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Boolean Models of Genomic Regulatory Networks: Reduction Mappings, 
Inference, and External Control 

Ivan Ivanov* 

Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA 

Abstract: Computational modeling of genomic regulation has become an important focus of systems biology and 
genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical 
properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and 
regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of 
disease. At the same time, constructing such computational models faces several challenges. High complexity is one of 
the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model 
becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of 
its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: 
Boolean networks with perturbation (BNP) and probabilistic Boolean networks (PBN). We also compare and draw a 
parallel between the reduction problem and two other important problems of computational modeling of genomic 
networks: the problem of network inference and the problem of designing external control policies for 
intervention/altering the dynamics of the model.  
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1. INTRODUCTION 

 One can think of a Gene Regulatory Network (GRN) as a 
network of relations among strands of DNA (genes) and the 
regulatory activities associated with those genes [1]. This 
general definition allows for many mathematical (usually 
dynamical) systems to be called GRNs. The goodness of 
such models is evaluated using several important criteria: the 
level of description of the biochemical reactions involved, 
the complexity of the model, the model parameter 
estimation, and its predictive power. There have been many 
attempts to model the structure and dynamical behavior of 
GRNs, ranging from deterministic with discrete time space 
to fully stochastic with continuous time space [2]. The well 
known central 'dogma' of molecular biology implies that 
genes communicate via the proteins they encode [3]. Both 
stages of protein production, transcription and translation, 
are controlled by a multitude of biochemical reactions, and 
are influenced by both internal and external to the cell 
factors. This perspective suggests that the expression of a 
given gene i , i.e. the quantity of either protein or messenger 
RNA, should be considered as a random function )(tX

i
 of 

the cell's internal and external environments. Thus, if one 
wants to study the dynamical behavior of a GRN, one must 
design a mathematical model for the gene-expression vector 

))(),...,(),((=)( 21 tXtXtXt
n

X  for the n genes that form the 
network. The stochastic differential equation model appears 
to provide the most detailed description of the dynamics of 

)(tX . In principle, it could include all of the information  
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about the biochemical processes involved in gene regulation. 
At the same time, the estimation of its parameters cannot be 
done without large amount of reliable time-series data [4]. A 
more pragmatic approach is to look for simpler models for 
the dynamics of the gene-expression vector. One of the most 
extreme simplifications is the Boolean network model, 
originally proposed by Kauffman [5]. The Boolean network 
model is based on the observation that during the regulation 
of its functional states the cell often exhibits switch-like 
behavior. Recent work using the NCI 60 anti-cancer drug 
screen has demonstrated that Boolean logic type interactions 
can be detected in gene expression data [6]. While there are 
instances in gene regulation where the Boolean logic is the 
appropriate level of description of the interactions - for 
instance, when transcription factors have to form a complex 
that binds to the cis-regulatory DNA to activate 
transcription, one should keep in mind that discrete models 
cannot capture the details of the biochemical reactions 
involved in those processes. However, it is not the binary 
nature of the Boolean network model that is its greatest 
weakness, one even more important deficiency is its 
determinism. Deterministic models, such as the Boolean 
network, cannot represent the consequential perturbations 
due to external latent variables. In addition, the Boolean 
network model in its original formulation cannot be used to 
represent biologically meaningful events, such as gene 
mutations. Its stochastic extension - probabilistic Boolean 
network (PBN), was introduced by Shmulevich et al. in an 
attempt to account for those latent variables and gene 
perturbations while keeping the Boolean logic as the model 
for the gene-gene interactions [7, 8]. The PBN model is an 
example of a well studied discrete stochastic dynamical 
system, and has been successfully applied in situations 
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where data come from cells operating in different contexts or 
include noisy observations, which implies that the model has 
to account for that randomness. The dynamics of a PBN can 
be studied in the context of Markov chains which allows for 
the development of control theory for the purposes of 
intervention. Being a collection of Boolean networks with a 
probability structure, the PBN model could be viewed as a 
minimal extension of the Boolean network which allows for 
modeling of the stochastic nature of complex systems with 
latent variables and random experimental effects. However, 
even such a minimal extension of the deterministic model 
exhibits high complexity which impedes its practical 
applications to model GRN of more than 40 genes. Hence, 
there is a need for constructing size-reducing mappings that 
produce new and more tractable models that share some of 
the biologically meaningful properties of the larger-scale 
models. 

2. DEFINITIONS OF BNP AND PBN. INFERENCE 
FROM DATA AND EXTERNAL CONTROL 

 The initial application of Boolean networks as a model of 
genomic regulation was to study the evolution of ensembles 
of networks which were restricted to a specific type of 
fitness landscape [5, 9]. Here we provide the definition of a 
Boolean network and briefly discuss the ensemble approach. 

 A Boolean network ),(= fVBN  on n  genes is defined 
by a set of nodes/genes },...,{= 1 n

xxV  and a vector of 

Boolean functions ],...,[=
1 nfff . 

 Each variable {0,1}!
i
x  represents the expression level 

of the respective gene i , with 1 representing high and 0 
representing low expression. The vector f  represents the 
regulatory rules between genes. At every time step 1+t , the 
value of 

i
x  is predicted by the values of a set 

i
W  of genes at 

the previous time step t , based on the regulatory function 
if , i.e. ))(),...,((=1)(

1
txtxftx

i
k
ii

i

i + . The set of genes 

},...,{=
1

i
k
iii
xxW  is called the predictor set of 

i
x , and the 

function if  is called the predictor function of 
i
x . The pairs 

),(
ii

Wx , ni 1,...,=  induce a digraph G  with edges 

i
j
i

xx !  representing the structural dependencies among 

the genes. A state of BN  is a vector n

n
xx {0,1}],...,[= 1 !s . 

All of the states of the Boolean network BN  comprise its 
state space S  which combined with the functions in f  
produces a digraph !  called the state transition diagram of 
BN . !  represents the dynamics of the Boolean network and 
can be identified with a nn

22 !  matrix P  with rows and 
columns indexed by the states in BN  and entries 

1=),(=
jiij

pp ss  if there is a transition from the state 

ji
ss !  in S  or 0  otherwise. Given an initial state, the 

network will eventually enter a set of states in G  through 
which it will repeatedly cycle forever. Each such set is called 

an attractor cycle, and a singleton attractor is an attractor 
cycle of length 1. The network attractors induce a partition 
of state space S  where the subset of states that belong to the 
same equivalence class is called the basin of the 
corresponding attractor cycle. The attractors of a Boolean 
network represent a type of memory of the dynamical system 
[10]. 

