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Recent advances in sequencing strategies have made it feasible to rapidly obtain high-coverage genomic profiles of single
individuals, and soon it will be economically feasible to do so with hundreds to thousands of individuals per population.
While offering unprecedented power for the acquisition of population-genetic parameters, these new methods also
introduce a number of challenges, most notably the need to account for the binomial sampling of parental alleles at
individual nucleotide sites and to eliminate bias from various sources of sequence errors. To minimize the effects of both
problems, methods are developed for generating nearly unbiased and minimum-sampling-variance estimates of a number
of key parameters, including the average nucleotide heterozygosity and its variance among sites, the pattern of
decomposition of linkage disequilibrium with physical distance, and the rate and molecular spectrum of spontaneously
arising mutations. These methods provide a general platform for the efficient utilization of data from population-genomic
surveys, while also providing guidance for the optimal design of such studies.

Introduction

Past estimates of molecular variation at the population
level typically relied on assays of moderate numbers of in-
dividuals at a small number of loci (Nei 1987; Weir 1996).
This situation is now rapidly changing with the advent of
very high-throughput methods for genomic sequencing
(Margulies et al. 2005; Bentley 2006; Mardis 2008), which
present unprecedented opportunities for procuring highly
reliable measurements of nucleotide diversity within single
individuals, global patterns of linkage disequilibrium, mu-
tation rates per nucleotide site, and many other key popu-
lation-genetic parameters. For random-mating populations,
assays of massive numbers of largely unlinked sites from
fully sequenced genomes can be highly informative with
respect to the population-wide average nucleotide diversity,
and the correlation of heterozygosity among linked sites can
provide insight into spatial patterns of genomic disequilib-
rium. Moreover, observations on the complete genomes of
multiple individuals harbor information on the variance of
heterozygosity among sites, and surveys of experimental
lines with known ancestry and relaxed selection can yield
precise information on mutation rates and spectra (e.g., the
frequencies of the 12 types of nucleotide changes). For non-
random-mating populations, individual-based estimates of
heterozygosity may also provide a basis for determining rel-
ative levels of inbreeding. All these observable features are
functions of the evolutionary forces operating at the molec-
ular level—mutation, recombination, random genetic drift,
and selection, and thus by indirect inference can yield con-
siderable insight into the processes molding patterns of mo-
lecular and genomic evolution (Kimura 1983; Lynch 2007).

Despite the promise of high-throughput sequencing
strategies for population-genomic analysis, the most appro-
priate methods for extrapolating information from genome-
sequencing projects remain to be determined. Two prob-
lems stand out in particular. First, in most studies involving
random or ‘‘shotgun’’ sequencing, individual nucleotide

sites are subject to variable sequence coverage. For sites
with low coverage, there is then a relatively high probability
that all sequences will be derived from just one of the two
parental chromosomes in a diploid individual, which if un-
accounted for would lead to downwardly biased estimates
of nucleotide diversity. Although it is tempting to apply
a minimum-coverage criterion to reduce the likelihood of
such problems, such an approach will generally discard
substantial amounts of information, particularly in light-
coverage sequencing surveys.

Second, sequencing errors can mimic polymorphisms
and are collectively more likely to arise at sites with high
coverage (Clark and Whittam 1992; Hellmann et al. 2008;
Johnson and Slatkin 2008). Although quality scores can be
used to eliminate some unreliable reads (Ewing and Green
1998; Ewing et al. 1998), such filtering does not eliminate
problems arising prior to or during sample preparation, and
the remaining background error variance can still rise to
levels exceeding true variation in species with low levels
of nucleotide diversity such as humans. To guard against
the assignment of false-positive heterozygosity, analyses
might focus on high-coverage sites, with single aberrant
reads being discarded as errors, but again the cutoffs for
such treatments are arbitrary and lead to the loss of infor-
mation. In principle, empirical estimates of the error fre-
quency might be directly applied to the problem, but the
optimal procedure for estimating the error frequency itself
is unresolved, and because individual sequencing runs can
vary substantially in quality (Richterich 1998; Huse et al.
2007), the use of predetermined (external) error rate esti-
mates will often be problematical.

The most dramatic example of the insufficiency of
quality scores as a means for eliminating problematical se-
quences concerns the use of ancient DNA samples. There is
now considerable interest in deciphering past human pop-
ulation-genetic history from genomic fragments residing in
bones and teeth up to tens of thousands of years old, but
such DNA is subject to extremely high levels of in situ base
modification, with the C/T damage rate often exceeding
1% (Briggs et al. 2007; Gilbert et al. 2008). A project to
sequence a Neanderthal genome is underway, but as much
as half of the apparent divergence from modern man ap-
pears to be an artifact of single-template errors (Green
et al. 2006; Noonan et al. 2006). A rigorous statistical
framework for dealing with such matters will be required
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if population-genomic approaches are to ever be applied to
ancient DNA.

In the following sections, alternativemethods for obtain-
ing estimates of average levels of nucleotide diversity, linkage
disequilibrium, and mutation rates are developed and their
relative merits evaluated, for situations in which massive
amounts of sequence data are available from a small number
of individuals. Although only the simplest of applications are
presented, these will be shown to be quite rich with respect to
the insights that they yield. The general approach can be read-
ily modified to investigate more complex problems as well as
to provide guidance in the optimal design of sequencing strat-
egies for future population-genomic analyses.

Nucleotide Diversity Within Single Diploid Individuals

We start with a pool of data acquired from a single
diploid individual, making the reasonable assumption that
both parental sets of chromosomes have been sequenced
‘‘on average’’ to equivalent depths of coverage. If an accu-
rate estimate of the per-site sequence error rate, e, is avail-
able, the mean nucleotide heterozygosity within the
individual, p, can then be obtained by a method-of-mo-
ments (MM) approach, but the problem may also be solved
without an external estimate of e by using a maximum like-
lihood (ML) procedure to obtain joint estimates of p and e.

