

NIH Public Access

Author Manuscript

Hum Immunol. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:

Hum Immunol. 2009 September ; 70(9): 711–721. doi:10.1016/j.humimm.2009.06.004.

Genome-wide screening of human T-cell epitopes in influenza A virus reveals a broad-spectrum of CD4+ T cell responses to internal proteins, hemagglutinins and neuraminidases

Jenny Aurielle B. Babon, John Cruz, Laura Orphin, Pamela Pazoles, Mary Dawn T. Co, Francis A. Ennis, and Masanori Terajima

Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

Abstract

We performed a genome-wide screening for T cell epitopes using synthetic peptides that encompass all of the influenza A viral proteins, including subtype variants for hemagglutinin (HA) (H1, H3 and H5) and neuraminidase (NA) (human and avian N1 and N2) proteins, based on the sequence information of recently circulating strains. We found a total of 83 peptides, 54 of them novel, to which specific T cells were detectable in IFN- γ ELISPOT assays using peripheral blood mononuclear cells from four healthy adult donors. The surface glycoproteins, HA and NA, major components of vaccines, had many T cell epitopes. HA and matrix protein 1 had more T cell epitopes than other viral proteins, most of which were recognized by CD4⁺ T cells. We established several cytotoxic CD4⁺ T cell lines from these donors. We also analyzed H1 and H3 HA-specific T cell responses using the peripheral blood mononuclear cells of 30 hospital workers. 53% of donors gave a positive response to H3 HA peptides, while 17% gave a positive response to H1 HA peptides. Our genomewide screening is useful in identifying T cell epitopes and complementary to the approach based on the predicted binding peptides to well-studied HLA-A, B and DR alleles.

Keywords

Human T cell epitopes; influenza A virus; CD4⁺ T cells; T cell epitope screening; hemagglutinin

INTRODUCTION

Human influenza is a contagious respiratory disease that results in substantial morbidity and mortality worldwide. With the recent cases of avian influenza infection in humans [1] and the heightened concern for an influenza pandemic [2], it is essential to understand host responses that would confer protective immunity to influenza. It is also important to generate influenza vaccines that can induce heterosubtypic immunity, which may in part be mediated by CD8⁺ and CD4⁺ T cells. A re-analysis of the archival records from the Cleveland Family Study,

^{© 2009} American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Correspondent footnote: Masanori Terajima, Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. Phone: (508) 856-2886, Fax: (508) 856-4890, Masanori.Terajima@umassmed.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

which was conducted before and during the 1957 pandemic when a shift from subtype H1N1 to H2N2 occurred, suggested an impact of accumulated heterosubtypic immunity in adults [3]. In addition, measures of the *ex vivo* cellular immune response to influenza in vaccinated older subjects correlated with protection against influenza while serum antibody responses had a limitation as a sole measure of vaccine efficacy [4]. Thus, understanding the roles of cell-mediated immune responses to influenza virus and evaluating the efficacy of influenza vaccines in humans require insight into the specificity and diversity of T cell epitopes elicited upon infection and upon vaccination.

In humans, the CD8⁺ and CD4⁺ T cell responses to influenza have not been fully elucidated. Earlier studies to identify T cell epitopes to influenza have found nucleoprotein (NP) and matrix protein 1 (M1) as the major antigens for CD8⁺ T cells [5-7] and the hemagglutinin (HA) for CD4⁺ T cells [7]. We [8,9] and others [10-13] showed that human memory cytotoxic T lymphocyte (CTL) responses to influenza A virus are broadly directed to epitopes on a wide variety of viral proteins. We previously established influenza A-specific CTL lines from healthy volunteers and identified epitopes using recombinant vaccinia viruses that expressed influenza A virus proteins. We then used synthetic peptides based on the amino acid sequences of the influenza viral proteins that were recognized by the CTL lines. Other groups synthesized peptides based on epitope prediction algorithms to several common human leukocyte antigen (HLA) molecules and screened them by peptide binding assays, and the peptides which bound with high enough affinity to a given HLA molecule were screened in HLA-transgenic mice splenocytes or with human peripheral blood mononuclear cells (PBMCs) [11-13]. Wang et al. [12] screened for influenza epitopes by focusing on well-conserved peptide sequences among influenza A H1N1 strains and, as a result, most of HA peptides were excluded. Utilization of epitope prediction algorithms may bias the screening since it precludes atypical but potentially important epitopes because of their poor binding scores. Additionally, we [8,9] and Gianfrani et al. [11] both utilized the sequences of the A/Puerto Rico/8/34 (H1N1) strain (A/PR/8), which was isolated more than 70 years ago and is not a circulating strain. Therefore, all of the above approaches were designed to identify highly conserved epitopes in viral internal proteins. As a result, we may have underestimated the CTL responses to the HA as well as the neuraminidase (NA), another surface glycoprotein which also undergoes antigenic drift.

In the present study, we performed an epitope screening approach using synthetic peptides that encompass all of the influenza A viral proteins based on sequence information from recently circulating influenza strains. Our peptide arrays include subtype variants for HA (H1, H3 and H5) and NA (human and avian N1 and N2) proteins. We screened these peptides using PBMCs from healthy adult volunteers without *in vitro* amplification of influenza A-specific T cells. Our genome-wide epitope screening confirmed a broad T cell response to influenza that was directed to several viral proteins. HA and M1 had more T cell epitopes than other viral proteins. We also detected cross-reactive T cell responses to H5 HA peptides in healthy humans who were unlikely to have been exposed to H5N1 viruses.

MATERIAL AND METHODS

Influenza A peptides and control peptides

17-mer peptides overlapping by 11-12 amino acids encompassing the entire sequence of all influenza viral proteins were obtained from the National Institutes of Health (NIH) Biodefense and Emerging Infections Research Resources Repository (BEI Resources) (Table 1). The length of the peptides was a debated compromise in an effort to detect most CD4⁺ and CD8⁺ T cell epitopes at a reasonable cost. The amino acid sequences of these peptides were based on the recent vaccine strains of influenza viruses A (H1N1) and (H3N2) (or an antigenically indistinguishable strain from the vaccine strain, when the amino acid sequences of the proteins were not available for the vaccine strain) and recent isolates of influenza virus A (H5N1).

Because of considerable difference between avian and human N1 NA amino acid sequences, peptides sets for both neuraminidases were synthesized. Polymerase B1-F2 peptides of both strains were also synthesized because of differences between H1N1 and H3N2 strains. Peptide arrays of control peptides for known major histocompatibility complex (MHC) Class I and II epitopes of Influenza A viruses were also provided by BEI Resources. Lyophilized peptides were reconstituted by dissolving in 100% dimethyl sulfoxide (DMSO) at a concentration of 10 mg/ml per peptide. The CEF peptide pool was obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, the National Institute of Allergy and Infectious Diseases (NIAID), NIH [14] and was used as a positive control. It contains MHC class I-restricted human T cell epitope peptides of Cytomegalovirus, Epstein-Barr virus and Influenza A virus at 2 μ g/ml per peptide. Other peptides described in this paper were synthesized by AnaSpec, Inc. (San Jose, CA).

Study subjects

Blood samples were obtained from four healthy adults and PBMC were purified by Ficoll-Hypaque density gradient centrifugation as previously described [15]. The donors were chosen based on the availability of PBMC for large scale screening and their reactivity to the influenza peptides in the CEF peptide pool in enzyme-linked immunosorbent spot (ELISPOT) assays that had been previously performed. Donors 1, 3 and 4 received influenza vaccine almost every year. Donor 2 never received any influenza vaccine. None of these four donors had a history of laboratory-confirmed influenza infection. The HLA alleles of donor 1 are A2, A24, B7, B62, Cw3, DP2, DQw5, DQw6, DRB1*0103, and DRB1*1501; Donor 2 has the HLA alleles A1, B8, B44, Cw5, DQw1, DQw2, DR2, DR3, and DRw52; Donor 3 has A1, A24, B35, Cw04, DRB1*11 and DRB1*13; Donor 4 has A30, A31, B13, B51, DRB1*07 and DRB1*13. Additional screening of the HA (H1 and H3) was done using PBMC from 30 healthy hospital workers, whose HLA-A, -B, and -DR typing were described previously [16]. HLA-typing for donors 1 and 2 was determined by the HLA Typing Laboratory at the University of Massachusetts Medical Center, and the HLA-typing for donor 3 and 4, and the 30 vaccinated donors was determined by the HLA Core Facility of the Center for Infectious Diseases and Vaccine Research at the University of Massachusetts Medical School.

