dependent kinases, could be prevented by SAM
supplementation (Chan et al., 2008b).

These findings also underscore the potential influence of nutritional compromise in
manifestation of AD (Donini et al., 2007; Dosunmu et al., 2007; Joseph et al., 2000; Mattson
and Shea, 2003). Of interest would be to initiate supplementation at an early age (I.e.,
perhaps before E4 mice have accumulated age-related oxidative damage).

It is noteworthy that supplementation with SAM was effective against all of the above
parameters with the exception of increased gamma-secretase. The nature of increased
activity of gamma-secretase observed in E3 and E4 mice (as well as ApoE-/- mice; Chan et
al., 2007a) prior to any dietary compromise, and the inability of SAM to attenuate these
increases despite decreasing PS-1, are unclear, but are consistent with the demonstration that
gamma-secretase activity is not dependent upon PS-1 alone (e.g., Crystal et al., 2004;
Herranz et al., 2006). SAM was nevertheless still able to prevent the increase in Abeta in all
mice regardless of genotype. SAM levels decline in brain tissue of mice maintained on the
deficient diet utilized herein, and are restored by supplementation of the deficient diet with
SAM (Chan et al., 2008b; Chishty et al., 2002). In this regard, SAM levels, and activity of
the enzyme responsible for its generation (methionine-S-adenosyltransferase), are decreased
in brain tissue of individuals exhibiting neurodegeneration (Bottiglieri et al. 1990; Trolin et
al. 1994; Kennedy et al., 2004; Morrison et al. 1996; Muller et al., 2001). These findings
therefore underscore the potential usefulness of dietary supplementation with SAM as part
of a therapeutic approach to minimize neurodegeneration (Shea and Chan, 2008). In this
regard, pilot studies demonstrated that a combinatorial formulation including SAM was
maintained or improved cognitive performance and behavioral parameters in AD (Chan et
al., 2008c; Remington et al., 2008). In particular, since SAM supplementation reduced
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generation of Abeta and phosphoryation of tau (Chan and Shea, 2006, 2007a), of interest
would be to examine whether or not it can reduce ultimate plaque and/or neurofibrillary
tangle burden in mouse models in the presence and absence of dietary challenge.
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Fig. 1. Dietary challenge differentially affects PS-1 expression, gamma-secretase activity and
Abeta levels depending upon ApoE genotype
Panel A presents RT-PCR products generated from total mRNA of 2 representative samples
as listed using PS-1 and GADPH primers. Accompanying graphs present the mean increase
± standard error in PS-1 expression (normalized according to corresponding GADPH levels)
for ≥7 mice of each group compiled from ≥2 separate experiments.
Panel B presents gamma-secretase activity quantified in the same homogenates normalized
for total protein as described in Methods.
PanelC presents the 14.3-3.5kDa region of representative immunblots of the same
homogenates probed with anti-Abeta antibody BC05; duplicate samples are presented.
Immunblots are also presented in reverse contrast for clarity. Arrows denote the migratory
position of endogenous murine Abeta (4kDa), which is not reproducibly detectable under all
conditions. Accompanying graphs present the mean chemiluminiscent intensity (± standard
error); values represent the relative immunofluoresence versus that observed for E2 mice
maintained on the complete diet.
An asterisk indicates a statistically-significant difference (p<0.05) for the indicated diet
versus its respective genotype on the complete diet. See text for description of results.
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