No assumptions are made here with respect to the
method of sequence acquisition, and the raw sequence reads
may be subject to various levels of trimming and quality
control prior to analysis. However, it is assumed that all
remaining read fragments are properly aggregated, either
by de novo assembly in the case of long reads or by guid-
ance from a reference genome in the case of short reads,
with potentially problematical regions involving paralogs
and mobile elements having been masked out. To keep
the general approach transparent, it will also be assumed
that the error structure of the data is homogeneous, with
each nucleotide having the same probability of misassign-
ment to all others.

MM Analysis

A site that has been sequenced n times within an in-
dividual will have a sequence profile (n1, n2, n3, n4), where
the integers refer to nucleotides A, C, G, and T and
n 5 n1 þ n2 þ n3 þ n4 is the depth of coverage of the
site. For n . 1, any site with at least two observed nucle-
otide types is potentially heterozygous, but some such ob-
servations will be simple consequences of sequence errors
(here broadly interpreted as being due to any mechanism
that causes a deviation from the true genotype). For the total
set of sites with depth-of-coverage n, the apparent hetero-
zygosity (i.e., the fraction of sites at which two or more nu-
cleotides are observed), H, has expected value

EðHÞ ’ pf1 � ð1=2Þn� 1ð1 � 2ne=3Þg þ ð1 � pÞðneÞ;
ð1Þ

where p is the true average genome-wide heterozygosity
per nucleotide site. The term in curly brackets following

p denotes the probability that a true heterozygote is sampled
as such. This condition will be violated if only one allele is
sampled and no false heterozygosity is produced by a se-
quence error, with probability 2ð1=2Þnð1� eÞn’
2ð1=2Þnð1� neÞ for ne � 1; or if both alleles are sampled
but an error (specifically back to the nucleotide at the site on
the homologous chromosome) causes the false appearance
of homozygosity, with probability;2n(1/2)n(e/3). The lat-
ter correction term assumes that obscured sampling config-
urations involve only single errors, confined to situations in
which one of the parental alleles is sampled just once, prob-
ability 2n(1/2)n. This assumption is reasonable for error
levels encountered in most sequencing projects (where e
is generally � 0:01) but may need to be modified with
new-generation techniques that sacrifice quality for
quantity of reads. The term ne following (1 � p) is the
probability that a homozygous site falsely appears to be het-
erozygous as a consequence of a sequence error, again as-
suming no more than one error per site (ne � 1).
Rearranging equation (1), an MM estimator of the average
nucleotide heterozygosity using sites with n-fold coverage
is

p̂n 5
Ĥ � ne

1 � ne � ð1=2Þn� 1ð1 � 2ne=3Þ
; ð2aÞ

where ^ denotes an estimate. The variance of p̂n associated
with the sampling of N nucleotide sites, obtained by the
Delta method (Lynch and Walsh 1998), is estimated by

Varðp̂nÞ ’
Ĥð1 � ĤÞp̂2n
NðĤ � neÞ2

; ð2bÞ

Computer simulations of genomes with a wide array of
values for p and n, and e assumed to be known without er-
ror, demonstrate that equation (2a) yields essentially unbi-
ased estimates of the parameter p and that equation (2b)
yields an unbiased estimate of the variance of estimates
from equation (2a) (fig. 1). For low enough levels of nucle-
otide diversity that p � e; EðHÞ ’ ne because almost all
observed variation is associated with read errors (false pos-
itives) and the sampling variance approaches an asymptotic
lower bound that is independent of p,

Varðp̂nÞ ’
ne

N
h
1 � ð1=2Þn� 1

i2 ; ð3Þ

which further simplifies to ne/N at high-coverage levels.
This shows that with the MM method, there is little to
be gained from increasing the sequence coverage per site
beyond a few fold and actually something to be lost with
highly homozygous genomes.

ML Analysis

Under the MM approach, the use of an inaccurate esti-
mate of e can lead to biased estimates of p. Moreover, the
precision of estimates must be less than optimal because each
nucleotide site is viewed as being equally informative,
whereas sites with multiple appearances of two nucleotides
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are much more reliable indicators of heterozygosity than sites
with just one odd nucleotide, which at high coverage are in-
dicative of errors. An alternative approach is to weight each
site by its information content in order to obtain joint estimates
of p and e that maximize the likelihood of the full set of data.
Such analysis requires as additional input measures of the ge-
nome-wide nucleotide frequencies (p1, p2, p3, p4), but with
large genome-sequencing projects, these can be estimated
with high precision from the full pool of sequence data.

Under the ML approach, for the full range of candidate
values of p and e, the likelihood of the data at each site can
be obtained by considering the probabilities of the observed
data conditional on all possible genotypic states. Here we
assume that the probabilities of alternative allelic states are
defined by the average nucleotide frequencies in the region

of analysis. Thus, conditional on the site being homozy-
gous, the likelihood of the observed data is obtained by
summing over the likelihoods conditional on all four pos-
sible homozygous types (AA, CC, GG, and TT, with
respective relative probabilities p1, p2, p3, and p4),

‘1ðn1; n2; n3; n4Þ5
X4
i5 1

pi � bðn � ni; n; eÞ; ð4aÞ

where b(n � ni;n, e) is the probability of n � ni errors in n
reads given the error rate e. For heterozygous sites, the likeli-
hood must incorporate the sampling distribution of the two
alternative parental alleles as well as the probability of read
errors to alternative nucleotide states. Accounting for all pos-
sible heterozygous types, the conditional likelihood is

‘2ðn1; n2; n3; n4Þ5
X4
i5 1

X4
j.i

2pipj � bðn � ni � nj; n; 2e=3Þ

� pðni; ni þ nj; 0:5Þ=S; ð4bÞ

where p(x;y, 0.5) denotes the binomial probability of x
events, each with independent probability 0.5, out of y trials,
and the term S51�

P4
i51 p

2
i is necessary to normalize the

sum of the frequencies of expected heterozygote types to
one. This expression follows from the fact that, conditional
on the individual being genotype ij, b(n � ni � nj;n, 2e/3) is
the probability of errors to nucleotides other than i and j,
whereas p(ni;ni þ nj, 0.5) is the probability of sampling
the ith nucleotide ni times from the remaining pool of ni þ nj
nonerroneous reads. Although there may be i4j errors
within the latter pool, this does not alter the usual binomial
sampling probability, provided the errors are equal in both
directions.