 Originally, [11], analytical results and numerical 
simulations based on ensembles of randomly generated 
Boolean nets focused on the relationships between the 
structural gene interdependencies and dynamical behavior of 
the ensembles. Those studies provided insights into the 
general characteristics of large GRNs and the related 
evolutionary principles. 'Tuning up' of ensemble parameters 
such as the average connectivity K  and the predictor 
functions' bias p  can be used to study the operating regimes 
of the networks. The average connectivity is defined as the 
average size of the predictor sets W

i
,  and the bias p  is 

defined as the probability of a given predictor function to 
assume a value of 1. Depending on the values of K  and p  
there are two main modes of operation of a BN : ordered 
and chaotic. In the ordered regime most of the system 
components/nodes are frozen at either 1 or 0  value, and the 
transfer of information is impeded by those large frozen 
islands of genes. In the chaotic regime, the system is very 
sensitive to small perturbations where a change of the value 
of one node can propagate to many others in an avalanche-
like manner. The phase transition boundary between the 
ordered and the chaotic regimes is called the complex regime 
or critical phase. It has been shown that Boolean networks in 
that regime are the most evolvable and Kauffman [11] argues 
that life must exist on that edge between order and chaos: "a 
living system must first strike an internal compromise 
between malleability and stability. To survive in a variable 
environment, it must be stable to be sure, but not so stable 
that it remains forever static". Structural stability is one of 
the central concepts in the theory of dynamical systems. It 
describes persistent behavior that cannot be destroyed by 
small changes to the system. As real GRNs are capable of 
maintaining metabolic homeostasis and stable developmental 
program in the face of a changing environment, they 
certainly possess structural stability. The Boolean network 
model naturally captures this phenomenon because the 
network 'flows' back to one of its attractors after a small gene 
perturbation. Following this line of reasoning, Kauffman 
[11] suggests that the attractors in a BN  correspond to 
cellular types. Another interpretation of the attractors of a 
BN  is that they represent cellular states, such as 
proliferation (cell cycle), apoptosis (programmed cell death), 
and differentiation (execution of cell-specific tasks) [12, 13]. 
For example, if a structural perturbation (mutation) happens 
which moves the network from the basin of the apoptotic 
attractor, the cells could exhibit uncontrolled growth or 
hyper proliferation, typical of tumorigenisis. The two 
interpretations of the attractors in the Boolean network 
model are complementary to each other: for a given cell 
type, different functional states exist and are determined by 
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the collective gene activity. Thus, a particular cell type can 
encompass several attractor cycles each one corresponding to 
different cellular functional states. We refer the reader to [11, 
14, 15] for a detailed treatment and additional references to 
results about the interplay between the average connectivity 
and the bias of the predictor functions in a BN  and how that 
impacts the dynamical behavior of the network. An 
important implication from the body of work on the effects 
of these local parameters on the network is that if one wants 
to model GRNs with Boolean networks or their 
generalizations one should constraint the network 
connectivity in order to keep the model on the edge of chaos 
and closer to the ordered regime. For example, in the case of 
unbiased, 0.5=p , predictor functions the networks with 

2>K  operate mostly in the chaotic regime which renders 
such models incompatible with the real GRNs which are 
clearly non-chaotic systems. Although the ensemble studies 
can provide important insights into some general properties 
of the Boolean network models, a single Boolean network 
itself is not capable of capturing the effects of latent 
variables or random gene perturbations. Moreover, the 
ensemble approach does not provide a way of explicitly 
inferring the specific BN  structure from data, e.g. cDNA 
microarray gene expression. Inferring the BN  structure 
from data has the potential to reveal how to design 
therapeutic intervention for GRNs which show a specific 
disease phenotype. It should be pointed out that the data used 
for network inference exhibits uncertainty on various levels. 
First, due to biological variability, gene expression is 
inherently stochastic. Second, the complex measurement 
process, the microarray preparation, image acquisition and 
processing create experimental noise that has to be taken into 
account during the inference of the network. All of this 
combined with the presence of latent or unobservable 
variables such as proteins or environmental conditions 
present us with the problem to infer deterministic predictor 
functions under uncertainty. To solve such a problem one 
needs to reliably estimate the uncertainty. Without such 
estimation one cannot be sure how the designed predictor 
function will perform when presented with new data. 

 One possible way to approach this problem was proposed 
by Shmulevich et al. [7], and Brun et al. [8]. Keeping in 
mind that the predictor functions cannot be reliably 
estimated from the limited amount of data relative to the 
number of genes on a microarray slide, one can infer a 
number of simple predictor functions, each of which 
performs relatively well in predicting the target gene. Here, 
simpler is understood as having predictor sets 

i
W  of smaller 

size. After producing such predictor functions, one has to 
combine them together accounting for the uncertainty at the 
same time. This 'probabilistic' approach to synthesize 'good' 
predictor functions leads to the PBN model of genomic 
regulatory networks. 

 A binary PBN ),,(= ,,
CFVAA

rpq  is defined by a set of 
nodes/genes },...,{= 1 n

xxV , a set of vector-valued Boolean 
functions },...,{= 1 r

ffF , nn

j
{0,1}{0,1}: !f , rj 1,...,=  

called realizations of A  or network functions, a list of 
selection probabilities },...,{= 1 r

ccC  for the corresponding 
realizations, a gene mutation/flipping probability [0,1]!p , 
and a realization switching probability [0,1]!q . 

 The original definition of the PBN model [7] concerned 
the instantaneously random PBN model only, i.e. the model 
where 0=p  and 1=q . When the parameters 0>p  and 

1<q  the PBN is said to be context-sensitive [8]. The 
context-sensitive PBNs allow for the interpretation of data 
obtained from distinct sources, each representing a specific 
cell context. Thus, one interprets data as obtained from a 
family of deterministic BN , and the PBN is viewed as a 
collection of Boolean networks in which one constituent 
network governs the gene activity for a random period of 
time before another randomly selected deterministic BN  
takes over which might be in response to external stimulate 
or activity of latent variables. 

 Updating the values of all genes in the network at time t  
is done synchronously according to the components of the 
currently used network function, and then the process is 
repeated. The choice of which network function 

j
f  to apply 

is governed by a selection procedure. Specifically, at each 
time point t  a random decision is made as to whether to 
switch the network function for the next transition, with a 
probability q  of a switch being a system parameter. If a 
decision is made to switch the network function, then a new 
realization is chosen from among all of the possible 
realizations Ff !

j
 of A , according to their individual 

selection probabilities Cc j ! . In other words, each network 

function 
j
f  represents a deterministic BN  and the PBN 

behaves as a fixed BN  until a random decision (with 
probability of q ) is made to change the network function 
according to the probabilities },...,{ 1 r

cc  from among 
},...,{ 1 r
ff . Notice that the co-ordinates i

jf , ni 1,...,=  of each 

realization 
j
f  are the predictor functions of the Boolean 

network determined by that network function. 