Peptide screening

In our preliminary experiments, we detected IFN-\gamma-producing cells to the M158-66 in a pool with 15 non-overlapping peptides using donor 1 PBMC by ELISPOT assays. The number of IFN- γ -producing cells did not differ significantly if we used 5, 10 or 15 non-overlapping peptides in a pool, but decreased if we used peptides that overlapped with the peptide M158-66 (data not shown). Therefore, we made peptide pools that contained 15 non-overlapping peptides and made two sets of peptide pools to facilitate the peptide screening. The first set of peptide pools contains all peptides of the surface glycoproteins of H1, H3 and H5 HA, and avian N1 (aN1) and human N1 (hN1) and N2 NA. This set of peptide pools consists of 33 pools; Pool 1-6 contain H1 HA peptides, Pool 7-12 contain H3 HA peptides, Pool 13-18 contain H5 HA peptides, Pool 19-23 contain hN1 NA peptides, Pool 24-28 contain aN1 NA peptides, and Pool 29-33 contain N2 NA peptides. The second set of peptide pools consists of 38 pools and included all peptides of the internal viral proteins: NP and nonstructural protein 1 (NS1) (Pool 1-8), M1 and nonstructural protein 2 (NS2) (Pool 9-12), polymerase A (PA) and matrix protein 2 (M2) (Pool 13-21), and polymerase B1 (PB1) and polymerase B2 (PB2) (Pool 22-38). Three additional peptide pools were also made. These contained PB1-F2 peptides and H5 HA peptides representative of regions of amino acid sequence diversity among different strains of H5N1 viruses. Donor PBMC was tested against the influenza A peptide pools in ELISPOT. The cut-off value for a positive response in ELISPOT was 20 SFC per 10^6 cells for donors 1. 2 and 4. This value was determined by the average spot forming cells (SFC) per 10^6 cells greater than 3 standard deviations of the negative control wells. The PBMC of donor 3 had

higher media background than did the other PBMC and the cut-off value for a positive response in this donor was 37 SFC/10⁶. Peptide pools that had SFC values equal to or greater than the determined cut-off for each donor were then deconvoluted to identify the individual peptide/s eliciting the IFN- γ response. A final peptide concentration of 2µg/ml for each peptide was used in all ELISPOT assays.

IFN-γ ELISPOT assay

ELISPOT assays were done as previously described [8]. Briefly, cryopreserved PBMC $(2-2.5\times10^6 \text{ cells per well})$ were seeded onto polyvinylidene difluoride membrane 96-well plates (Millipore, Bedford, MA) precoated with 5 µg/ml anti-IFN- γ mAb (clone D1K; Mabtech, Cincinnati, OH) in the presence or absence of peptide or peptide pools. Phytohemagglutinin (PHA) (Sigma-Aldrich, St. Louis, MO) (1:100), CEF peptide pool and/or virus were used as positive controls. After 18-24 hr incubation, cells were removed by washing with PBS plus 0.05% Tween 20. Secondary biotinylated anti-IFN- γ mAb (clone 7-B6-1; Mabtech) was added at 2 µg/ml and the plates were incubated for 2 hours at room temperature. Plates were washed again and IFN- γ was detected with avidin-peroxidase (3420-2H, Mabtech) and substrate kit (NovaRed, Vector Laboratories, Burlingame, CA). The frequency of IFN- γ producing cells was determined by using the ImmunoSpot® S4 Pro Analyzer and the ImmunoSpot® Academic V.4 Software (Cellular Technologies Ltd.). Experiments were performed in triplicate wells.

CD4⁺ or CD8⁺ T cells depletion of PBMC

CD4 or CD8 expressing cell populations were depleted from PBMC by negative selection using anti-CD4 or anti-CD8 antibody-coated magnetic beads from the MACS purification system (Miltenyi Biotec, Bergisch Gladbach, Germany) and were processed according to the manufacturer's protocol. Depleted PBMC were used in ELISPOT to determine the cell population producing IFN- γ .

Preparation of antigen presenting cells (APCs) for ⁵¹Cr release assays and ICS

For virus-infected targets, autologous B lymphoblastoid cell lines (BLCL) were established by culturing with Epstein-Barr virus in 24 well plates as previously described previously [17]. BLCL target cells were infected with either of the following egg-adapted virus strains -A/New Caledonia/20/1999 IVR-66 or A/Wisconsin/67/2005X-161B. These virus strains were a gift from Dr. Michel DeWilde and Dr. Robert Ryall of Sanofi Pasteur. The optimal concentrations of the two strains were determined in preliminary experiments. Infected cells were incubated for 18 hours at 37°C. Virus-infected target cells were then radiolabeled for use in ⁵¹Cr release assays or used as APCs in ICS. Peptide-pulsed targets were prepared using autologous BLCLs that were either radiolabeled for one hour *in* CTL assays *or* used directly in ICS assays. Peptide is then added to the cells at a final concentration of 10 µg/ml per peptide, unless indicated otherwise.

⁵¹Cr release assay

T cell lines or bulk culture effector cells were added to 1.5×10^{3} ⁵¹Cr-labeled target cells at various effector to target (E:T) ratios [8]. After incubating for 4-6 hours at 37°C, supernatants were harvested (Skatron Instruments, Sterling, VA), and specific lysis was calculated as [(experimental release - spontaneous release)/(maximum release - spontaneous release)] × 100. All assays were performed in triplicates. Unpulsed target cells were used as negative control. Spontaneous lysis was <30% in all assays.

ICS and flow cytometry analysis

Bulk culture effector cells were washed and resuspended at 5×10^5 cells in RPMI-1640 medium supplemented with 10% FBS (RPMI-10). Autologous BLCLs were used as APCs at an E:T

ratio of 10 and were added to the effector cells, together with the peptide of interest at 10µg/ml. These were incubated for 1 h at 37°C in a 5% CO₂ incubator, followed by an additional 5 h in the presence of Golgi Plug (BD Biosciences, San Jose, CA). The cells were then washed with FACS buffer (2% FBS and 0.1% sodium azide in PBS) and stained using the Live/Dead Aqua Fixable Dead Cell Stain Kit (Invitrogen, Eugene, OR) to identify live and dead cells. Cells were then stained for surface markers such as CD3-PerCPCy5.5, CD8-FITC, CD4-APC or -Pacific Blue (BD Biosciences) for 30 min at 4°C. After washing with FACS buffer, the cells were fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences), and stained for the intracellular cytokine IFN- γ (PE-conjugate; BD Biosciences) for 30 min at 4°C. Cells were then washed with Permwash buffer (BD Biosciences) and resuspended in Cytofix (BD Biosciences) for flow cytometric analysis. Multiparameter flow cytometric analyses were performed using a FACSCalibur or ARIA flow cytometer. The number of events collected per donor varied from 150,000 to 300,000. List-mode data files were analyzed using FlowJo (Version 6.3, TreeStar 6 Inc., Ashland, *CA*). Graphs were plotted as dot plots of CD4⁺ vs. CD8⁺ T cells in the gated live, CD3⁺ IFN- γ^+ cell population.

Generation of bulk culture T cell lines and clones

To generate peptide-specific bulk culture lines, PBMC (3 to 5×10^6 cells) were washed and resuspended in 2 ml of AIM/V-10% FBS supplemented with 1:100 sodium pyruvate (Gibco) and 1:1000 2-Mercaptoethanol (Gibco). The corresponding influenza peptide was added at a final concentration of 10 µg/ml. Human rIL-7 (Peprotech, Inc., Rockyhill, NJ) was also added to the culture (5ng/ml) and incubated at 37°C. On Day 3, human rIL-2 (BD Discovery Labware, Bedford, MA) (25-50 U/ml) was applied, and the medium was replenished with AIM/V-10% FBS and rIL-2 every three to four days. Bulk culture ⁵¹Cr release assays were done between days 10 and 13 of culture. The cultures were restimulated once with autologous PBMC on day 14 to reduce non-specific background lysis and to generate enough cells for the assays.

To establish influenza A-specific T cell clones, a limiting dilution assay (LDA) was done as previously described [8]. Briefly, PBMC which had been stimulated in bulk culture for 14 days were plated at a concentration of 1, 3, 10, or 30 cells per well in 96-well round-bottom microtiter plates in 50 μ l of AIM-V medium containing 10% FBS, 25 U of IL-2, a 1:1,000 dilution of anti-CD3 monoclonal antibody 12F6 (gift from Dr. Johnson Wong), and 1×10⁵ gamma-irradiated (3500 rads) allogeneic PBMC/well. On day 7, 50 μ l of fresh AIM-V medium with FBS and IL-2 were added, and on day 14, fresh medium with 1×10⁵ gamma-irradiated allogeneic PBMC/well and a 1:1,000 dilution of the anti-CD3 12F6 were added. The cells were assayed for cytolytic activity using ⁵¹Cr assays between days 21-28. Cells from wells with influenza A peptide-specific cytolytic activity (specific killing of 15% and above at a peptide concentration of 10 μ g/ml) were expanded to 48-well plates.

RESULTS

The PBMC of donor 1 had a broad IFN-γ response to peptide-epitopes on several influenza A proteins

We used ELISPOT assays to quantitate the number of IFN- γ -producing cells in donor PBMC that are specific for the influenza A viral proteins. This method of screening for T cell epitopes directed to viral proteins had been used with much success (reviewed in [18]), and in particular with vaccinia virus [19]. Donor 1 is HLA-A2-positive and was known to have T cells specific to M1₅₈₋₆₆, which is considered an immunodominant epitope [20], when responses to the CEF peptide pool were analyzed (data not shown).