The total likelihood for the observed data at the site is
then

‘ðn1; n2; n3; n4Þ5 ð1 � pÞ‘1ðn1; n2; n3; n4Þ
þ p‘2ðn1; n2; n3; n4Þ; ð5Þ

Letting N(n1, n2, n3, n4) denote the number of times the
sampling configuration (n1, n2, n3, n4) is observed over
all sites, the log likelihood of the total data set is

L5
X

Nðn1; n2; n3; n4Þ � ln
h
‘ðn1; n2; n3; n4Þ

i
; ð6Þ

where the summation is over all observed nucleotide con-
figurations. TheML solution, given by the joint estimates of
p and e that maximize L, can be readily obtained by a grid
survey of the relevant range of parameter space.

The analysis of computer-simulated data indicates that
the ML method asymptotically yields nearly unbiased esti-
mates of pwith increasing coverage of sites n (fig. 1). For 2�
and 3� coverage, with no possibility of both nucleotides at
a heterozygous site being sequenced at least two times, there
is insufficient information to distinguish between true geno-
typic variation and that generated by read errors, and the ML
approach is ill-behaved, with the estimates of p always con-
verging on zero. However, for all other coverages, the sam-
pling variance of the ML estimator (among replicate

FIG. 1.—Behavior of the MM (solid circles) and ML (open circles)
estimators of p, given for four values of the true nucleotide
heterozygosity, p 5 0.1, 0.01, 0.001, and 0.0001, with all four
nucleotides assumed to have equal genome-wide frequencies. In all
cases, each of N 5 10,000 sites was assumed to be sequenced to the same
depth of coverage (n), and simulations were performed on 500–2,000
stochastic samples. In the upper panel, the horizontal dotted lines denote
the true value of p, whereas in the lower panel, they denote the true
within-individual sampling SE of mean heterozygosity,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=N

p
.

The assumed error rate is e 5 0.001.
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samples) is always lower than that of the MM estimator,
despite the fact that the ML procedure generates its own
estimate of e. Indeed, provided the coverage is .3�, the
ML estimator behaves nearly optimally in that the sampling
variance of p̂ approaches the true within-individual sampling
variance of the mean heterozygosity p(1 � p)/N. Thus, the
asymptotic sampling coefficient of variation (ratio of the
standard error ½SE� to the expected parametric value) of

the ML estimator of p is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ=ðpNÞ

p
; which because

p is generally � 1; is ;1
� ffiffiffiffiffiffiffi

pN
p

; where pN is the expected

number of heterozygous sites in the sample.
As can be seen in figure 1, if p is on the order of the

error rate or smaller, the ML estimator is much more reli-
able than the MM estimator, as a consequence of the as-
ymptotic lower bound of the sampling variance of the
latter. On the other hand, at low coverages, the ML esti-
mates are downwardly biased, the extreme being a 50% re-
duction at 4� coverage. An ad hoc but intuitive correction
factor to eliminate this bias can be arrived at by recalling
that the ML estimator fails to yield nonzero estimates of
p when (1, n � 1) allelic configurations are the most ex-
treme that can be achieved at a site (i.e., with 2� and
3� coverage). Reasoning that the bias in the ML estimates
is largely caused by heterozygotes with (1, n � 1) config-
urations, and letting c 5 n(1/2)n�1 be the expected fre-
quency of such configurations, an improved estimator of
p is achieved by dividing the ML estimate by (1 � c). This
modification completely eliminates the bias provided the
error rate is ,10�3 or so (fig. 2), although the sampling
standard deviation will be inflated by the factor 1/(1 � c).

However, once the error rate exceeds the true level of
heterozygosity, further bias is introduced (independent of
the number of sites sampled), the moreso at lower cover-
ages. Although I have been unable to obtain a simple means
for eliminating this shortcoming, the results in figure 2 pro-
vide guidance as to when such issues are likely to arise, and
the bias can be estimated computationally (through simu-
lations with the relevant n, p, and e). However, the salient
point here is that the conditions under which the ML esti-
mates of p are biased closely reflect those where the sam-
pling variance of p̂ is already swamped by that of ê,
rendering such estimates quite unreliable.

Combined Analysis

Given the disparities in the sampling variances of p̂
with the alternative approaches, the nonfunctionality of
the ML approach at 2� and 3� coverage, and the variation
in coverage that will generally exist among sites, a hybrid
method that makes optimal use of all the data is desirable.
One deficiency of the MM approach is its requirement for
an accurate, external estimate of the read-error rate (e).
However, a useful feature of the ML approach is its ability
to generate estimates of e. Provided the depth of coverage is
sufficiently high that (n � 2)e . p, the ML estimates of
the error rate are nearly unbiased, with sampling variance
close to e(1 � e)/½N(n � 1)�, although at lower coverages,
these estimates are upwardly biased. Thus, under appropri-
ate sampling conditions, it should be possible to utilize the
ML approach to derive an estimate of e, which can then be

applied to the MMmethod for conditions in which the latter
estimator is preferred. A near minimum-sampling-variance
estimator of p might then be achieved by using the ML ap-
proach for coverages above a specific cutoff and the MM
estimator for lower coverages. Obtaining a pooled high-
coverage ML estimate is straightforward, as by equation
(6), one simply sums the likelihoods over all configurations
at all coverage levels.

Suppose, for example, that one wished to use the ML
approach for all coverages .3�. After obtaining separate
MM estimates of p for sites with n 5 2 and 3, the pooled
estimate would be

p̂5

�
p̂2;MM=Var

�
p̂2;MM

��
þ

�
p̂3;MM=Var

�
p̂3;MM

��

þ
�
p̂ML=Var

�
p̂ML

��
�
1=Var

�
p̂2;MM

��
þ
�
1=Var

�
p̂3;MM

��
þ
�
1=Var

�
p̂ML

�� ;

ð7Þ

where each estimate is weighted by the inverse of its sam-
pling variance. The sampling variance for each MM esti-
mate can be obtained directly from equation (2b),
whereas given the relative constancy of the variance of p̂
at all coverages with the ML approach, Varðp̂MLÞ ’
p̂ð1� p̂Þ=NML; where NML is the total number of sites used
in the ML analysis.