 In addition to the network switching and selection in the 
PBN model, there is mechanism which models random gene 
mutations, i.e. at each time point t  there is a probability p  
of any gene changing its value uniformly randomly. Thus, 
the PBN model can account for the uncertainties in both data 
and model selection. The PBN A  shares the same state 
space S  with its realizations, and the state transition 
diagrams 

j
!  of the individual 

jB 's combine naturally into a 
stochastic state transition diagram !  representing the 
dynamics of A . As in the case of deterministic Boolean 
networks, !  can be identified with a stochastic nn

22 !  
matrix P , also known as transition probability matrix, with 
non-negative entries 

ij
p  and having the property 

1=
1= ij

n

j
p! , ni 1,...,= . Using this matrix, the dynamics of 

A  can be described using the well-developed theory of 
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Markov chains. One should notice that if the probability of 
gene flipping p  is positive then the Markov chain 
representing the dynamics of the network is ergodic which 
implies that it possesses a steady-state probability 
distribution ! . 

 The synchronicity requirement for the state transitions in 
a PBN is an oversimplification of the real interactions that 
take place during genomic regulation. While it is not difficult 
to extend the PBN model into an asynchronous one [16], we 
do not discuss such extensions here. There are two reasons 
for focusing our attention to the synchronous case of PBN 
only. First, the model estimation from data is a much harder 
problem for asynchronous compare to the case of 
synchronous PBNs. Second, the synchronous PBN 
framework facilitates a simpler and clearer treatment of the 
problems about complexity-reducing mappings. 

 One can also view a given context-sensitive PBN A  as a 
collection of r  Boolean networks with perturbation j

pBN , 

rj 1,...,= . These building blocks of A  are obtained by 
adjoining the gene perturbation probability p  to each one of 
the deterministic Boolean networks that represent the r  
possible contexts of A . Thus 

 A Boolean network with a perturbation p , 
),(= fVBNp
, on n  genes is defined by a set of nodes 

},...,{= 1 n
xxV , a vector of Boolean functions ],...,[=

1 nfff , 
and the gene mutation/flipping probability [0,1]!p . 

 It is obvious that a Boolean network with a perturbation 
is a special case of a PBN with just one context, 1=r . Just 
as in the general case of a PBN, the dynamics of a 

pBN  is 

represented by a Markov chain. The Markov chain of a 
pBN  

is completely described by its transition probability matrix 
n

jijipP
2

1=,)),((= ss , where ),(
ji

p ss  is the probability of the 

chain undergoing the transition from the state 
i
s  to the state 

j
s . The perturbation probability p  makes the chain ergodic, 
and thus, it possesses steady-state probability distribution. 
Computing the elements of P  is straightforward and we 
elect to present it here because of its importance in the 
subsequent considerations. When computing the transition 
probabilities for a 

pBN  one has to realize that at every time 
step one of the two mutually exclusive events happens: 
either the chain transitions according to the regulatory rules 
f  or a perturbation occurs. This interpretation implies that 
when no perturbation occurs the network regulatory rules are 
applied. There are two important cases in computing 

),(
j

p ss  for every given state S!s . The first case is when 

s  is a singleton attractor, i.e. ssf =)( . In that case one can 

easily see that j
kn

j
k

j ppp
!

! )(1=),( ss , where 
jk  is the 

number of the positions where the binary representations of 
s  and 

j
s  differ from each other, i.e. the Hamming distance 

between the two states. The second case is when 
i
ssf =)( , 

where ss !
i

. Clearly, in this case, 0=),( ssp , and 
j
kn

j
k

j ppp
!

! )(1=),( ss , for 
ij
ss ! . The transition 

i
ss!  

can happen by either applying the regulatory rules f  with a 
probability of n

p)(1!  or by perturbation with a probability 

of i
kn

i
k

pp
!

! )(1 . Thus, i
kn

i
kn

i pppp
!

!+! )(1)(1=),( ss . 

 The interpretation of a PBN as a collection of r  Boolean 
networks with a perturbation allows to view the Markov 
chain representing the dynamics of the PBN as a collection 
of r  Markov chains with a switching mechanism between 
them. The switching rules are defined by the PBN switching 
probability q  and the set of selection probabilities C . This 
kind of interpretation of the dynamics of a PBN is 
advantageous when one considers problems related to 
control and reduction of the model's complexity. 

 One of the main objectives of developing mathematical 
models of genomic regulation is the identification of 
potential targets for therapeutic intervention [10]. For 
example, the abundance of mRNA for the gene WINT5A has 
been shown to discriminate well between cells' low or high 
metastatic competence [17]. This suggests that altering the 
expression of WINT5A could be perceived as a goal of a 
possible therapeutic intervention [18]. The PBN model of 
genomic regulation provides an appropriate setting for 
studying optimal regulatory intervention. The question about 
control and intervention can be posed in terms of the 
dynamics of the underlying Markov chain [7]. There are two 
different types of effects of external/control variables on the 
dynamical evolution of the network: either the finite-time or 
the infinite-time ones. The short-term control policies have 
been shown to affect the dynamics of the model over a small 
number of stages; however they do not always achieve the 
desired change in the long-run network behavior [19, 20]. 
The infinite-horizon intervention strategies have been 
studied using stochastic control combined with dynamic 
programming algorithms. This approach has led to finding of 
stationary control policies that affect the steady-state 
distribution of a given PBN? Another important problem in 
the study of the infinite-horizon control is the identification 
of the best intervening gene. 

 The direct approach of solving the optimal control 
problem for each gene in the model and comparing the 
performance of the respective control policies is a 
computationally expensive procedure because the 
complexity of the dynamic programming algorithms 
increases exponentially with n -the number of genes [22]. 
Thus, there is a need to develop less complex algorithms for 
designing of sub-optimal intervention policies. Vahedi et al. 
[23] used a biology motivated approach to find such policies 
based on the mean first-passage times (MFPT) of the states 
S!s  [10, 24]. Instead of formulating the problem about 

designing the optimal control in its full generality we elect to 
discuss a simpler version of the MFPT control policy 
algorithm based on a single control gene g  because it 
facilitates the analysis of the interplay between reduction 
mappings and control policies for the PBN model. A control 
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policy 
0>)}({=

tgg
tµ!  is defined as a sequence of decision 

rules {0,1}:)( !Stgµ  for each time step t , [21]. The 
values 0/1 are interpreted as off/on for the application of the 
control. The MFPT algorithm is based on the comparison 
between the MFPT of a state s  and its flipped with respect to 
g  state g

s
~ , i.e. the state that differs from s  only in the value 

of g . When considering therapeutic interventions the state 
space S  can be partitioned into desirable D  and undesirable 
U  states according to the expression values of a given set 
W  of genes. For simplicity we will assume that }{= xW . 
The intuition behind the MFPT algorithm is that given the 
control gene g , when a desirable state s  reaches U  on 
average faster than g

s
~ , it is reasonable to apply control and 

start the next network transition from g
s
~ . The roles of s  and 

g
s
~  are reversed when U!s . Without loss of generality one 
can assume that the gene x  is the leftmost gene in the states' 
binary representations, i.e. xx =

1
 and ],...,,[= 2 n

xxxs , and 
the desirable states correspond to the value 0=x . With this 
assumption, the probability transition matrix P  of the 
Markov chain representing the PBN can be written as  

!
!
!