The PBMC of donor 1 were broadly reactive to peptide pools from several influenza proteins as shown by the IFN- γ responses to peptide pools containing HA peptides (Fig. 1A; Pool 1, 7,

8, 10, 11, 15, 18), NA peptides (Fig. 1A; Pool 29, 30), NP peptides and NS1 peptides (Fig. 1C; Pool 2, 4, 5, 6, 8), M1 and NS2 peptides (Fig. 1C; Pool 9, 10, 11, 12), PA peptides (Fig. 1C: Pool 20) and PB1 and PB2 peptides (Fig. 1C; Pool 22). IFN-γ responses to individual peptides from positive pools containing H3 HA and M1 peptides are shown in Fig. 1B and 1D respectively. In addition, donor 1 had positive responses to two pools containing PB1-F2 and H5 HA variant peptides (data not shown). We also detected several IFN-γ responses to H3 but not to H1. For the internal proteins, the majority of responses were seen in pools containing M1, NP, NS1 and NS2 peptides. The pool that contained the peptide with the HLA-A2restricted M1 epitope M158-66 (Fig. 1C; Pool 10) had the highest SFC value among all the peptide pools. The sum of the number of IFN-y-producing cells responding to these positive peptides was 1108, which is 90.7 % of the number of IFN- γ -producing cells responding to live influenza virus stimulation (1221 SFC/10⁶ for H1N1 and 1219 SFC/10⁶ for H3N2) (Table 2). We also performed intracellular cytokine staining (ICS) to determine the cells producing IFN- γ in response to live influenza virus-stimulation for both H1N1 and H3N2 using donor 1 PBMC. In this donor's PBMC, ~96% of IFN- γ -producing cells responding to influenza virus were either CD4⁺ or CD8⁺ (with values ranging from 10-30 % CD4⁺ and 67-88 % CD8⁺ depending on the virus strain used to stimulate, data not shown).

IFN-y responses to influenza A proteins in three other healthy adults

We selected three additional donors based on the availability of PBMC for large scale screening and their previous reactivity to the influenza peptides in the CEF peptide pool in ELISPOT assays (data not shown). All three of these donors responded to peptides from several influenza A viral proteins (Fig. 2). The PBMC of Donor 2 had less reactivity to influenza peptides with responses to only 4 peptides (Fig. 2, *black* box).

On average, the four donors' PBMC responded to 21 different peptides from 9 different viral proteins, including H3 and H5 HA. Responses to H3 and H5 HA were comparable, with SFC values ranging from 20 to 60 SFC per 10⁶ cells. Table 2 lists the sum of the number of IFN- γ -producing cells responding to these positive peptides for donors 2, 3 and 4 as well as the SFC values for live virus stimulation of these donors' PBMC. The sum of the responses after stimulation with a complete set of the viral peptides is comparable to that of live virus stimulation in ELISPOT assays. Results of our ELISPOT screening using PBMC from the four donors are summarized in Table 3. Most of these peptides do not contain known epitope sequence (underlined in Table 3) based on our search using the Immune Epitope Database (IEDB) (www.immuneepitope.org) [21,22]. We considered a peptide sequence to be a potential novel epitope if there was no record that the peptide sequence associated with positive T cell data in the IEDB. When we searched the IEDB, we considered both the amino acid sequence of the 17-mer peptide and the corresponding HLA allele of the donor's PBMC that responded. Some of the peptides we identified have a record of some positive T cell data in IEDB, but were not fully characterized as to their HLA restriction or minimal epitopes (indicated in Table 3). About 60% of these peptides gave "moderate" IFN- γ responses, compared to the number of IFN-y-producing cells responding to the "immunodominant" HLA-A2-restricted M158-66 epitope (Fig. 3).

Determining phenotype of IFN-y producing cells by depletion

To determine the T cell population that produced IFN- γ after peptide stimulation, we depleted CD4 or CD8 cells from the donors' PBMC. We then performed ELISPOT using the peptide of interest to stimulate the CD4 or CD8 depleted cells. Peptides that had SFC values greater than 60 in Table 3 were first analyzed to ensure that there are enough peptide-specific precursor cells. Majority of the IFN- γ producing cells that responded to the peptides in ELISPOT were CD4⁺ cells, given by a drastic decrease in SFC values when CD4-expressing cells are depleted from whole PBMC (Table 4). For the other candidate peptides, bulk culture cell lines using

donor PBMC were set-up and ICS was performed on days 12-14 to determine the phenotype of the IFN- γ producing cells. Figure 4 shows representative FACS plots determining the phenotype of IFN- γ producing cells from peptide-stimulated bulk culture using donor 3 PBMC. More than 80% of IFN- γ producing T cells expressed the CD4 surface marker upon cognate peptide stimulation in ICS (Figure 4). A complete list of candidate peptides tested by either ELISPOT or ICS is given in Table 3.

IFN-y responses to HA proteins using additional source of PBMC

Since we detected HA-specific T cell responses in the first four donors and there was no wellcharacterized CD8⁺ T cells epitope, we decided to analyze HA-specific T cell responses using the PBMC of 30 hospital workers. The same ELISPOT strategy was used to screen these donors' PBMC. Only H1 HA and H3 HA peptides were screened because of the limited number of PBMC available from these donors (Table 5). Sixteen of 30 donors (53.3%) gave a positive response to H3 HA peptides, and five of 30 donors (16.7%) gave a positive response to H1 HA peptides.

Peptide-specific CD4⁺ T cell lines produce IFN-γ upon cognate peptide stimulation

We generated bulk culture lines by stimulating donor PBMC with peptides of interest to further characterize the peptide-specific responses we identified in our ELISPOT screening. We selected peptides that potentially contain novel epitopes by searching MHC class I and class II binding motifs within the peptides by two prediction algorithms, HLA Peptide Binding Predictions (http://www-bimas.cit.nih.gov/molbio/hla_bind/) [23] and SYFPEITHI (http://www.syfpeithi.de) [24]. After two weeks in culture, peptide-stimulated bulk culture lines that had specific CTL killing of $\geq 15\%$ in ⁵¹Cr release assays (E:T ratios of 10, 30 and 90 were tested) were used in a limiting dilution set-up to generate peptide-specific T cell lines. We generated T cell lines that are specific to peptides H3 HA₂₆₇₋₂₈₃, H3 HA₃₅₀₋₃₆₆, M1₂₀₅₋₂₂₁, and M1₉₁₋₁₀₇, as well as to known T-cell epitopes contained in peptides H3 HA321-337 (PRYVKQNTLKLAT, HA322-334) restricted by HLA-DR1 and M155-71 (GILGFVFTL, M1₅₈₋₆₆) restricted by HLA-A2. A ⁵¹Cr release assay was performed to determine the ability of the T cell lines to kill targets pulsed with decreasing doses of cognate peptide. All T cell lines were able to kill peptide-pulsed targets at a peptide concentration of $10 \mu g/ml$ (> 15% specific lysis, Table 6). We also determined the surface expression of CD4 or CD8 of these T cell lines by flow cytometry. The T cell lines that were specific to H3 HA₂₆₇₋₂₈₃ (1-3E2), H3 HA₃₅₀₋₃₆₆ (2-10D8), and M1₂₀₅₋₂₂₁ (3-1C9) were CD4⁺ (Table 6, >95% purity), while the M1-10-specific T cell line was $CD8^+$ (data not shown). We also performed ICS for IFN-y by pulsing autologous BLCLs with the cognate peptide and adding the appropriate T cell line prior to Golgi plug application (Table 6). T cell lines were able to produce IFN-γ upon cognate peptide stimulation of autologous APCs, comparable to the virusinfected control, although only a low percentage of the 2-10D8 T cell line produced IFN- γ after stimulation with either live influenza A virus or the peptide.

DISCUSSION

Characterization of epitope-specific T cell responses is critical in the understanding of immune responses to infection or vaccination. In this study, we performed a less biased and comprehensive screening of peptides covering all influenza A virus proteins. We confirmed previous reports by us [8,9] and others [10-13] that the T cell responses to influenza are broadly directed to several viral proteins. We found that surface glycoproteins, HA and NA, which are major components of inactivated vaccines, had many T cell epitopes. Recently we [16,25] and others [26] reported that trivalent inactivated influenza vaccine can induce T cell responses and part of these T cell responses may be targeting epitopes on HA, NA and M1. Overall, HA and M1 had more T cell epitopes than other viral proteins, most of which were recognized by

CD4⁺ T cells. One limitation of this study is that for some of the peptides identified in our screening, we were not able to determine whether T cells responding to a given peptide were CD4⁺ or CD8⁺ T cells. We did not use *in vitro* amplification of influenza A-specific T cells to avoid the skewing the relative frequency of the T cells specific to each epitope. As a result, the frequency of most peptide-specific T cells in PBMC was not high enough to determine the phenotype by performing ICS or depletion experiments. Based on the ICS of PBMC stimulated with live influenza A viruses it is estimated that approximately 80% of T cells responding to the viruses are $CD8^+$ T cells (data not shown). However, for peptides that we were able to do further studies, they were all recognized by CD4⁺ T cells, with the exception of the CD8⁺ T cell epitope, M1₅₈₋₆₆. The peptides we used for the screening are 17mers, which may have stimulated CD4⁺ T cells better than CD8⁺ T cells and as a result the sensitivity of detecting CD4⁺ T cells may have been relatively higher. Ideally we should have included influenza-naïve donors as a negative control to show that T cells responding to influenza peptides have been generated against influenza virus. However, it is practically not possible to find influenza-naïve adults (we cannot obtain large volume of blood for genome-wide screening experiments from very young influenza-naïve children).

Assarsson et al. recently found that PB1 was the major target for both CD4⁺ and CD8⁺ T cell responses [13]. In our screening, HA (especially H3) and M1 were major targets of T cell responses. The peptides they screened were predicted to have high-affinity binding to HLA class I or class II molecules and to be highly conserved. Our peptides were 17mers overlapping by 11 amino acids covering all influenza A viral proteins. Using minimal epitope peptides in the assays is likely to increase the sensitivity of detecting responding T cells, especially in the case of CD8⁺ T cells. Using longer peptides covering all viral proteins is probably less sensitive in detecting specific CD8⁺ T cells, but can detect T cells recognizing atypical T cell epitopes or epitopes restricted by MHC class I or class II molecules whose binding motif predictions are not available (for example HLA-DP and DQ alleles and rare HLA-A, B and C alleles). These differences in the peptide sets may explain why the two screenings by Assarsson et al. and the present study produced different results. Because HLA-restriction of the epitope candidate peptides identified in this screening has not been determined, we were not able to test if these epitopes could be identified by the computer predictions. We think that our results are complementary to those of Assarsson et al. and that both approaches may be used, if possible, to identify T cell epitopes on a virus.