One major caveat with respect to this approach, and
indeed any application of the MM method, concerns the
assumption that the ML estimate of e obtained at high cov-
erages is applicable to lower-n sites. If, for example, a sub-
stantial fraction of low-coverage sites results from poor
assembly of error-laden fragments, upwardly biased esti-
mates of p would be generated by the MM method, as
not enough variation resulting from sequence errors would
be eliminated. Thus, prior to any attempt at using a pooling

FIG. 2.—Average ML estimates of p given for three values of the
true nucleotide heterozygosity, p 5 0.01, 0.001, and 0.0001 (denoted by
the three horizontal dotted lines), with all four nucleotides assumed to
have equal genome-wide frequencies and correction for sampling bias as
described in the text. In all cases, each of N 5 100, 000 sites is assumed
to be sequenced to the same depth of coverage (n). The assumed error rate
is e 5 0.001.
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method, it would be prudent to evaluate whether estimates of
e generated by the ML approach are stable with respect to n.

Linkage Disequilibrium for Homozygosity Within
Single Diploid Individuals

With only two chromosomes sampled, a single individ-
ual provides little insight into the overall level of linkage dis-
equilibrium between any particular pair of nucleotide sites.
However, with thousands to millions of pairs of sites along
a chromosome, it is possible to extract information on the
pattern of zygosity disequilibrium, that is, to evaluate whether
individuals that are heterozygous (homozygous) at a particu-
lar site are more likely to be heterozygous (homozygous) at
neighboring sites. Considering all pairs of sites a specific dis-
tance apart, the genome-wide expected frequencies of double
homozygotes and double heterozygotes are, respectively,
(1 � p)2 þ Dp(1 � p) and p2 þ Dp(1 � p), where D is
the correlation of zygosity across all pairs of sites.

Following the general approach outlined in the previ-
ous section, after taking into account the random sampling
of parental chromosomes and the loss of information asso-
ciated with read errors, the expected frequencies of apparent
doubly homozygous, doubly heterozygous, and homozy-
gous/heterozygous pairs are, respectively

EðH0Þ5
h
ð1 � pÞ2 þDpð1 � pÞ

i
aaab

þ
h
p2 þ Dpð1 � pÞ

i
ð1 � baÞð1 � bbÞ

þ pð1 � pÞð1 � DÞ
h
aað1 � bbÞ

þ abð1 � baÞ
i
; ð8aÞ

EðH2Þ5
h
ð1 � pÞ2 þDpð1 � pÞ

i
ð1 � aaÞð1 � abÞ

þ
h
p2 þ Dpð1 � pÞ

i
babb

þ pð1 � pÞð1 � DÞ
h
ð1 � aaÞbb

þ ð1 � abÞba
i
; ð8bÞ

EðH1Þ5 1 � EðH0Þ � EðH2Þ; ð8cÞ
where for locus a,

aa 5 1 � nae; ð9aÞ

ba 5 1 � ð1=2Þna � 1
h
1 �

�
2nae

.
3
�i

; ð9bÞ

denote, respectively, the probabilities that true homozygotes
are revealed as such (because only a single nucleotide is

sequenced) and that true heterozygotes are revealed as such
(because two or more nucleotide types are observed), with
na denoting the coverage of site a, and similar expressions
applying for the other member of the nucleotide pair
(locus b).

Considering the sum of observed double homozygote
and double heterozygote frequencies, Ĥ0 þ Ĥ2, the MM es-
timator for the zygosity correlation involving pairs of sites
with coverage (na, nb) is

D̂5
Ĥ0 þ Ĥ2 � ð1 � p̂Þ2c1 � p̂2c2 � p̂ð1 � p̂Þc3

p̂ð1 � p̂Þðc1 þ c2 � c3Þ
;

ð10aÞ

where c1 5 1 þ 2aaab � aa � ab, c2 5 1 þ 2babb � ba
� bb, and c3 5 aa þ ab þ ba þ bb � 2aabb � 2abba,
with p̂ being obtained by single-site analysis as described
above. Note that at high coverage, as the error rate ap-
proaches zero, this MM estimator for D̂ converges onh
Ĥ0 þ Ĥ2 � ð1� p̂Þ2�p̂2

i.
½2p̂ð1� p̂Þ�: The large sam-

ple–variance expression for D̂; obtained by the Delta method
(Lynch and Walsh 1998), is given here relative to the ob-
served estimate (i.e., as the squared coefficient of sampling
variation),

where Var
�
Ĥ0;2

�
5
�
Ĥ0 þ Ĥ2

��
1� Ĥ0 � Ĥ2

��
N is the sam-

pling variance for the summed frequency of pairs of double
homozygotes and double heterozygotes, with N being the
number of pairs of loci in the analysis, h1 5 c3 � 2c1, h2 5
c1 þ c2 � c3, and Varðp̂Þ defined by equation (2b).

Analysis of computer-simulated data indicates that the
MM estimator of D is essentially unbiased, again provided
that the correct error rate is available. The large sample–var-
iance estimator also performs quite well under a range of
circumstances (fig. 3), although it does overestimate the
sampling variance when p is very low (in which case the
power of disequilibrium analysis is already greatly compro-
mised as a consequence of the rarity of polymorphic sites).

Some sense of the baseline sampling properties of D̂
can be achieved by considering the limiting situation in
which the coverage is high enough and the error rate
low enough that the estimation error is dominated by the
sampling of the two-locus genotypes, in which case as
a first-order approximation equation (10b) reduces to

VarðD̂Þ ’ p̂ þ 1:5D̂
Np̂

; ð10cÞ

This shows that the sampling variance of D̂ scales inversely
with the expected number of heterozygous loci in the
sample (Np). Because it ignores the loss of information