"

#

$
$
$

%

&

UUUD

DUDD

PP

PP

P =
            (1) 

 Using this representation one can compute the mean first-
passage times 

U
K  and 

D
K  by solving the following system 

of linear equations [25]. 

UDDU
KPeK +=             (2) 

DUUD
KPeK +=             (3) 

where e  are unit vectors of the appropriate length. The 
vectors 

U
K  and 

D
K  contain the MFPTs from each state in 

D  to the set U , and from each state in U  to the set D  
respectively. The MFPT algorithm designs stationary control 
policies ,...},{= ,,, !!! µµ"

ggg
 for each gene g  in the 

network by comparing the differences )~()( g

DD KK ss !  and 

)()~( ss U

g

U KK !  to !  - a tuning parameter. The parameter 
!  is set to a higher value when the ratio of the cost of 
control to the cost of the undesirable states is higher, the 
intent being to apply the control less frequently. It is 
important to notice that while the MFPT control policy 

!"
,g

 
is a sub-optimal one it can approximate well the optimal 
control policy which being a solution to the Bellman 
optimality equation is also a stationary one [23, 26, 27]. 

3. REDUCTION MAPPINGS FOR PBN 

 High complexity, both model-wise and computational, is 
a major impediment for the practical applications of 
mathematical models of genomic regulation. Hence, there is 
a need for size reducing mappings producing new and more 
tractable models that share some, preferably all, of the 

biologically meaningful properties of the larger-scale 
models. The most common approach for reducing the 
complexity of a network model of genomic regulation is by 
'deleting' a gene from the model. One of the first such 
mappings, the projection mapping, was proposed in ? as an 
attempt to reduce the complexity of an independent 
instantaneously random PBN A  while maintaining 
consistency with its original probability structure. Here, 
following [28], we provide the definition of the projection 
mapping for the general case of a context-sensitive PBN. 
The basic projection 

i
!  is a mapping that transforms the 

given PBN A  into a new one with the same parameters q  
and p , and such that the number of genes is reduced by one, 
i.e. the gene 

i
x  in the original network is 'deleted'. Without 

loss of generality one may assume that the deleted gene is 
n
x . Thus, for a PBN A   

nn
AA ˆ:ˆ !"  

},,...,{=ˆ),ˆ,ˆ,ˆ(ˆ
11

,,

!n

spq

n xxVCFVA  

}ˆ,...,ˆ{=ˆ},ˆ,...,ˆˆ{=ˆ 121 ss
ccCF fff  

 Every predictor function 11,...,=,)( !nif i

j
, generates 

two predictors )(

0
ˆ i
jf  and )(

1
ˆ i
jf  according to the rule  

),,..,(=),..,(ˆ
11

)(

11

)( kxxfxxf n

i

jn

i

kj !!
          (4) 

nn
Axxk ˆin),..,({0,1}, 11 !

"#  

 Thus, every network function 
j
f  for A  determines 1

2
!n  

new network functions for 
n
Â  by combining )(

0
ˆ i
jf 's and 

)(

1
ˆ i
jf 's in all of the possible ways for every fixed j  and 

11,...,= !ni . The new network functions have their 
corresponding selection probabilities given by the formula  

rjxPrxPrc ln

n

l

nj 1,...,=,0})={(1})={( 1!!         (5) 

where l  is the number of the components of the new 
network function that are coming as )(

1
ˆ i
jf , and 

{0,1}},={ !kkxPr
n

 is the marginal probability for the 
gene 

n
x  to have values 0 or 1, computed using the 

steady/stationary state probability distribution of the original 
PBN. For example, the new network function 

)ˆ,...,ˆ,ˆ( 1)(

01

(2)

01

(1)

11

!nfff  has its selection probability equal to 
2

1 0})={1})(={( !n

nn
xPrxPrc . When two or more of the 

network functions for 
n
Â  happen to be identical their 

selection probabilities combine in a natural way. This 
mapping preserves the probability structure of a PBN but the 
number of the BNs that compose the resulting PBN could be 
exponentially larger compare to the number of the BNs 
forming the original PBN. Thus, the projection mapping can 
not be used to reduce the complexity of a PBN model of 
genomic regulation. Moreover, it shows that in general, a 
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reduction mapping could be a one-to-many mapping with the 
potential to increase the complexity of the network model. 

 A different kind of size-reducing mapping (which also 
preserves the parameters q  and p  of the original PBN) is 
the reduction mapping, see [29] for the special case of an 
independent instantaneously random PBN. It is important to 
point out that this mapping might not preserve the 
probability structure of the original PBN. Instead, it aims at 
reducing the model's complexity. To better understand the 
motivation and the definition of the reduction mapping we 
consider the following portion of the probabilistic state 
transition diagram !  for the original PBN containing the 
states ,1],...,[= 111 !n

xxs , ,0],...,[= 110 !n
xxs , ,1],...,[= 111

'

n

'

xx
!

v , 

and ,0],...,[= 110

'

n

'

xx
!

v  

 
where 

11
vs

p , 
00
vs

p , 
01
vs

p , 
10
vs

p  are the corresponding 

transition probabilities. If one 'deletes' the node 
n
x  this 

diagram collapses to 

 

where ],...,[= 11 !n
xxs  and ],...,[= 11

'

n

'

xx
!

v  are the 
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 If we formally define the reduction mapping acting on a 
PBN ),,(,, CFVA

rpq  by 'deleting' one gene as: 
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~
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(
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ccCF fff  

and require that rs !  for the new PBN 
n
A
~  with network 

functions having the same selection probabilities as their 
counterparts in A , sjcc

jj
1,...,=,=~ , we can see that in 

order to maximally preserve the probability structure of the 
original PBN, the probabilistic state transition diagram for 

n
A
~  must have transition probabilities closely matching the 

transition probabilities !

sv
p  of the 'collapsed' state transition 

diagram described above. This goal is achieved by an 
optimization procedure which for every fixed network 
function sj

j
1,...,=,f  from A  combines the predictor 

functions )(

0
ˆ i
jf  and )(

1
ˆ i
jf  to form the new predictor 

11,...,=,
~ )(

!nif i

j
. A detailed discussion about the 

construction of 
n

!
~  in the special case of an independent 

instantaneously random PBN is given in [29], and the 
construction carries on with no changes for the case of a 
general PBN. One can immediately notice that the reduction 
mapping reduces the complexity of the original PBN not 
only by 'deleting' one gene but also by not increasing the 
number of BNs that comprise the reduced PBN. 