The abundance of T-cell responses against HA was confirmed by analyzing the PBMC of 30 more donors. In screening using the PBMC of 30 hospital workers, more responses to H3 HA were seen than to H1 HA (53.3% to H3 and 16.7% to H1). These may reflect the epidemiology of currently circulating influenza A strains, prior infections with H3N2 versus H1N1 viruses, or higher virulence of H3N2 strain than H1N1 strain. Additionally, only 17% of the hospital workers had responses to H1, thus it is probably not surprising that none of the four healthy donors we previously screened had responses to H1. The amino acid sequence identity between the HA and NA of A/New Caledonia/20/99 (H1N1) and A/Wisconsin/67/2005 (H3N2), is 40% for the HA (AAP34324 and ABW80978) and 42% for the NA (CAD57252 and ABP52004) respectively. This suggests a low probability of identifying subtype cross-reactive T cell epitopes in these proteins. However, in two of the four healthy adult donors whose PBMC were screened, we detected T cells responding to the peptides encoded by the H5 HA gene in IFN- γ ELISPOT assays. Although the frequencies of these T cells were not high, they were comparable to those responding to the peptides encoded by H3 HA gene. Recently Roti and colleagues [27] reported the presence of CD4⁺ T cells recognizing epitopes encoded by H5 HA gene in healthy individuals, who were unlikely to have been exposed to the H5N1 virus, although in vitro amplification of specific T cells were needed to detect them, suggesting a low frequency of these H5 HA cross-reactive T cells. They found that none of the H5 HA epitopes identified were uniquely cross-reactive to H2 HA, which is the closest subtype to H5 and

suggested that exposure to H2N2 viruses is not essential for cross-reactivity to H5 HA. Except for two peptides (H5₁₅₁₋₁₆₇ and H5₂₄₃₋₂₅₉ in Table 3) which have a four- to eight-amino acid overlap with the H5 HA epitopes identified by them, the H5 HA peptides that our donors' PBMCs responded to are different. We did not observe responses to the H1 and H3 HA peptides corresponding to these eight H5 HA peptides in these donors. Other groups have also identified cross-reactive memory T cell responses to avian H5N1 proteins in healthy individuals who were previously infected or exposed to seasonal influenza [28,29], as well as in individuals who were recently vaccinated for influenza [30]. Most of the cross-reactive responses were towards the internal proteins M1 and NP [28,29], which is expected since the internal proteins are highly conserved even among the different subtypes. They were also able to identify cross-reactive responses to the HA [28] and NA [30] proteins.

Many of the novel H3 HA T cell epitopes we detected and those previously defined are situated at conserved segments of the H3 protein sequence, with the majority of them clustering at the C-terminus. This confirms a previous study that correlated the H3 three-dimensional structure and the epitopes that had been identified in mice and humans and found that dominant epitopes to HA are primarily located in conformationally stable segments of the C-terminal region [31]. In addition, a recent study using HLA-DR1 transgenic mice [32] identified a diverse HA-specific, HLA-DR1-restricted CD4⁺ T cell response, with the majority of epitopes located in conserved HA regions. Our data also suggest that the T cell responses are directed to influenza HA regions that are structurally and functionally conserved. Repeated infection or immunization by different virus strains may selectively stimulate T cells specific to the epitopes located in conserved regions.

CD4⁺ T cell effector and memory responses to influenza infection have been studied to some extent in mice (reviewed in [33,34]), however, our knowledge of CD4⁺ T cell responses to influenza in humans is quite limited. A few HA CD4⁺ T cell epitopes have been identified in humans [35-38], and from recent study done using HLA-DR1 transgenic mice [32]. These influenza-specific CD4⁺ T cell responses may have important roles during influenza infection. An earlier study done in athymic mice reported a differential ability of influenza T helper clones to afford help to B-cells, depending on whether the B cells presented either viral surface proteins or internal viral components on their cell surface [39]. In Balb/c mice, CD4⁺ effector T cells mediated protection against a lethal influenza infection by perforin-mediated cytotoxicity [40]. Moreover, higher neutralizing antibody titers were attributed to CD4⁺ T cell help [40]. In another study, murine $CD4^+$ T cells were able to traffic to the lungs during influenza infection, but needed antigen to be present to proliferate [41]. By stimulating PBMC with peptides of interest, we established CD4⁺ T cell lines specific to three peptides. These three lines were able to lyse target cells pulsed with the peptides. One CD4⁺ T cell line, 2-10D8, produced little IFN-γ after stimulation with autologous BLCL pulsed with the peptide or infected with influenza A virus, although the peptide recognized by the line was initially identified in IFN- γ ELISPOT assays, suggesting that measuring IFN- γ production alone is likely to underestimate the T cell responses to influenza A virus.

In summary, our screening data showed the strength and breadth of T cell responses against influenza A virus at baseline levels of healthy adults. These T cell responses target both subtype specific (most of the epitopes localized with HA and NA peptides) and subtype cross-reactive (internal protein peptides) peptides. Genome-wide screening using overlapping peptides covering all viral proteins is useful for identifying T cell epitopes and complementary to the approach based on the predicted binding peptides to well-studied HLA-A, B and DR alleles. It is important to analyze the effect of influenza vaccination on T cell responses, and the information reported here will be useful for that purpose.

ACKNOWLEDGEMENT

We would like to thank Marcia Woda for assistance with our ICS experiments, Christine Turcotte and Denise Marengo for assistance with HLA typing, Dr. Jeffrey S. Kennedy who helped obtain some blood samples, and Kim West and Dr. Alan L. Rothman for discussion. We also thank Dr. Shibani Mitra-Kaushik for her critical reading of the manuscript, and Dr. Michel DeWilde and Dr. Robert Ryall of Sanofi Pasteur for the influenza virus strains used in this study. This work was supported by NIH / NIAID grant U19 AI-057319. The reagents listed in Table 1 were obtained through the NIH BEI Resources Repository. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID/NIH.

Abbreviations used

NP, nucleoprotein M1, matrix protein 1 HA, hemagglutinin CTL, cytotoxic T lymphocyte HLA, human leukocyte antigen A/PR/8, A/Puerto Rico/8/34 (H1N1) strain NA, neuraminidase PBMCs, peripheral blood mononuclear cells NIH, National Institutes of Health BEI Resources, Biodefense and Emerging Infections Research Resources Repository MHC, major histocompatibility complex DMSO, dimethyl sulfoxide NIAID, the National Institute of Allergy and Infectious Diseases ELISPOT, enzyme-linked immunosorbent spot IFN, interferon aN1, avian N1 hN1, human N1 M2, matrix protein 2 NS1, nonstructural protein 1 NS2, nonstructural protein 2 PB1, polymerase B1 PB2, polymerase B2 PA, polymerase A SFC, spot forming cells PHA, Phytohemagglutinin APCs, antigen presenting cells ICS, intracellular cytokine staining BLCL, B lymphoblastoid cell lines FBS, fetal bovine serum PBS, phosphate buffered saline rIL, recombinant interleukin

IEDB, Immune Epitope Database

REFERENCES

- The Writing Committee of the World Health Organization Consultation on Human Influenza AH. Avian Influenza A (H5N1) Infection in Humans. N Engl J Med September 29;2005 353(13):1374– 85. [PubMed: 16192482]2005
- Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for immunology. Nat Immunol 2006;7(5):449–55. [PubMed: 16622432]
- Epstein S. Prior H1N1 Influenza Infection and Susceptibility of Cleveland Family Study Participants during the H2N2 Pandemic of 1957: An Experiment of Nature. The Journal of Infectious Diseases 2006;193(1):49–53. [PubMed: 16323131]

- McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, et al. T Cell Responses Are Better Correlates of Vaccine Protection in the Elderly. J Immunol May 15;2006 176(10):6333–9. [PubMed: 16670345]2006
- Gotch F, Rothbard J, Howland K, Townsend A, McMichael A. Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 1987;326(6116):881– 2. [PubMed: 2437457]
- Yewdell JW, Bennink JR, Smith GL, Moss B. Influenza A virus nucleoprotein is a major target for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proceedings of the National Academy of Science 1985;82:1785–9.
- Lamb JR, Green N. Analysis of the antigen specificity of influenza haemagglutinin-immune human T lymphocyte clones: identification of an immunodominant region for T cells. Immunology 1983;50:659–66. [PubMed: 6197356]
- Jameson J, Cruz J, Ennis FA. Human Cytotoxic T-Lymphocyte Repertoire to Influenza A Viruses. J Virol November 1;1998 72(11):8682–9. [PubMed: 9765409]1998
- Jameson J, Cruz J, Terajima M, Ennis FA. Human CD8+ and CD4+ T Lymphocyte Memory to Influenza A Viruses of Swine and Avian Species. J Immunol June 15;1999 162(12):7578–83. [PubMed: 10358215]1999
- Boon ACM, de Mutsert G, Graus YMF, Fouchier RAM, Sintnicolaas K, Osterhaus ADME, et al. The Magnitude and Specificity of Influenza A Virus-Specific Cytotoxic T-Lymphocyte Responses in Humans Is Related to HLA-A and -B Phenotype. J Virol January 15;2002 76(2):582–90. [PubMed: 11752149]2002
- Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A. Human memory CTL response specific for influenza A virus is broad and multispecific. Human Immunology 2000;61(5):438–52. [PubMed: 10773346]
- Wang M, Lamberth K, Harndahl M, Roder G, Stryhn A, Larsen MV, et al. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 2007;25(15): 2823–31. [PubMed: 17254671]
- Assarsson E, Bui H-H, Sidney J, Zhang Q, Glenn J, Oseroff C, et al. Immunomic Analysis of the Repertoire of T-Cell Specificities for Influenza A Virus in Humans. J Virol December 15;2008 82 (24):12241–51. [PubMed: 18842709]2008
- Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, et al. A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. Journal of Immunological Methods 2002;260(12):157–72. [PubMed: 11792386]
- Boyam A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest 1968;21:77. [PubMed: 5637478]
- Co MDT, Orphin L, Cruz J, Pazoles P, Rothman AL, Ennis FA, et al. Discordance between antibody and T cell responses in recipients of trivalent inactivated influenza vaccine. Vaccine 2008;26(16): 1990–8. [PubMed: 18339461]
- Green S, Kurane I, Edelman R, Tacket CO, Eckels KH, Vaughn DW, et al. Dengue virus-specific human CD4+ T-lymphocyte responses in a recipient of an experimental live-attenuated dengue virus type 1 vaccine: bulk culture proliferation, clonal analysis, and precursor frequency determination. J Virol October 1;1993 67(10):5962–7. [PubMed: 8371350]1993
- Anthony DD, Lehmann PV. T-cell epitope mapping using the ELISPOT approach. Methods 2003;29 (3):260–9. [PubMed: 12725791]
- Oseroff C, Kos F, Bui H-H, Peters B, Pasquetto V, Glenn J, et al. HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proceedings of the National Academy of Sciences of the United States of America September 27;2005 102(39):13980–5. [PubMed: 16172378]2005
- McMichael AJ, Gotch FM, Santos-Aguado J, Strominger JL. Effect of mutations and variations of HLA-A2 on recognition of a virus peptide epitope by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A Dec;1988 85(23):9194–8. [PubMed: 2461564]
- Bui H-H, Peters B, Assarsson E, Mbawuike I, Sette A. Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proceedings of the National Academy of Sciences January 2;2007 104 (1):246–51.2007

- 22. Peters B, Sidney J, Bourne P, Bui H-H, Buus S, Doh G, et al. The Immune Epitope Database and Analysis Resource: From Vision to Blueprint. PLoS Biology 2005;3(3):e91. [PubMed: 15760272]
- Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol January 1;1994 152(1):163– 75. [PubMed: 8254189]1994
- 24. Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999;50(3):213–9. [PubMed: 10602881]
- Terajima M, Cruz J, Leporati AM, Orphin L, Babon JAB, Co MDT, et al. Influenza A Virus Matrix Protein 1-Specific Human CD8+ T-Cell Response Induced in Trivalent Inactivated Vaccine Recipients. J Virol September 15;2008 82(18):9283–7. [PubMed: 18614638]2008
- He X-S, Holmes TH, Zhang C, Mahmood K, Kemble GW, Lewis DB, et al. Cellular Immune Responses in Children and Adults Receiving Inactivated or Live Attenuated Influenza Vaccines. J Virol December 1;2006 80(23):11756–66. [PubMed: 16971435]2006
- 27. Roti M, Yang J, Berger D, Huston L, James EA, Kwok WW. Healthy Human Subjects Have CD4+ T Cells Directed against H5N1 Influenza Virus. J Immunol February 1;2008 180(3):1758–68. [PubMed: 18209073]2008
- 28. Lee LY, Ha do LA, Simmons C, de Jong MD, Chau NV, Schumacher R, et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest Oct;2008 118(10):3478–90. [PubMed: 18802496]
- Kreijtz JHCM, de Mutsert G, van Baalen CA, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Cross-Recognition of Avian H5N1 Influenza Virus by Human Cytotoxic T-Lymphocyte Populations Directed to Human Influenza A Virus. J Virol June 1;2008 82(11):5161–6. [PubMed: 18353950] 2008
- Gioia C, Castilletti C, Tempestilli M, Piacentini P, Bordi L, Chiappini R, et al. Cross-subtype immunity against avian influenza in persons recently vaccinated for influenza. Emerg Infect Dis Jan; 2008 14(1):121–8. [PubMed: 18258091]
- 31. Landry SJ. Three-Dimensional Structure Determines the Pattern of CD4+ T-Cell Epitope Dominance in Influenza Virus Hemagglutinin. J Virol February 1;2008 82(3):1238–48. [PubMed: 18057238] 2008
- 32. Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ. Direct Ex Vivo Analyses of HLA-DR1 Transgenic Mice Reveal an Exceptionally Broad Pattern of Immunodominance in the Primary HLA-DR1-Restricted CD4 T-Cell Response to Influenza Virus Hemagglutinin. J Virol July 15;2007 81(14):7608–19. [PubMed: 17507491]2007
- Brown DM, Roman E, Swain SL. CD4 T cell responses to influenza infection. Seminars in Immunology 2004;16(3):171–7. [PubMed: 15130501]
- 34. Swain SL, Agrewala JN, Brown DM, Jelley-Gibbs DM, Golech S, Huston G, et al. CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenza. Immunological Reviews 2006;211(1):8–22. [PubMed: 16824113]
- 35. Gelder C, Davenport M, Barnardo M, Bourne T, Lamb J, Askonas B, et al. Six unrelated HLA-DRmatched adults recognize identical CD4+ T cell epitopes from influenza A haemagglutinin that are not simply peptides with high HLA-DR binding affinities. Int Immunol February 1;1998 10(2):211– 22. [PubMed: 9533449]1998
- Gelder CM, Lamb JR, Askonas BA. Human CD4+ T-cell recognition of influenza A virus hemagglutinin after subunit vaccination. J Virol July 1;1996 70(7):4787–90. [PubMed: 8676508] 1996
- Gelder CM, Welsh KI, Faith A, Lamb JR, Askonas BA. Human CD4+ T-cell repertoire of responses to influenza A virus hemagglutinin after recent natural infection. J Virol December 1;1995 69(12): 7497–506. [PubMed: 7494256]1995
- Yang J, James EA, Huston L, Danke NA, Liu AW, Kwok WW. Multiplex mapping of CD4 T cell epitopes using class II tetramers. Clinical Immunology 2006;120(1):21–32. [PubMed: 16677863]
- Scherle PA, Gerhard W. Differential Ability of B Cells Specific for External Vs. Internal Influenza Virus Proteins to Respond to Help from Influenza Virus-Specific T-Cell Clones in vivo. Proceedings of the National Academy of Sciences June 15;1988 85(12):4446–50.1988

- Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T Cell-Mediated Protection from Lethal Influenza: Perforin and Antibody-Mediated Mechanisms Give a One-Two Punch. J Immunol September 1;2006 177(5):2888–98. [PubMed: 16920924]2006
- Chapman TJ, Castrucci MR, Padrick RC, Bradley LM, Topham DJ. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection. Virology 2005;340(2):296– 306. [PubMed: 16054188]

Babon et al.

Figure 1.

IFN- γ response of donor 1 PBMC to peptides from all influenza proteins. PBMC was first tested in ELISPOT against Set 1 peptide pools (1-33), which include the hemagglutinin (H1 HA, H3 HA and H5 HA) and neuraminidase (aN1 NA, hN1 NA and N2 NA) peptides (A) and Set 2 peptide pools (1-38), which include peptides spanning all the viral internal proteins (C). Positive pools were deconvoluted to test individual peptides. An example of such screening is shown in B and D. ELISPOT assays were performed using individual peptides in Pools 7, 10, and 11 consisting of hemagglutinin H3 HA peptides (B); and individual peptides in Pools 9, 10, 11, and 12 consisting of matrix protein 1 (M1) peptides (D). A/Wisconsin/67/2005X-161B H3N2 virus and A/New Caledonia/20/1999 IVR-66 H1N1 virus were used as positive controls for live influenza A virus infection. Peptide pools and individual peptides were tested in three replicate wells with 200,000 to 250,000 cells per well. The final concentration of peptide used in all experiments was 2µg/ml per each peptide. The dotted line indicates the cut-off SFC value for this donor (20 SFC/10⁶).

Figure 2.

Broad T cell responses to influenza viral proteins in PBMC from healthy adults. PBMC from four healthy adults were screened for IFN- γ responses to all influenza proteins in ELISPOT assays.

Babon et al.

Page 17

Figure 3.

Distribution of SFC values of positive peptides in ELISPOT assays. The SFC values for each peptide that gave a positive IFN- γ response were plotted in a histogram chart to determine the frequency of IFN- γ -producing cells among PBMC of the four donors.

Figure 4.

Flow cytometry to determine the phenotypes of IFN- γ producing cells in donor 3 PBMC. Peptide-stimulated bulk culture cells using donor 3 PBMC were used as effectors in an ICS. The peptides shown here were used to initially stimulate whole PBMC and establish the bulk culture. The final peptide concentration was 10µg/ml in all experiments. Events were gated for the live, CD3⁺ IFN- γ ⁺ cells.