VarðD̂Þ=D̂2 ’
Var

�
Ĥ0;2

�
þ

�
4p̂2h22

�
2D̂ � 1

�
þ 4p̂h2

�
D̂h1 � D̂h2 � h1

�
� h1

�
h1 þ 2D̂h2

��
Var

�
p̂
�

h
Ĥ0 þ Ĥ2 � ð1 � p̂Þ2c1 � p̂2c2 � p̂

�
1 � p̂

�
c3

i2

þ ð1 � 4p̂2ÞVarðp̂Þ
½p̂ð1 � p̂Þ�2

; ð10bÞ
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from sequence errors, the latter expression will generally
underestimate the actual sampling variance of D̂ although
it generally yields values close to those from computer sim-
ulations at high coverage (fig. 3). For p � D; the sampling
variance of D̂ using the MM estimator is ’ 1=N; in accor-
dance with the large-sample variance of a correlation coef-

ficient being ’ ð1� r2Þ2
.
N (Lynch and Walsh 1998),

with r 5 0 in this limiting case.
It is fairly straightforward, albeit tedious, to extend the

single-locusML approach to pairs of loci. Letting the sets of
observations for the four nucleotides at a pair of sites, a and
b, be (na1, na2, na3, na4) and (nb1, nb2, nb3, nb4), equations
(4a) and (4b) can be used to derive the likelihoods of
observations conditional on the sites being homozygous
(‘1a and ‘1b) or heterozygous (‘2a and ‘2b). The likelihood
for the pair of loci, given p, D, and e, analogous to equa-

tion (5), is then
The overall likelihood, summed over all pairs of loci, is

L5
X

N
�
na1; na2; na3; na4; nb1; nb2; nb3; nb4

�

� ln
h
‘
�
na1; na2; na3; na4; nb1; nb2; nb3; nb4

�i
; ð12Þ

where the N(na1, na2, na3, na4, nb1, nb2, nb3, nb4) denote the
numbers of pairs of loci with each of the observed config-
urations of observations.

Application of the ML approach to computer-
simulated data indicates that this method generates joint,
nearly unbiased estimates of D, and e, again provided
the sample sizes at sites exceed three. In general, the
SEs of the ML estimates are similar to or slightly better than
those arising with the MM method (assuming known e in
the latter case). Thus, because the MM method will yield
biased results unless e is known with certainty, it appears
preferable to rely on the ML method for pairs of sites at
which na, nb . 4, resorting to the MM method only at
lower coverages (using an estimate of e derived via ML)
if at all and obtaining a pooled average estimate using
the methods outlined above for p̂ analogous to equation (7).

For the sampling variances of D̂ necessary to obtain
a weighted estimate of D, equation (10b) applies to all
terms involving the MM method. Equation (10c) provides
a fairly good approximation of the sampling variance of
ML estimates of D at high coverage (fig. 3), although
the sampling variance of an ML estimate can also be ob-
tained directly from the curvature of the likelihood sur-
face. Denoting the maximum of the log-likelihood
surface as Lðp̂; D̂; êÞ and the maximum log likelihood
when D is constrained to equal zero as Lðp̂; êÞ; the likeli-
hood ratio is defined as LR5� 2½Lðp̂; êÞ � Lðp̂; D̂; êÞ�:
With the large samples involved in genome sequencing,
LR is expected to be v2 distributed with one degree of free-
dom so that approximate 95% support boundaries for D̂
can be obtained by evaluating LR at values deviating

above and below D̂ until the drop in LR exceeds 3.84.
As the width of this range, W, is expected to be approx-
imately four SEs, Var

�
D̂ML

�
’ W2

�
16:

Extension to Pairs of Individuals

When high-coverage sequence data are available for
more than a single individual, opportunities exist for deriv-
ing genome-wide estimates of higher order moments of the
distribution of heterozygosity across sites. For example, the
joint analysis of the same sites in two individuals is concep-
tually analogous to the procedure outlined above for pairs
of sites within an individual. In this case, however, D is
equivalent to the correlation of heterozygosity within sites.
Because the covariance within sites is equal to the variance
among sites (a general feature of variance components;

Lynch and Walsh 1998), the variance of heterozygosity
among sites is estimated by D̂p̂ð1� p̂Þ: This interpretation
can be arrived at by noting that the expected frequencies of
doubly homozygous, doubly heterozygous, and homozygous/
heterozygous pairs of genotypes are, respectively, equal to

ð1� 2�pþ��
p2Þ, ��p2, and 2ð�p���

p2Þ where �p
2
is the mean

squared site-specific heterozygosity (i.e., the second mo-
ment of p). Setting these expressions equal to the respective
three terms in brackets in equation (8a) demonstrates that
D̂p̂ð1� p̂Þ5��

p2��p2 is an estimate of the variance of het-
erozygosity among sites.

Likewise, extension of equations (8)–(12) to three in-
dividuals to account for single, double, and triple heterozy-
gotes would yield an estimate of the third moment of p, that
is,

��
p3, providing information on the skewness of heterozy-

gosity. By generating an estimate of the fourth moment of
p, a four-individual analysis would yield insight into the
kurtosis of the distribution of p across loci.

Mutation-Rate Estimation

Because of the rarity of new mutations and the past
reliance on reporter constructs of uncertain sensitivity,
the rate at which mutations arise at the nucleotide level
and the spectra of their effects are among the most poorly
understood genetic features of most organisms. However,
with the feasibility of sequencing entire genomes from
individuals of known relationship, rapid progress in
this area is now possible (Lynch et. al 2008). In the follow-
ing, we will assume a classically designed mutation–
accumulation (MA) experiment, whereby multiple lines
with initially identical genomes are passed through sin-
gle-individual bottlenecks each generation. Such treatment
eliminates the power of selection to remove anything other
than mutations causing complete sterility or lethality
(Lynch and Walsh 1998), which themselves generally con-
stitute no more than ;1% of all mutations. It will be

‘
�
na1; na2; na3; na4; nb1; nb2; nb3; nb4

�
5

h
ð1 � pÞ2 þDp

�
1 � p

�i
‘1a‘1b þ

h
p2 þ Dp

�
1 � p

�i
‘2a‘2b

þ
h
p
�
1 � p

��
1 � D

�i�
‘1a‘2b þ ‘1b‘2a

�
; ð11Þ
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assumed that the lines are either haploid (e.g., yeast and
a number of other microbial organisms) or habitually
self-fertilizing (as is possible with the nematode Caeno-
rhabditis elegans, many plants, and ciliates undergoing reg-
ular autogamy). This simplifies the analysis as segregating
(heterozygous) mutations can essentially be ignored pro-
vided the timescale of the experiment is at least several doz-
ens of generations. For example, under self-fertilization, the
mean time to loss of heterozygosity for a locus bearing
a new mutation is just two generations. However, the meth-
ods presented below can be readily modified to allow for
transient phases of heterozygosity for mutations en route
to fixation/loss; for example, in full-sib mated lines, as well
as for clonal diploids in which new mutations are essen-
tially permanently heterozygous.