 Here, we want to point out the difference between the 
reduction and the projection mappings. While the projection 
is based on the probability distribution of a single gene, the 
reduction mapping is defined using the probability 
distribution of the entire collection of states of the given 
PBN which allows for the optimization procedure given in 
[29]. In both cases though, there is no control over the 
changes in the dynamics/state transition diagrams 

j
!  or the 

gene dependencies digraphs 
jG  of the BNs comprising the 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). State transition diagrams of the four contexts of the PBN ),,(,4,
CFVA

pq . 
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original PBN. Indeed, one can easily find examples of PBNs 
such that both the reduction and the projection mappings 
significantly change those graphical representations of the 
structure and the dynamics of the model. In addition, both 
mappings rely on knowledge about the steady/stationary 
state distribution of the original PBN. For example, if one 
considers the state transition diagrams of the four contexts of 
the PBN ),,(,4,

CFVA
pq , },,{= 321 xxxV  Fig. (1), and applies 

the reduction mapping 
3

~
!  that removes the rightmost gene 

from the network, one gets a PBN ,2,~ pq
A  that has only 2 

contexts as shown on Fig. (2). Thus, some of the important 
structure associated with the contexts 

3
BN  and 

4
BN  is lost. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). State transition diagrams of the two contexts of the 
reduced model ,2,~ pq

A  obtained after applying the reduction 
mapping with respect to the third gene to the PBN presented on Fig. 
(1). 
 
 The state transition diagram !  of a PBN represents the 
dynamics of the network and has been related to both 
cellular types [11] and cellular states [12, 13]. Thus, it is 
desirable not to introduce significant changes in the structure 
of the attractor cycles and the sizes of the basins of attraction 
of !  when reducing the size of the model. This kind of 
considerations led to the development the of Dynamics 
Induced Reduction (DIRE) algorithm in [28]. 

 DIRE performs reduction of a PBN by deleting genes 
from the network while maximally preserving the dynamics 
of the constituent BNs and keeping their number unchanged. 
The algorithm collapses the state transition diagram for each 
individual BN in a manner similar to the example preceding 
the definition of the reduction mapping. States in each BN 
are aggregated/merged together if they differ only in the 
expression value of the gene d  that has been deleted from 
the network. Because after 'deletion' d  becomes a latent 
variable, the states s  and d

s
~  'collapse' to a state s!  in the 

reduced network. The state s!  is obtained from either s  or 
d
s
~  by removing their d -th coordinate. During this 
procedure special attention has to be paid to both the 
inconsistency points in the state transition diagram, and to 
the states that become absorbing when the merging takes 
place. A state s  in a BN is called an inconsistency point 
with respect to gene d  if and only if its flipped state d

s
~  

belongs to a different basin of attraction than the basin of 

attraction s  belongs to. The one state s  or d
s
~  that 

determines the position of the reduced state s!  in the state 
transition diagram of the reduced BN is called absorbing. 

 The importance of the notion of inconsistency point is 
illustrated by examining the state transition diagram of the 
first context 

1
BN  of the PBN depicted on Fig. (1). 

 Suppose that the gene d  corresponding to the rightmost 
digit in the binary representation of the states is to be 
deleted. If one tries to collapse the state transition diagram, 
one should notice that, with respect to the attractor structure 
of the original BN, merging the leaf node (001) and the 
attractor node (000) can be done in two very different ways: 
either the merging happens towards the attractor state or it 
happens towards the leaf state. In the first case, the attractor 
state is preserved in the reduced BN as (00), and the basin of 
attraction of the attractor (111) in the original network looses 
one leaf. In the second case, the attractor structure of the 
reduced network differs significantly from that of the 
original BN, the only remaining attractor being the reduced 
state (11). Thus, if one considers the attractor structure of a 
BN as a representation of important biological characteristics 
of the real genomic regulatory system, then the merging of 
the states (000) and (001) should be done towards the 
attractor state. Notice that those two states are the only states 
in the original state transition diagram that create a 
possibility of essentially altering the attractor structure of the 
original BN. The rest of the states will merge within the 
basin of attraction of the attractor state (111). Thus, one 
possible set of absorbing states in this example is the set 

(011)}(111),(101),{(000), . 

 DIRE has several advantages compared to the reduction 
and the projection mappings. First, it optimally preserves the 
dynamical structure of the original PBN by controlling the 
damage to the attractor structure of its constituent BNs, by 
not increasing the maximum number of transitions required 
for states in a given basin of attraction to reach their 
attractor, and by preserving the number of the BNs that form 
the PBN, Fig. (3). Not only the attractor structure of the 
constituent BNs is preserved but there are no spurious 
attractors being generated in the reduced network. This is not 
the case for the projection and reduction mappings, as 
examples from [28] show. Second, the reduction mapping 
induced by the algorithm does not introduce changes in the 
number of the attractors nor in the length of the attractor 
cycles, unless there are points of inconsistency s  that 
together with their flipped with respect to the 'deleted' gene 
d  states d

s
~  are also attractor states as well. In addition, 

DIRE ensures that there will be a very little change, on 
average, of the relative sizes of the basins of the attraction. 
All of this together with the observation that the number r  
of the constituent BNs, their selection probabilities, and the 
parameters p  and q  remain the same for the original and 
the reduced PBN implies that, with the exception of the 
degenerate cases where there are relatively large number of 
attractor states that are points of inconsistency and whose 
flipped with respect to the 'deleted' gene d  states are also 
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Fig. (3). State transition diagrams of the contexts of the reduced model obtained after applying DIRE with respect to the third gene to the 
PBN presented on Fig. (1). 

attractor states, the steady-state distribution of the reduced 
PBN produced by the mapping will match closely the 
steady-state distribution of the original PBN. Moreover, the 
new algorithm does not require any prior information for the 
steady-state distribution of the original PBN as in the case of 
the projection and the reduction mappings. One can find a 
study of the DIRE performance on synthetically generated 
data: constrained PBN generated using the algorithm 
proposed in [30] and randomly generated PBN, on the 
complementary web site http://gsp.tamu.edu/Publications/ 
dire.htm. The algorithm was also applied to a PBN model of 
a real gene regulatory network inferred from 31 malignant 
melanoma samples [17]. The 7-gene PBN 40.01,0.01,

A  with 
four contexts was built using the genes WNT5A, Pirin, 
S100P, RET1, MART1, HADHB, and STC2 [28]. The 
network model was reduced by "deleting" WNT5A using 
both the reduction mapping defined in Sec. III and DIRE 
algorithm. The steady-state distributions of the reduced 
networks were compared to the probability distribution *

P  
resulting from the collapsing procedure, Sec. III, which 
treats WNT5A as a latent variable. That comparison is 
shown on Fig. (4). The MSE differences between the steady-
state distributions of the two reduced networks and *

P  
confirm that by controlling the damage on the state transition 
diagrams of the PBN's contexts DIRE can produce networks 
with steady-state distributions very similar to the original 
one [28]. Given the important biological interpretations of 

the steady-state distribution of the PBN model, DIRE 
reduction produces smaller and less complex networks 
which can be used to model the same phenomena as the 
larger ones. 