Table 1	
---------	--

Influenza A peptides used in this paper

Influenza Protein	Abbreviation	Strain	No. of Peptides	BEI Catalog No.
Hemagglutinin	H1 HA	A/New Caledonia/20/1999 H1N1	94	NR-2602
Hemagglutinin	H3 HA	A/New York/384/2005 H3N2	94	NR-2603
Hemagglutinin	H5 HA	A/Thailand/4(SP-528)/2004 H5N1	94	NR-2604
Neuraminidase	aN1 NA	A/Thailand/4(SP-528)/2004 H5N1	74	NR-2607
Neuraminidase	hN1 NA	A/New Caledonia/20/1999 H1N1	78	NR-2606
Neuraminidase	N2 NA	A/New York/384/2005 H3N2	78	NR-2608
Matrix Protein 1	M1	A/New York/348/2003 H1N1	41	NR-2613
Matrix Protein 2	M2	A/New York/348/2003 H1N1	15	NR-2614
Nucleoprotein	NP	A/New York/348/2003 H1N1	82	NR-2611
Nonstructural Protein 1	NS1	A/New York/444/2001 H1N1	37	NR-2612
Nonstructural Protein 2	NS2	A/New York/348/2003 H1N1	19	NR-2615
Polymerase A	PA	A/New York/348/2003 H1N1	119	NR-2618
Polymerase B1	PB1	A/New York/348/2003 H1N1	126	NR-2617
Polymerase B1-F2	PB1-F2 (H1N1)	A/New York/348/2003 H1N1	8	NR-2685
Polymerase B1-F2	PB1-F2 (H3N2)	A/New York/504/1998 H3N2	16	NR-2685
Polymerase B2	PB2	A/New York/348/2003 H1N1	126	NR-2616

Table 2

Total SFC values. The sum of the number of IFN- γ producing cells that responded to influenza peptide stimulation in ELISPOT was determined for each donor and compared to live virus infection

			Total	SFC values ^u		
ı	H1 and hN1 Peptides	H3 and N2 Peptides	H5 and aN1 Peptides	Internal Protein Peptides	H1N1 Virus Infection	H3N2 Virus Infection
Donor 1	202	264	180	620	1221	1219
Donor 2	0	52.5	0	52.5	$N.D.^{b}$	420
Donor 3	0	985	0	1825	1182	1478
Donor 4	0	273	193	714	1033	1135
a^{Totol} SEC a^{old}	inco our management of our]	EI ICDOT amanimum TCDOT	in a obitation and a line of the second	inne etimorel etime		

Total SFC values are representative of one ELISPOT experiment, with triplicate wells per peptide or virus stimulation.

 $b_{
m N.D., not determined}$

NIH-PA Author	Table 3
Manuscript	

4
q
an
3
ີ
÷.
\mathbf{rs}
Q
5
Ð
Я
ō
Ę
C)
Ę
6
E
ີວດ
, r
.SI
n
പ്പ
τi
er
ē
- <u>S</u>
r .
E
\mathcal{Q}
S
Ę
E
Щ.
Ξ
0
u.
5
IS.
U C
ğ
S
ŭ
~
Ż
μ
I.
ž
÷
.S
8
a
0
ž
g
la
ţ
SS
ď
Ĕ.
- L
ď
a
DZ
ē
Ju
uf
_

Surface Glycoproteins

Comments ^c	novel	novel	novel	novel	novel	CD4 T cell epitope restriction not known	CD4 T cell epitope restriction not known	DRB1*1001; DQA1*0102; DQB1*0602	DRB1*1001; DQA1*0102; DQB1*0602	novel	novel	DRB1*0101; DRB1*0401; DRB5	novel	novel	CD4 T cell epitope restriction not known	CD4 T cell epitope restriction not known	novel	novel	novel	novel	novel	novel	novel	novel	A*0201	novel	novel	novel	novel	novel	novel	novel	novel	novel	novel	novel	novel	novel		b Comments ^c
SFC/10 ^{6b}	37.5	22.5	42.5	195	27.5, 80	127.5, 47.5	67.5	09	50	20	75	20, 52.5	25	75, 20	47.5	40	35	22.5	80	27.5	55	20	32.5	34	44	38	34	40	32	28	38	42	4	50, 120	22	87.5	47.5	24, 52.5	ins	SFC/100
Donor	c,	4	4	33	2,4	3,4	3	1	1	4	ŝ	1, 3	2	3,4	ŝ	4	4	4		4 .	4 .	4 .	4	1	1	-1		1		1	-			1,3	1	ŝ	3	1, 3	Internal Protei	Donor
Peptide Sequence ^a	PHOILDGENCTLIDALL	ALNVTMPNNEKFDKLYI	SLYAOASGRITVSTKRS	SGRITVSTKRSQQTVIP	PSRISIYWTIVKPGDIL	AWTIVKPGDILLINSTG	PGDILLINSTGNLIAPR	LIAPRGYFKIRSGKSSI	YFKIRSGKSSIMRSDAP	GKSSIMRSDAPIGKCNS	RSDAPIGKCNSECITPN	CPRY VKQNTLKLATGMR	AIAGFIENGWEGMVDGW	NQINGKLNRLIGKTNEK	DVYRDEALNNRFQIKGV	KDWILWISFAISCFLL	EQUDTIMEKNVTVTHAQ	SSWSSHEASLGVSSACP	SSACPYQRKSSFFRNVV	YQNPTTYISVGTSTLNQ	EFFWTILKPNDAINFES	AIAGFIEFFWQGMVDGW	TQKAIDGVTNKVNSIID	LQLKDNAKELGNGCFEF	ISIAIGIISLMLOIGNI	SONHTGVCNORIITYEN	NĽDYQIGYICSGVFGDN	NTTIWTSGSSISFCGVN	DTANWSWPDGAELPFTI	WPDGAELPFTIDK	MNPNKKIITIGSICMVT	LQIGNLISIWVSHSIHT	VSLTISTICFFMQIAIL	IAWSSSSCHDGKAWLHV	AWLHVCVTGDDKNATAS	IYNGRLVDSIVSWSKEI	TCTVVMTDGSASGKADT	STLSGSAQHVEECSCYP		Pentide Sequence ^d
AA Position	71-87	179-195	209-225	215-231	243-259	249-265	255-271	267-283	273-289	279-295	285-301	321-337	350-366	391-407	505-521	528-543	30-46	136-152	151-167	207-223	243-259	351-367	387-403	470-486	13-29	42-58	309-325	434-450	452-468	458-470	1-17	24-40	13-29	176-192	188-204	206-222	236-252	266-282		AA Position
Protein	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA e	H3 HA ^e	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H3 HA	H5 HA	H5 HA	H5 HA	H5 HA	H5 HA	H5 HA	H5 HA	H5 HA	hN1 NA	hN1 NA	hN1 NA	hN1 NA	hN1 NA e	hN1 NA e	aN1 NA	aN1 NA	N2 NA	N2 NA ^e	N2 NA ^e	N2 NA	N2 NA	N2 NA		Protein

Babon et al.

CD4/CD8^d

Page 21

CD8 CD8

novel A*1101 DRB1*0101; DRB1*1501

34, 45 22 26

MSLLTEVETYVLSIVPS VETYVL<u>SIVPSGPLKAE</u> SIVP<u>SGPLKAEIAQRLE</u>

1-17 7-23 13-29

M1^e M1^e M1^e

CD4/CD8^d

NIH-PA Author Manuscript

Internal Proteins

\mathbf{r}
=
÷.
\circ
\simeq
—
_
~
\geq
0
~
⊐_
~
<u> </u>
0
×.
0
_
σ
÷.