A likelihood framework is adhered to here, as it has
been shown above that the ML method is far superior to
the MM method in estimating low variation levels (which
will almost always be the situation in MA experiments).
Focusing on base substitutions only, we will assume that
the genome-wide usages of the four nucleotides are essen-
tially knownwithout error, again designating them as p1, p2,
p3, and p4 for nucleotides A, C, G, and T, respectively. The
likelihood of any configuration of observed data across L
sequenced lines is a function of the mutation rate per site
per generation (u), the number of generations of MA for
each line (Tk for the kth line), and the error frequency
(e). Here, we will assume that no more than a single line
carries a mutation at a particular site, which is quite reason-
able because u�TL will almost always be� 1 in an MA ex-
periment extending for fewer than 10,000 or so generations.

Under the above assumptions, the likelihood of the
observed data for a particular configuration of reads can
be partitioned into two components: the likelihoods condi-
tional on there being no mutation or there being a single
mutation in a single line at the site. The joint likelihood
of the data under the first condition is

‘1 5
X4
i5 1

pi
YL
k5 1

bðnk � nki; nk; eÞð1 � uÞTk ; ð13aÞ

where b(nk � nki;nk, e) is the binomial probability that line
k has (nk � nki) sequence errors conditional on the line ac-
tually carrying nucleotide i and ð1� uÞTk is the probability
that the line is nonmutant at the site. This likelihood is
weighted over the full spectrum of possible nucleotides
at the site, as we assume that the ancestral state of the site
is not known at the outset. The likelihood of the observed
data conditional on a mutation having occurred is

‘2 5
X4
i5 1

X4

j 6¼i

Pði/jÞ
XL
k5 1

bðnk � nkj; nk; eÞ

�
h
1 � ð1 � uÞTk

i YL

h51

h�k

bðnh � nhi; nh; eÞð1 � uÞTh ;

ð13bÞ
where Pði/jÞ is the probability that a mutation is of type
i/j: Assuming mutation types are simply proportional to
genome-wide nucleotide usage, then P

�
i/j

�
5pipj=S;

where S51�
P4

i51 p
2
i is the normalization constant to

ensure that the probabilities of the 12 mutation types
sum to one.

Denoting the four-element arrays of nucleotide counts
for each line at the site as n1, . . ., nL, the total log likelihood
(summed over all sites) is

L
�
u; e

�
5

X
N
�
n1; . . . ; nL

�
� ln

h
‘1

�
n1; . . . ; nL

�

þ ‘2

�
n1; . . . ; nL

�i
; ð14Þ

where N(n1, . . ., nL) is the number of sites observed with
configuration (n1, . . ., nL) (a 4L-element array). The ML

FIG. 3.—Sampling standard deviations associated with estimates of
the disequilibrium coefficient D. Symbols refer to results obtained by
stochastic simulations assuming 100,000 sites, with 2,500 replications
performed for each condition with the MM method and 250–500 with the
ML method. Curved lines without points in the upper panel give the
results from the large sample–variance approximation for the MM
estimates, equation (10b); and horizontal lines give the first-order high-
coverage approximation, equation (10c). In both these latter cases, solid
and dotted lines refer to situations with D 5 0.1 and 0.01, respectively.
To ease the comparison of results, the dotted lines are repeated in the
lower panel. The assumed error rate is e 5 0.001.
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estimates û and ê are obtained by evaluating L(u, e) over the
full range of feasible mutation rates and error frequencies,
searching for the pair that maximizes the likelihood of the
data. Following the logic outlined above for D̂, evaluation
of the likelihood ratio statistic around û can be used to con-
struct upper and lower confidence limits for the estimate.

Ascertainment of the Mutational Spectrum from
Consensus Sequences

With experiments extending for at least a few hundred
generations and genomes of moderate size, several hundreds
to thousands of mutations can be expected to be harbored in
any particular MA line, raising the possibility of estimating
the full molecular spectrum of spontaneously arising muta-
tions (including their contextual settings). A straightforward
way to identify putative mutations, for further validation by
conventional follow-up sequencing, is to determine whether
the consensus sequence at a site in a particular focal line
deviates from the consensus for the pooled sample from
the remaining lines. The existence of a consensus sequence
requires that the majority of the base calls at a nucleotide site
be of the same type, for example, for a 5�-covered site, ei-
ther three to five base calls must be of the same type or in the
very rare occasion in which just two are of the same type, the
remaining three must be different from each other. For a rea-
sonable degree of reliability, this approach requires at least
two reads in the focal and control samples.

The probability of incorrectly inferring a mutation by
this approach (the probability of a false positive) is a function
of the error frequency, here assumed to be available from the
ML analysis noted above. A false positive can arise when
read errors at either the focal line or the composite control
lead to a false-consensus sequence. Letting b(x;n, r) denote
the binomial probability of x errors in n reads within a line
given an error frequency of r, the probability of a false-con-
sensus sequence for a line with two reads at a site is

pfc
�
2
�
5 3b

�
2; 2; e

�
3
�
: ð15aÞ

This follows from the fact that with a sample size of
only two, a false consensus arises only when both reads er-
roneously converge to the same base (three possible bases
can be converged on, with the error rate to any particular
base being e/3 under the assumption of randomly distrib-
uted error types). For all odd values of n,

pfcðnÞ5 3
Xðn� 1Þ=2

i5 0

bðn � i; n; e=3Þ; ð15bÞ

whereas for all other even values of n,

pfcðnÞ5 3bðn=2; n; e=3Þ½1 � 2bðn=2; n=2; e=3Þ

� bð0; n=2; 2e=3Þ� þ 3
Xðn=2Þ� 1

i5 0

bðn � i; n; e=3Þ;

ð15cÞ

The extra leading term in equation (15c) accounts for
the probability that with even coverage, a false consensus

can arise when half of the reads converge on the same error
and the remaining half contains at least two different read
types. Denoting the numbers of reads for the focal line
and the composite control as nf and nc, respectively, the
probability of a false-positive mutation at the site in the
focal line is

pfp
�
nf ; nc

�
5 pfc

�
nf
�
þ pfc

�
nc
�
: ð16Þ

The probability of a false negative at a site (i.e., the
probability of failing to reveal a true mutation), pfn, is sim-
ply pfp/3 as this requires that errors cause either the consen-
sus sequence for mutant line itself to converge back to the
ancestral state or the composite control to converge on the
mutant state, both of which can only occur by one specific
mutation.