 Finally, the notion of point of inconsistency creates the 
opportunity for evaluating the importance of a particular 
gene for the network in question. This could lead to new 
methods for gene ranking, as well as options for applying 
control-based optimization which produces a favorable shift 
in the steady-state distribution of a given PBN and thus, 
could impact the design of therapeutic interventions. 

4. THE PROBLEMS OF REDUCTION, INFERENCE 
AND CONTROL 

 The examples of reduction mappings in the previous 
section show that one should take into consideration both the 
dependencies among the genes in a GRN and the networks 
dynamics when designing reduction mappings. Thus, 'good' 
reduction mappings should preserve as much as possible the 
biologically meaningful properties of the original network 
model while taking care of its two major components: the 
digraph representing the dependencies among the genes and 
the set of functional relations that determine how the 
expression profile of each gene is predicted by the 
expression profiles of other genes. In this section we 
consider reduction mappings based on 'deletion' of one gene 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Steady-state distributions for the reduced networks that were obtained by applying the reduction algorithm and DIRE on the 7-gene 
melanoma related PBN. 
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at a time from the network. We state the general reduction 
problem for PBNs and discuss different types of constraints. 
We also compare that general reduction problem to the 
problems of inference of the PBN model from data and to 
the problem of optimal control. 

4.1. The Reduction Problem 

 Because every PBN is a collection of individual BNs 
endowed with a probability structure and gene mutation 
probability, we focus on reduction mappings for Boolean 
networks. Consider the space 

n
M  of all BNs on n  genes. 

Then, having in mind the example of the multivalued 
projection mapping from the previous section, a reduction 
mapping can be defined as any set valued mapping 

12: !"# n

n

M

M , the set of all subsets of Boolean networks 
on 1!n  genes. Such a general definition takes into account 
only the 'deletion' of one of the genes from the networks in 

n
M , and is of little practical use. On the other hand side, it 
helps to formulate the following 

Reduction Problem 

 Given a set of constraints !  and a BN 
n

B M!  find a 

reduction mapping 12: !"# n

n

M

M , such that every 

)(
~

BB !"  satisfies ! . 

 It is important to point out that the constraints !  could 
be internal with respect to the model, i.e. related to the 
dynamical or static structure of B~  (the graphs !~  or G~ ) or 
B  (the graphs !  or G ), or external. For example, !  could 
be related to qualitative knowledge/description of the 
biological phenomena being modeled. 

 Several observations are worth mentioning: 

•  Given a set of constraints !  and a BN 
n

B M!  the 
problem of finding !  can be interpreted as a 
constrained search problem where the search space is 
the direct product 

i

n

i
T
1

1=

!
"  of truth tables 

i
T  for the 

Boolean functions on 1!n  variables. The set of 
constraints !  determines some of the entries in those 
truth tables which could significantly reduce the size 
of the search space. This interpretation of the 
reduction problem allows for algorithms that are used 
to infer BNs from data, e.g. [30], to be used in 
determining the set )(B! . 

•  Given a set of constraints !  and a reduction mapping 
!  there exits a maximal, with respect to the partial 
order induced by set inclusion, subset 

n
M!"

#$,
 

such that the same reduction mapping !  solves the 
reduction problem for every 

!"
#$

,
B , i.e. if 

!"
#$

,
B  then every )(

~
BB !"  satisfies ! . 

•  There is a partial order induced by set inclusion for 
the sets of constraints. If !  is a solution to the 
reduction problem for a given 

1
!  and 

n
B M! , then 

!  might not be a solution to the reduction problem 
for 

2
!  and B  if 

21
!"! . Thus, one can look for the 

maximal, with respect to this partial order, set of 
constraints ! , !"!

1
, so that !  solves the 

reduction problem for !  and B . 

•  Because one of the main reasons for constructing 
reduction mappings is to reduce the complexity of a 
network model, one can see that the choice of 
constraints !  has a significant impact on achieving 
this goal. The cardinality of the set )(B!  could be so 
big that the mapping !  leads to an increase of the 
model complexity, as the example of the projection 
mapping shows. Moreover, the verification if a BN 

)(B!"  satisfies !  can be computationally intensive 
for some sets of constraints. For example, if {=! a 
BN with singleton attractors only}  then such a 
verification might require finding all of the attractor 
cycles in the state-transition diagrams !  of the BNs 

)(B!"  - a problem known to be a NP-complete. The 
next example illustrates the trade-off between the size 
of )(B!"  and the cost to verify that all of the BNs 

)(B!"  satisfy the constraint ! . 

Example 1 

 The basic projection mapping 
n

!̂  is a solution of the 

reduction problem for the set of constraints )(

0

)( ˆ=
~
{= ii ff!  

or 1}1,...,=,ˆ )(

1 !nif i , where f  is the network function for 
the BN that is being reduced. As mentioned earlier, the 
cardinality of the set )(ˆ B

n
!  could be very large which leads 

to an increase of the model complexity. On the other hand 
side, the projection mapping has some advantages. First, 
because !  prescribes all of the entries in the truth table of 
each B~  in terms of the predictor functions for B, 

n
n

M!"
#$,

, i.e. the projection can be applied to every BN 

on n  genes. Second, for the same reason, there is no need to 
verify that every BN )(ˆ B

n
!"  satisfies the constraint. 

 Next, we focus on establishing a minimal set of 
constraints based on the interpretation of the 'deleted' gene as 
a latent variable. The first constraint rises naturally from the 
local properties of the predictor functions and is based on the 
following Given a state !"s , the predictor function if  is 
called ),( js  independent if and only if it has partial 

derivative 0=)(s
j

i

x

f

!

! . 

 The ),( js  independence is a local property of the 
predictor function if  and suggests that if a toggle of 

j
x  in 

state s  does not affect the prediction of gene 
i
x  then the new 

predictor function if
~  in any of the reduced networks B~  

should have the same value as )(sif  at the state s!  that is 
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obtained from s  by 'deleting' the j -th gene. Thus, we arrive 
at the local constraint 

1
! := { for every ),( js  independent 

if , !"s , jinji !,1,...,=,  set )(=)(
~

ss
ii ff

! } . 

 The second constraint 
2

!  is also related to a local 
property but this time it is about the digraph of gene 
dependencies G . If one interprets a 'deleted' gene 

j
x  as a 

latent variable, then any two edges 
jk xx !  and 

ij
xx !  in 

G should produce an edge 
ik
xx !  in G~  for any of the 

reduced networks B~ . Thus, if the j -th gene is 'deleted' 
{:=2! for every 

jk xx !  and 
ij
xx !  set 

}}{}}{\{=
~

kjii xxWW ! . 