MI 7-35 DULAMEWATREN 1 9,0 CMAT Elegiptice matchinem CMA MI 579 NULANEWATREN 1 9,0 CMAT Elegiptice strainen at fatoma CMA MI 571 UTKELLENTELLASE 1 1,2 CMAT Elegiptice strainen at fatoma CMA MI 71-10 YALYREKAELTAREN 3 1,3,5,2,3 DBH 10103 CCMA MI 73-11 YALYREKAELTARENA 3 1,3,5,2,3 DBH 10103 CCM MI 13-13 YALYREKAELTARENA 3 1,2,5 DBH 10103 CCM MI 13-13 YALYREKAELTARENA 3 1,2,5 DBH 10103 CCM MI 13-13 YALYREKAELTARENA 3 1,2,5 DBH 10103 CCM MI 21-13 YALYREKAELTARENA 3 1,2,5 DBH 10103 CCM MI 21-13 YALYREVELACTARANA 3 4,5 DBH 10103 CCM MI 210-23 MANANA 3 4,5 DB	Protein	AA Position	Peptide Sequence ^a	Donor	SFC/10 ^{6b}	Comments ^c	CD4/CD8 ^d
MI SS-1 Intellection of the second s	M1 M1	37-53 43-59	TDLEALMEWLKTRPILS MEWLKTRP <u>ILSPLTKGI</u>	4 1	50 47.5	CD4 T cell epitope restriction not known CD4 T cell epitope restriction not known;	CD4 CD4
Mif 91-10 NNUMEXARGREE 3.4 157.5.25 DBR1/0103 COM Mif 12-17 VALASKERETENSAGE 3.4 12.5 B7.301 COM Mif 12-17 VALASKERETENSAGE 3.4 12.5 B7.301 COM Mif 12-17 VALASKERETENSAGE 3.4 12.5 B7.301 COM Mif 12-16 TEXALENELTENSAGE 3.4 12.5 B7.301 D0.811 D0.01 Mif 159-16 TEXALENELTENSA 3.4 17.5 D0.811 D0.01 D0.01 Mif 195-201 RAMEMATCHANA 3.4 17.5 D0.811 D0.01 D0.01 Mif 216-222 RAMEMATCHANA 3.4 17.5 D0.811 D0.01 D0.	MI	55-71	LTKGILGFVFTLTVPSE	1	142	A*0201	CD8
Mf V+113 WALVERKEERTHGAK 3 21.23 DBB1*0103 COR M1 121-17 AGALASSMGLYNKMA 3 4.2.3 DBB1*0103 COR M1 121-17 AGALASSMGLYNKMA 3 4.2.3 DBB1*0103 COR M1 151-167 AGALASSMGLYNKMA 3 4.2.3 DBB1*0103 COR M1 151-167 AGALASSMGLYNKMA 3 4.2.5 DBB1*0103 COR M1 20226 RAMEQMYLSST 3.4 4.7.5,7.5 DBB1*013 ND M1 20527 VASGRAMANDAR 3 2.1.6 DBB1*013 ND M1 20528 MRAUTHERSTCALMA 3 1.4.5.5.6 DBB1*013 ND M1 20529 MRAUTHERSTCALMANDA 3 1.4.5.5.6 DBB1*013 ND M1 20528 MRAUTHERSTCALMANDA 3 1.4.5.5.6 DBB1*013 ND M1 20528 MRAUTHERSTCALMANDA 3 1.4.5.5.6 DBB1*013 ND	$M1^e$	91-107	NNMDRA<u>VKLYRKLKREI</u>	3,4	157.5, 22.5	DRB1*0103	CD4
MI 121-17 Add.Add.Model 4.25 B ⁹⁻⁵⁰¹ COB MI 121-17 TALACKMOLAT/TEQNA 3 4.25 Manual 14 4.25 Manual 14 4.25 Manual 14 16 10 10 10 10 10 10 10 11 10 </td <td>$M1^e$</td> <td>97-113</td> <td>VKLYRKLKREITFHGAK</td> <td>ŝ</td> <td>212.5</td> <td>DRB1*0103</td> <td>CD4</td>	$M1^e$	97-113	VKLYRKLKREITFHGAK	ŝ	212.5	DRB1*0103	CD4
MI 15435 REMACHATANEDAM 4 35 Description DOB	MI	121-137	AGALASCMGLIYNRMGA	ŝ	42.5	B*3501	CD8
MI DOI:10 MARTPUIST 1 2 DBR17015 CDR MI 100-15 TWELRENSMANCT 3 4 47.5.375 DBR17015.DBR3 CD4 MI 100-15 REMORPLASSMENT 3 4 47.5.375 DBR17015.DBR3 CD4 MI 100-25 RANDOROVOMMENT 3 4 47.5.375 DBR17015.DBR3 CD4 MI 205-221 VASSEQUATEMENT 3 115.6 more CD4 MI 205-221 VASSEQUATEMENT 1 4 47.5.375 DBR8701007 CD4 MI 205-222 MAL MAL 200-224	IW	139-155	TTESAFGLICATCEQIA	4 .	45	novel	Ð.
MI 109-18 AMMELENSIGATABIL 1 4 7.5 DED 1000 COL MI* 205-20 AMELENSIGATABIL 4 7.5 DED 1000 DED 1000 DED 1000 MI* 205-20 AMELENSIGATABIL 4 7.5 DED 1000 DED 10000 DED 1000 DED	IM	163-179	ROMVTTTINPLIRHENRM	4.	20	DRB1*0103	CD4
MIF 10:2:00 AMARCENTRASIA 4:1 5:1:00 0.000 0.000 MIF 210:2:00 VASORAMYOMIKAT 3:1:1:00 2:10 0.000 0.000 MIF 210:2:00 MARCEQALAMINATSA 3:1:1:5 0:000 0:000 0:000 MIF 210:2:00 MANOAMALTIPESSTELIKND 3:1:1:5 0:000 0:000 0:000 MI 23:2:30 NARDATERSSTELIKND 3:1:1:5 0:000 0:000 0:000 MI 23:2:30 NARDATERSSTELIKND 3:1:1:5 0:000 0:000 0:000 MI 23:2:30 NARDATERSSTELIKND 3:1:1:5 0:000 0:000 0:000 NSS 13:3:0 0:000 0:000 0:000 0:000 0:000 NSS 13:3:0 0:000 0:000 0:000 0:000 0:000 0:000 NSS 13:3:0 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000	IM	CS1-601	INPLIKHENKMVLASTI V ANTEONACESEO A A FANA	- ,	47 7 TC 3 LV	DKB1*0103; DKB1*1501; DKB5	504
MI 20-20 ANAMENCIPS 3-1 20-2 More 00-0 More More 00-0 More	MIC	187-700 000-201	<u>A CSSEC A F ANEVA SO A</u>	0,4 4,7	C./C. (C./4	LKB5	
MI* 20-221 NANOARMANCIA 3 210 Devel CD4 MI* 216-232 RRANCHARSICI. 3 115,6 nevel CD4 MI* 216-232 RANOARMACIA 3 115,6 nevel CD4 MI* 235-232 RANOARMACIA 3 115,6 DRB3 CD4 MI 235-234 LANDANDARMACIA 2 25 DRB1 CD4 MI 235-23 RANOATASKNOAMACIA 2 25 DRB1 CD4 NSI 13-29 CANDATOSKNOAMACIA 2 25 DRB1 CD4 NSI 13-29 CANDATOSKNOAMACIA 2 2 DRB1 CD4 NSI 13-29 CANDATA 2 2 DRB1 CD4 NSS2 13-39 DAMACIATA 3 0 DAMACIATA 2 DAMACIATA DAMACIATA DAMACIATA DAMACIATA DAMACIATA DAMACIATA 2 DAMACIATA DAMACIATA DAMACIATA	MI'	193-209		4 (C./C	10001	ΓN (
MI J02-20 Mean CHIPESS 3-4 H23, h5 H000 H000 MI 216-220 MEAN CHIPESS 3-4 H23, h5 more UD MI 236-234 GLENDARKENDARS 3 115 more ND MI 236-234 GLENDARKENDARKEN 2 25 more ND NSI 113-29 CHAVINARKANDARKEN 4 25 more ND NSI 113-29 CHAVINARKANDARKEN 4 35 more ND NSI 113-16 DOAMBENLIKANEN 4 36 more ND NSI 113-16 DOAMBENLIKANEN 4 30 more ND NSI 113-13 BLADARKENDOR 4 30 more ND NSI NSI NOLGENVARIC 1-4 30 more ND NSI NOLGENVARIC 1-4 30 more ND NSI NOLGENVARICO 1-4 30	MI ^e	205-221	VASQARQMVQAMRAIGT	τ, ²	210	novel	CD4
MIF 216-232 MIAUTHERSTORIAND 3 113 Devel ND MI 238-234 GLKNDLENLONYAKEN 3 113 Devel ND MI 238-234 GLKNDLENLONYAKEN 3 DEB1*013.D0x5, D0x5, D0x1 CD4 MI 238-245 CLKNDLENLONYOR 4 25 D0x1 D0x1 NS1 13-39 CLKNDLENLONYOR 4 25 D0x1 D0x1 NS2 13-39 CLKNDLENLONYOR 4 35 D0x1 D0x1 NS2 13-39 DAMADETICATION 4 36 D0x1 D0x1 NS2 13-39 DAMADETICATION 4 36 D0x1 D0x1 NS2 13-39 DAMADETICATION 4 37 D0x1 D0x1 NS2 S5-101 RUACATIONATION 4 37 D0x1 D0x1 NS2 S5-101 RUACATIONATION 4 37 D0x1 D0x1 NS2 D15 RUACATIONA	MI	210-226	KQM V QAMKAIGTHPSSS	5,4	142.5, 65	novel	CD4
MI 22-5 MI 22-5 MIBBS CD4 MI 23-5-24 GINULENLONDERK 4 5 DRB1*0103: DQwG, DQw1 CD4 NI 23-25 TENLORATORNER 4 5 DQwG, DQw1 CD4 NS1 13-29 TORMENTORDER 4 5 Dowel ND NS2 13-29 DAMDSNILKANFSV 4 35 Dowel ND NS2 13-29 DAMDSNILKANFSV 4 30 Dowel ND NS2 13-29 DAMDSNILKANFSV 4 37 Dowel ND NS2 13-29 DAMDSNILKANFSOL 4 30 Dowel ND NS2 13-25 DAMDSNILKANFSOL 4 37 Dowel ND NS2 15-19 READOLANCONN 3 165 Dowel ND NP 15-19 READORNONONONONONONONONONONONONONONONONONON	$M1^e$	216-232	MRAIGTHPSSSTGLKND	ŝ	115	novel	QN