For nf 5 2, the false-positive rate is quite unrespon-
sive with respect to the sample size for the control, as almost
all false consensuses reside in the focal line (fig. 4). How-
ever, for all higher nf, there is a dramatic decline in pfp with
increasing nc, until an asymptotic lower value is reached
when nc is again large enough that virtually all false con-
sensuses are a consequence of errors in the focal line. These
results show that for moderate coverage and moderate error
rates (e 5 0.001 in the figure), the consensus-sequence ap-
proach yields very low false-positive rates (well below the
minimum expected mutation probability per site, ;10�9

times the number of experimental generations).
The false-consensus probability at a site is indepen-

dent of the specific reads actually perceived and is primarily
useful for experimental design purposes. However, using
Bayes theorem, with the control reads observed at a partic-
ular site as a reference, one can also compute the approx-
imate probability that the site carries a mutation in

FIG. 4.—Probability of a false-positive mutation call from a consen-
sus-sequence comparison, given as a function of the number of reads at
the site in the focal line and the composite control (the sum of the pooled
samples from the remaining L � 1 lines). The error rate (e) is assumed to
equal 0.001.

2416 Lynch



a particular focal line. The probability that a focal line is
fixed for nucleotide i is

pf ðijn1; n2; n3; n4Þ5
pi � pðn1; n2; n3; n4jiÞ
pðn1; n2; n3; n4Þ

; ð17Þ

where pi is again the genome-wide frequency of usage of
the ith nucleotide. Ignoring the multinomial coefficients,
which cancel out in the above expression,

pðn1; n2; n3; n4jiÞ5 ð1 � eÞniðe=3Þn� ni ; ð18aÞ

pðn1; n2; n3; n4Þ5
X4
j5 1

pj � ð1 � eÞnjðe=3Þn� nj ; ð18bÞ

where n 5 n1 þ n2 þ n3 þ n4. For the composite control,
based on the data from all but the focal line,

pcðDjiÞ5
YL

k 5 1

k � f

pkðn1; n2; n3; n4jiÞ; ð19aÞ

pcðDÞ5
X4
j5 1

pj
YL

k 5 1

k � f

pkðn1; n2; n3; n4jjÞ; ð19bÞ

where D refers to the full set of configurations across all
control lines. Applying equations (19a,b) to equation
(17), the probabilities that the composite control is fixed
for the alternative nucleotides are obtained. The approxi-
mate probability that the focal line carries a mutation at
the site is then

pm 5 1 �
X4
j5 1

pf ðjjn1; n2; n3; n4Þ � pcðjjDÞ; ð20Þ

Discussion

The preceding analyses demonstrate that despite the
uneven coverage and presence of sequence errors, accurate
information can be extracted from whole-genome analyses
of single diploid individuals. Neither arbitrary coverage
cutoffs nor external measures of the base call error rate
are necessary, or even desirable, to obtain meaningful es-
timates of average within-individual heterozygosity, link-
age disequilibrium among sites, or mutation rates. This
is an obviously preferred situation as the former can discard
substantial amounts of data and the latter can involve ex-
trapolations from extrinsic studies with uncertain justifica-
tion. There are, however, limitations to what can be
accomplished. In particular, completely unbiased estimates
of population-genetic parameters may not be possible at
very low coverages.

Any approach of the sort developed above does re-
quire that, prior to analysis, the investigator utilizes a rigor-
ous protocol for the alignment and concatenation of
individual sequence reads. As almost all genomes contain
small to moderate numbers of young duplicate genes as
well as numerous mobile elements, both of which can
mimic allelic variation, sequences at ambiguous paralogous

positions should be removed prior to analysis, and usual
practices of eliminating poorly resolved sequences should
be adhered to as well. Erroneous alignments may be partic-
ularly problematical for some of the recent sequencing
methodologies that generate short (,50 bp) reads, and
the identification of paralogs in poorly assembled genomes
might only be accomplished by adhering to high depth-of-
coverage cutoffs as indicators of problematical sites.
Nevertheless, it is notable that the influence of most remain-
ing sources of errors can be factored out in an unbiased
fashion with the MLmethods introduced above. Such back-
ground inaccuracies need not be confined to machine-read
errors but may include true sequences of somatic mutations,
errors incurred during sample storage or preparation, and
perhaps some misalignment errors. Whereas the methods
developed above might be refined by explicitly incorporat-
ing a quality score for each individual base read (Johnson
and Slatkin 2008), this would not eliminate the need to gen-
erate a separate error-rate estimate associated with all these
additional sources of uncertainty and may be unnecessary
for the types of analyses outlined herein.

The preceding approaches may be quite informative
with respect to patterns of molecular evolution when the
full collection of sites within a genome are partitioned into
various subcategories, for example, synonymous versus
nonsynonymous sites within coding regions, introns,
untranslated regions, and intergenic DNA. Individual chro-
mosomes may also be subdivided into segments for purpo-
ses of locating regions with unusually high or low levels of
nucleotide diversity or disequilibria, which may provide
insight into loci experiencing unusual patterns of purifying
or balancing selection or the indirect consequences of
selection on linked sites.