 One can combine 
1

!  and 
2

!  into a new constraint 

21
!! !  and then search for a solution to the reduction 

problem with respect to this constraint. The following 
example shows that although 

21
!! !  is biologically 

meaningful, it has little to do with the global dynamical 
properties of the state transition diagram !  of B . 

Example 2 

 Consider the reduction problem for the constraint 
21

!! !  and the Boolean network 
3

M!B  described by the 
truth table below:  

 
321
xxx    1f    2f    3f   

 000   0   0   0 

 001   1   1   0 

 010   1   1   0 

 011   1   0   1 

 100   0   1   0 

 101   1   1   1 

 110   1   0   1 

 111   1   1   1 
 One can easily check that there are 10 networks in the set 

)(B!  and all of those networks satisfy 
21

!! ! . At the 
same time, while the state-transition diagram of B  has two 
singleton attractors, only one of those 10 networks has such 
a property. Moreover, 7 of them posses non-singleton 
attractors which shows that they cannot be used as 
reductions of the original BN in one wants to preserve the 
attractor structure of the network. 

 This example points out to the importance of constraints 
related to the global properties of ! . At the same time, one 
has to be careful using properties of !  as constraints when 
solving the reduction problem. For example, DIRE algorithm 
uses the the entire state-transition diagram as a constraint but 
applying it to the network B  from the above example 

produces B~  that does not possess the dependency 
22
xx !  

that is present in the gene dependencies digraph G  of B . 
Thus, in some cases, the entire state-transition diagram 
appears to be too strong of a constraint when solving the 
reduction problem.  

4.2. Reduction and Inference 

 The interpretation of the reduction problem as a search 
problem points out to its similarity to the problem about 
PBN inference from data. Constraints that are used when one 
designs network models from data could be also used when 
solving the reduction problem. For example, it was shown 
that genes which predict each other have a profound effect 
on the attractor structure of a BN [31]. The next definition 
specifies the notion of such gene interdependencies. The 
genes 

i
x  and 

j
x  in a BN are said to have a bidirectional 

relationship if and only if 
ji Wx !  and 

ij Wx ! . The 
relationship is said to be of connectivity n if nWW ji =||=|| . 

 Bidirectional relationships are important when the 
inference from data is restricted to the subclass 

ns
MB !  of 

Boolean networks with singleton attractors only. The 
subclass 

s
B  is important in situations where inference is 

made from time-independent data - the kind of data one 
usually gets in microarray studies involving human subjects. 
It is common to assume that in those cases data come from 
the steady-state of the genomic regulatory system which in 
its turn implies that the majority of data points represent 
attractors of the modeled system. The attractor cycles in BNs 
that model biological networks are typically associated with 
phenotypes and tend to be short [11], with biological state 
stability contributing to singleton attractors [32]. The results 
presented in [31] show that bidirectional gene relationships 
in a Boolean network are a common cause for the presence 
of non-singleton attractors in its state-transition diagram. 
One might guess that the creation of bidirectional 
relationships by the reduction mapping under the given set of 
constraints contributes to the spurious attractor cycles in 
most of the networks from )(B! . This points out to the 
importance of tricycles 

ikji xxxx !!!  in the digraphs 

G  of BNs 
s
B! , and leads to a new constraint 

3
!  for the 

reduction problem for the subclass 
s
B . The reduction 

problem under the constraint Λ3 = {the ´deleted´ gene does 
not participate in any tricycle in the original G} was 
considered in [33]. The paper presents an algorithm that 
solves the reduction problem for the set of constraints 

31
!! ! . The mapping !  produced by the algorithm does 

not ensure that for a 
s

B B!  all of the reduced networks in 
)(B!  have singleton attractors only. However, the 

probability of recovering the original attractor structure of a 
Boolean network with singleton attractors only is much 
higher when the constraint 

3
!  is used in conjunction with 

1
!  compared to the case when only 

1
!  is used as a 

constraint. 
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 The similarity between the problems of reduction and 
inference of PBNs could be explored in the other possible 
direction: using the knowledge about reduction mappings to 
infer the model from data. Constraints used by the DIRE 
algorithm for reducing BNs could be applied during an 
inference procedure [34]. Because attractor cycles are 
processed independently of their basins and special care is 
taken when a point of inconsistency is encounter during 
reduction one can use DIRE as a constraint in designing 
PBNs from data, especially when data are believed to come 
from the steady-state of the underlying genomic regulatory 
system. DIRE mapping induces a partial order in every 
subset of data points that is considered to be part of set of 
fixed points of the regulatory system. The algorithm given in 
[34] uses this partial order to infer a PBN from data so that 
the model's attractor structure is stable with respect to the 
DIRE reduction. A real data example using a melanoma data 
set [17], could be found on http://gsp.tamu.edu/Publications/ 
BNs/dire_ranking.pdf. 

4.3. Reduction and Control 

 Probabilistic Boolean networks have been the model of 
choice in studying optimal regulatory intervention. The 
reason for that lies in the well developed theory of Markov 
chains and the associated transition probability matrices. To 
address the issue of changing the long-run behavior, 
stochastic control has been employed to find stationary 
control policies that affect the steady-state distribution of a 
PBN. The algorithms used to find these solutions have 
complexity which increases exponentially with the number 
of the genes in the network. Hence, there is a need for size-
reducing mappings producing new and more tractable 
models whose stationary control policies induce sub-optimal 
stationary control policies on the larger PBN. This 
subsection focuses on a specific stationary control policy, 
Mean-First-Passage-Time control policy, and reviews the 
two major issues that link the reduction problem to the 
problem about designing the MFPT control policy. The first 
problem concerns the effects of the reduction mappings 
introduced in [29] on that policy. The second issue is about 
how MFPT control policies that are designed on the reduced 
network can be extended to stationary control policies on the 
original network. We concentrate on Boolean networks with 
a perturbation 

pBN - the building blocks of a PBN. 

 The type of reduction policy introduced in [29] rests on 
the following procedure. If one assumes that the gene d  is 
going to be 'deleted' from the given 

pBN  then for every pair 

of states s  and d
s
~  in the state space S , one can consider the 

states w  and v  for which ws!  and vs !
d~ . Because 

after 'deletion' d  becomes a latent variable, the states s  and 
d
s
~  'collapse' to a state s!  in the reduced network. The state 
s
!  is obtained from either s  or d

s
~  by removing their d -th 

coordinate. The reduction mapping, denoted by 
d

!
~ , 

constructs the truth table of the reduced network by selecting 
the transition ws

!!
!  if )~(>)( d

PrPr ss  or vs
!!