Such analyses should provide a potential basis for test-
ing a number of evolutionary hypotheses, while also yield-
ing measures of population-genetic parameters central to
our understanding of molecular and genomic evolution.
For example, under the assumption of neutrality and
drift–mutation equilibrium, the expected value of p for
a diploid population is h 5 12Neu/½3 þ 16Neu�, where
Ne is the effective population size and u is the mutation rate
per nucleotide site, assuming a symmetrical mutation model
(Kimura 1983). This expression is approximately twice the
ratio of the power of mutation to the power of random ge-
netic drift, 4Neu, provided 4Neu � 1 (a condition that is
essentially always met in multicellular species; Lynch
2007), an interpretation that applies even with unequal mu-
tation rates among nucleotides. In addition, the expected
equilibrium variance of nucleotide heterozygosity among

unlinked neutral sites is r2ðpÞ ’ hð3þ 2hÞ=9 (Tajima
1983). Thus, substitution of p̂ for h in the preceding formula
provides a means of testing whether the joint assumptions
of neutrality and mutation–drift equilibrium are met with
the set of sites used to estimate p. Although methods are
available for testing for neutrality among small to moderate
numbers of sites within individual loci (e.g., Tajima 1989a,
1989b; Fu and Li 1993), the above summary statistics may
prove useful in the genomics era where smaller numbers of
individuals but much larger numbers of sites are surveyed.
It should be realized, however, that the expression for r2(p)
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given above assumes that the vast majority of pairs of sites
in the region of analysis are unlinked. Modifications re-
quired for narrow regions with restricted recombination
are provided by Pluzhnikov and Donnelly (1996).

The preceding measure of the variance of heterozygos-
ity is equivalent to the ‘‘evolutionary variance,’’ estimated
by D̂p̂ð1� p̂Þ; in that it refers to stochastic variation in p
that develops among loci due to the vagaries of drift and
mutation. Such variation is distinct from the ‘‘sampling var-
iance’’ of p defined by design limitations, described above
as Varðp̂Þ; which is only a function of the number of sites
sampled within the focal individual and the read-error var-
iance. The expected value of the evolutionary coefficient
of variation of site-specific heterozygosities, estimated by

the square root of ½D̂ð1� p̂Þ=p̂�; is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
�
p
��

h2
q

’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 2hÞ=ð9hÞ

p
; which is closely approximated by

(3h)�1/2 when h , 0.05.
A reparameterization of the model outlined above for

the correlation of zygosity also yields useful insight into the
relative power of recombination and random genetic drift,
assuming the sites involved are not under direct selection.
Letting AB, Ab, aB, and ab denote the four alternative ga-
metic states at two linked loci, their expected frequencies
are conventionally expressed as pApB þ D, pApb � D,
papB � D, and papb þ D, where the terms involving p de-
note allele frequencies within loci andD is the coefficient of
linkage disequilibrium. For random pairs of loci taken over
the entire genome, the expected value ofD is zero as half of
the disequilibria are expected to be positive and the other
half negative. However, the expected value of D2 is equiv-
alent to Dp(1 � p)/4 in the two-site model outlined above.

An estimate of the average value of D2 over sites, D̂
2
, is

then given by D̂p̂ð1� p̂Þ=4:
This rescaling is useful in the context of understanding

the forces driving linkage disequilibrium because the ex-
pected value of D2 for pairs of neutral sites under muta-
tion–drift equilibrium is

E
�
D2

�
5M

�
10 þ q þ 4h

�
; ð20Þ

where h 5 4Neu, M 5 h2/½(h þ 1)(18 þ 13q þ 54h2 þ
q2 þ 19qh þ 40h2 þ 6qh2 þ 8h)�, q 5 4Nec, and c is
the rate of recombination between sites (Hill 1975). Thus, pro-
vided the sites involved are neutral and in equilibrium, given
estimates of p (as an estimator or h) and D2, an estimate of
q can be obtained by solving the preceding equation. Such
estimates may be obtained for sets of nucleotide pairs sepa-
rated by a range of physical distances (e.g., 0, 1, 2, etc., sites
apart). A regression of these estimates on physical distance
will then reveal the degree to which the rate of recombination
increases with physical distance, with the estimated value for
adjacent sites providing a measure of twice the power of
recombination per site relative to the power of drift (4Nc0),
where c0 denotes the recombination rate between adjacent
sites. With the substantial data available from whole-genome-
sequencing projects, this approach may provide a viable alter-
native to the current methods for estimating q from population
samples of narrow genomic regions (Wall 2000; Stumpf and
McVean 2003).

It should be noted that none of the above approaches
involve the use of preexisting sequences from a reference
strain, which will often be available for well-studied spe-
cies. In principle, a reference sequence can provide a useful
scaffold for assembling a new collection of shotgun se-
quence, and some reference strains themselves may provide
useful information on average heterozygosity and linkage
disequilibrium, provided they themselves were not subject
to intentional inbreeding. However, reference strains will
typically contain some sequencing errors, with rates devi-
ating from those in a downstream study, and most species
contain considerable numbers of presence/absence poly-
morphisms for young duplicate genes and mobile elements
(Lynch 2007), which will complicate their complete elim-
ination from novel genomes with incomplete assemblies.
Thus, the application of reference sequences to studies of
natural variation should be approached with caution.

Finally, although the methods developed above, par-
ticularly those involving the ML approach, appear to pro-
vide a solid basis for the analysis of high-throughput
genomic data, there is still room for considerable expansion
of these methods, just four of which are noted here. First,
the assumption of homogeneous error rates can be relaxed
by incorporating into the likelihood functions multiple
terms for alternative nucleotide changes. Second, additional
complexity can also be incorporated into the estimation of
heterozygosity and/or mutation rates by distinguishing al-
ternative types of heterozygotes (e.g., transitions vs. trans-
versions). The utility of both these modifications can be
evaluated by testing for the significance of the model fit
by using conventional likelihood ratio test statistics. Third,
the estimators for linkage disequilibrium might be substan-
tially improved by taking into consideration the phase in-
formation that exists when sites have been recorded within
the same read fragments. Finally, as data become available
for large numbers of individuals within populations, it will
be possible to go beyond summary statistics such as p to
refined estimates of allele frequencies at individual nucle-
otide sites. Ordinarily, when it is assumed that records are
error free, the estimation of allele frequencies is a straight-
forward exercise (Weir 1996), but the incursion of errors
into high-throughput (but low coverage) sequencing sur-
veys will introduce new challenges, particularly for low-
frequency (and normally highly informative) alleles.
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