! , 
otherwise. This particular type of reduction is a special case 

of a reduction mapping 
d

!
"  induced by a selection policy 

d
!  which is defined next [35]. A selection policy d

!  
corresponding to the 'deleted' gene d  is a n

2  dimensional 
vector n

d 2{0,1}!" , indexed by the states of S  and having 
components equal to 1 at only one of the positions 
corresponding to each pair )~,( d

ss , S!s . 

 Notice that for each gene d  there are 
1

2
2

!n

 different 
selection policies corresponding to that gene. Using this 
definition, one can define a general d

! -induced reduction 
mapping 

d
!

" . The mapping constructs the truth table of the 

reduced network by selecting the transition ws
!!

!  if 
1=)(sd

!  or vs
!!

! , otherwise. To each selection policy d
!  

there corresponds a matrix 
d

!

F  which is called the 

companion matrix for the reduction mapping 
d

!
" [35]. The 

fundamental matrix can be easily obtained from the 
transition probability matrix of the given 

pBN . Moreover, 

the transition probability matrix P
!

 of the reduced network 
)( pd BN

!
"  has entries that can be computed, e.g. sec. 2, and 

can be shown to be identical (up to a very small 
perturbation) to 

d
!

F . Thus one can study the effects of 

selection policy-induced reduction mappings on both the 
MFPT control policy designed for the reduced network and 
on the similarity between the steady-state distributions of the 
original and the reduced networks. Following the notation 
introduced in sec. 2 we consider the the MFPT stationary 
control policy ,...},{= ,,, !!! µµ"

ggg
, designed using the 

MFPT algorithm from [23] for the 
pBN  with !  as a 

parameter and g  being the control gene. Because 'deleting' 
of the gene d  has to be interpreted as a creation of a latent 
or non-observable variable, it is desirable that the MFPT 
control policy 

!"
,g

!  with the same parameter !  for the 

reduced network 
pNB

!
 is as close as possible to the one 

designed for the original network. In this way, one can 
achieve similar control actions for every state s , S!s  and 
its corresponding reduced state s! . Taking advantage of the 
properties of the companion matrix 

d
!

F  for the mapping 

d
!

"  one can show that there exists a selection policy d

!
!  

that minimizes the relative effect on the stationary MFPT 
control policy 

!"
,g

 designed for 
pBN  among the all of 

possible selection policies d
!  [35]. The relative effect on the 

policy 
!"
,g

 is measured by comparing the number of times 
where the control for the reduced states s!  differs from the 
control )(, s!"

g
, s  is such that 1=)(sd

! , to the number of 
times where there is no change in the control action. 

 The problem of inducing control on the larger network 
model using a control policy designed on the reduced model 
is an example of an ill-posed inverse problem, and has not 
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been studied extensively. The MFPT control policy 
,...},{=
1
,

1
,

1
, !!! µµ"

ggg

!!!  for the reduced network p
NB
!

 has a 

dimension of 1
2

!n  while all of the stationary control policies 
for the original network 

pBN  are of dimension of n
2 . 

Recently, Ghaffari et al. [36] considered this inverse 
problem for the reduction mapping defined in [29]. That 
reduction mapping is induced by a selection policy that is 
determined by the steady-state distribution of the 

pBN  that 
is being reduced. There are some obvious constraints on the 
possible ways to extend 

1
,!µ
g

!  from S
!

-the state space of the 

reduced network p
NB
!

, to S - the state space of the original 
network 

pBN . The definition of the reduction mapping 
g

!
!

 

shows that to each state S
!!

!s  there are two corresponding 
states: s  and its flipped state g

s
~  in S  that differ only in the 

value of the gene g . Therefore, under the interpretation of 
the 'deleted' gene g  as a latent variable we should have 

)~(=)(=)(
1
,

g

ggg
sss µµµ !

!! , where 
g

µ  is the extension of 

1
,!µ
g

! . Thus, the goodness of extension of the control policy 

1
,!"
g

!  can be measured by the normalized Hamming distance 

between the vectors 
g

µ  and 
!µ
,g

. The simulation study 

performed in [36] used randomly generated sets of 0.1
BN , 

on 7=n  genes. Each set shared a common set of attractor 
states with no restrictions on the way they formed attractor 
cycles. In addition, the cardinalities 

i
W#  of the gene 

predictor sets were restricted to no be no larger than 3 to 
keep the networks from being chaotic. Furthermore, the two 
parameters 

1
!  and !  were set equal because in practical 

applications one would often assume similar costs for the 
original and the reduced networks. The study showed that 
one can expect relatively significant differences for the two 
control policies only for very small values of ! , Fig. (5). For 

2>!  the MFPT control policy on the original networks 
differed less than 3%  from the stationary control policy that 

was induced by the MFPT control policy on the reduced 
networks. Thus, one can use the reduced network to 
accurately estimate the MFPT control policy for a large 
interval of the parameter !  that is associated with a relative 
high cost of control. The difference in the average behavior 
of the two sets of networks presented on Fig. (5) suggests 
that the attractor structure of the models plays an important 
role in solving this inverse problem. 

5. CONCLUSIONS 

 High complexity is a major impediment when 
computational models of genomic regulation are used to 
design optimal strategies for therapeutic intervention and 
control of disease. Thus, mappings which reduce the 
size/complexity of the model while preserving its important 
structural and dynamical characteristics become 
indispensable for its successful applications. The reduction 
problem in its very general formulation emphasizes the role 
of constraints in the process of designing reduction mappings 
for probabilistic Boolean networks. It also provides the basis 
for the comparison drawn between the problems of reduction 
and inference of PBNs from gene expression data. The 
similarity between the two problems allows for using 
reduction mappings in the process of network inference, and 
the application of known inference algorithms in designing 
reduction mappings. There is also a similarity between the 
problems of reduction and control when MFPT stationary 
control policy and selection policy-induced reduction 
mappings are considered. This provides the basis for 
investigating the question about the effects of reduction 
mappings on the MFPT control policy for the reduced 
network, and also the question of the possibility to use the 
MFPT control policy for the reduced network to induce a 
stationary control policy for the original PBN that 
approximates its original MFPT control policy. To date, very 
little is known about the cost of applying reduction 
mappings. A result of preliminary nature is presented in [37] 
where for the first time the stochastic complexity was used 
for that purpose. Estimating the reduction cost is important 
because it is not advantageous to produce less complex 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). Average effects of reduction on the control policy. 
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model by a highly complex/expensive mapping. 
Furthermore, little is known about estimates of the 
computational savings when a reduced version of a large 
network is used. Clearly, the reduced models have their state 
space exponentially smaller compare to those of the larger 
PBNs. Carefully designed large scale simulation studies 
could provide hints about how the computational burden of 
using large network models of genomic regulation compares 
to their reduced under different sets of constraints versions. 
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