MI 234-250 LENLONCREMERTOR 1 40 DRRIH-10103. Dow3. Dow1 CD4 NSI 13-29 YORRANOVADGER 4 35 DOw1 CD4 NSI 13-29 TENLONDKEID 4 35 DOw1 CD4 NS2 13-29 TANDORDED 4 35 DOw1 CD4 NS2 13-29 MULIKSKONDERD 4 35 DOw1 CD4 NS2 13-29 MULIKSKONDERD 4 35 DOw1 CD4 NS2 13-29 MULIKSKONDERD 4 37 MORE CD3 NS2 13-29 MULIKSKONDISS 14 37.5 DOW1 CD4 NS2 37-53 SLIATOR 4 37.5 DOW2 DOW1 CD4 NP 15/13 RUKNERDERDIAN 3 3 DOW2 DOW2 DOW1 NP 115/13 RUKNERDIANOVAN 3 3 DOW2 DOW2 DOW2 DOW2 DD<	MI	228-244	<u>GLKNDLLENLQAYAKRM</u>	2	22.5	DRB5	CD4
MI 240-25 YUKRAP/VADIGE 4 55 DOWI CUM NSI 13-29 CHATVERV/VADIGE 4 55 DOWI COM NSI 13-29 DAMORSTILANISY 1 4 59 DOWI COM NS2 13-29 LARMSKOLGSSOLINGMITOR 4 50 BOWI NO NS2 13-29 LARMSKOLGSSOLINGMITOR 4 50 BOWI NO NS2 13-29 LARMSKOLGSSOLINGMITOR 4 50 BOWI NO NS2 57-11 RUKUSSOLINGMITOR 4 50 BOWI NO NPP 15-131 RLANTESPECITFIC 4 50 BOWI NO NPP 15-131 RLANTESPECITFIC 4 715 BOWI NO NPP 115-131 RLANTESPECITFIC 4 75 BOWI COH NPP 115-131 RLANTESPECITFIC 4 75 BOWI COH NPP 115-131<	IW	234-250	LENLOAYOKRMGVQMQR	·	40	DRB1*0103; DQw3, DQw1	CD4
NSI 1-3-39 UCAMPARKUYANDOKUD 4 25 NOVEL NO NS2 ^e 13-39 UCAMPARKUYANDOKUD 4 37.5 NOVEL NO NS2 ^e 13-30 LARMAKNUCGSSROLNATTOR 4 37.5 NOVEL NO NS ^e 13-30 LARMAKNUCGSSROLNATTOR 4 37.5 NOVEL NO NS ^e 13-31 RLANTTSRPTOTTOR 4 37.5 NOVEL NO NS ^e 109-125 VLYDKEERRINKGANN 3 165 NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 3 165 NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 3 77.5 NOVEL CD4 NS ^e 115-131 RLANTSRPTOTTOR 3 165 NOVEL NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 3 10.2 NOVEL NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 4 2.2 NOVEL NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 4 2.2 NOVEL NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 4 2.2 NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 4 4 2.2 NOVEL NOVEL NO NS ^e 115-131 RLANTSRPTOTTOR 4 4 2.2 NOVEL NOVEL NO NS ^e 116-1326 CMMRGNETLOSUQI 4 4 2.2 NOVEL NOVEL NO NS ^e 116-1326 CMMRGNETLOSUQI 4 4 2.2 NOVEL NOVEL NO NS ^e 116-1326 CMMRGNETLOSUQI 4 4 2.2 NOVEL	IM	240-252	YOKRMGVOMORFK	4 .	35	DQw1	CD4
NS2 13-20 DAMEMENTOR 4 35 NV01 NO NS2 ^e 13-30 UNMENTOR 4 30, 35 novel ND NS2 ^e 13-35 SLATTRISTECTIONGNITOF 4 30, 35 novel ND NS2 ^e 19-35 MUGISSSEDLAGATICE 4 37, 35 novel ND NS2 ^e 19-35 MICATTRISTECTION 1 4 37, 35 novel ND NP ^e 19-125 NLYDIKERNVISAF 4 37, 35 novel ND NP ^e 115-131 BIRRINROANDODATA 3 165 Novel CD4 NP ^e 115-131 BIRRINROANDODATA 3 3 76 Novel CD4 NP ^e 115-131 BIRRINROANDODATA 3 77 Novel CD4 NP ^e 115-131 BIRRINGANALIS 1 4 76 CD4 NP ^e 115-131 BIRRINGANALIS 3 102 Novel CD4 </td <td>ISN</td> <td>13-29</td> <td>CFLWHVKKUVADUDKGD</td> <td>4 -</td> <td>52</td> <td>novel A #0701</td> <td>n of</td>	ISN	13-29	CFLWHVKKUVADUDKGD	4 -	52	novel A #0701	n of
NAZ 19-35 MQLGSSEDJ.VGMTOP 4 30 NOVE ND NS2 37-53 SIALTYRDSJEEDTWRLG 1,4 50,35 novel ND NS2 35-71 HKLYTRSJEEDTWRLG 1,4 50,35 novel ND NP 55-71 HKLYTRSJEEDTWRLG 1,4 50,35 novel ND NP 155-191 RKLTRSSFEDTWRLG 1,4 50,35 novel ND NP 115-191 RLQONSLTIERMVLSAF 4 47.5 novel ND NP 115-191 RLQONSLTERMVLSAF 4 47.5 novel ND NP 115-191 RLQONSLTERMVLSAF 4 47.5 novel ND NP 115-191 RCAGAAVKGVGTMVL 3 10.2 novel ND NP 115-191 RSGAAGANKGOVGTMVL 3 10.2 novel ND NP 115-131 RIKUNLARS 3 10.2 novel ND NP 11	acon	13-29	I MRMSKMOI GSSSGDI N	4	24 35	1020° A	ŝ
NS2 37-53 S.K.YRDSLGEAVMR.G 1.4 50.35 novel ND NS2 85-101 H.K.KTENSFEGTFMQ 4 37.5 novel ND NP 55-11 RLONSLTERSMOLASAT 3 165 novel ND NP 55-11 RLONSLTERSMOLAN 3 165 novel ND NP 55-12 VLYDKEERRWRQAN 3 165 novel ND NP 115-131 RIRNVRQANNA 3 75 novel ND NP 175-191 REAGAAVEGYTMVL 3 75 novel ND NP 155-191 REAGAAVEGYTMVL 3 75 novel ND NP 245-203 RUNVERIDINFWRG 3 102 novel ND NP 245-303 RNMKGINDRNFWRG 3 102 novel ND NP 246-303 RNMKGINDRNFWRG 3 102 novel ND NP 246-325 RNMKGIND	NS2 ^e	19-35	MOLGSSSGDLNGMITOF	. 4	30	novel	Ð
NS2 $85-10$ HKLKTTENSFEQITEMO 4 37.5 movel ND NP $95-71$ HKLKTTENSFEQITEMO 4 7.5 movel ND NP $95-71$ VLJONSTERRIVENTE 4 7.5 movel ND NP $95-71$ KLJONSTERRIVENAN 3 7.5 movel ND NP $95-71$ KLJONSTERRIVENAN 3 7.5 movel CD4 NP $175-191$ RSGAGANKGVCTMVL 3 7.5 $movel$ CD4 NP $175-191$ RSGAGANKGVCTMVL 3 7.5 $movel$ CD4 NP $175-191$ RSGAAGANKGVCTMVL 3 7.5 $movel$ CD4 NP $175-191$ RSGAAGANKGVCTMVL 3 7.5 $movel$ CD4 NP $175-191$ RSGAAGANKGVCTMVL 3 7.5 $movel$ CD4 NP $235-2705$ ND ND ND 27.5 $movel$	NS2	37-53	SLKLYRDSLGEAVMRLG	1.4	50.35	novel	QX
	NS2	85-101	HKLKTTENSFEOITFMO	4	37.5	novel	Ð
	NP	55-71	RLIQNSLTIERMVLSAF	4	47.5	novel	Q
	NP^{e}	109-125	VLYDKEEIRRIWRQANN	.0	165	novel	CD4
NP ^e 175-191 RSGAAGAVKGVGTMVL 3 55 B*270s ^f CD4 NP ^e 187-203 GTMVLELRMIKRGIND 3 75 A*1101 ^f CD4 NP ^e 193-209 LIRMIKRGINDINNFWRG 3 102 movel CD4 NP 235-274 RYGNAEIEDLTFLARS 4 22.5 movel ND NP 258274 RYGNAEIEDLTFLARS 4 22.5 movel ND NP 258276 RYGNAEIEDLTFLARS 4 22.5 movel ND NP 258276 RYGNAFEIEDLTFLARS 4 22.5 movel ND NP 294-310 EGYSL/GVDFKLLQTS 4 22.2 A*0201 CD8 PA 310-356 CMRTFFGUNERPUKEH 1 22 A*0201 ND PA 310-356 CMRTFFGUNERPUKEH 1 22 A*0201 ND PA 516-532 KWGMEMRNILSTVKEH 1 22 A*0201 ND P	NP^{e}	115-131	EIRRIWRQANNGDDATA	3	70	Novel	CD4
NP ^e 187-203 GTMLEL IRMIK GIND 3 75 A*110 ^f CD4 NP ^e 193-209 LIRMIK GINDRNFWRG 3 102 novel CD4 NP 246-262 RNPGIAAEIED/TFLARS 4 A*10 ^f CD4 NP 246-262 RNPGIAAEIED/TFLARS 4 A*3 CD4 NP 246-262 RNPGIAAEIED/TFLARS 4 A*3 CD4 NP 246-262 RNPGIAAEIED/TFLARS 4 A*3 CD4 NP 258-274 FLARSALLIGESVAHKS 1 225 novel ND PA 220-236 PNFSCILPRAYUGF 1 22 novel ND PA 310-326 CMRTFGWKEPTVKPH 4 22 novel ND PA 516-532 DVVNFVRMESLOBLOP 1 22 A*0201 ND PA 516-532 KWMGMFNLLGVSL 1 26 A*0201 ND PA 516-532 KWMGMFLLQSLQSL 1 26	NP^{e}	175-191	RSGAAGAAVKGVGTMVL	3	95	$B*2705^{f}$	CD4
NP ^e 193-209 LIRMIKRGINDRNFWRG 3 102 novel CD4 NP 236-262 RNPGNAEIEDLTFLARS 4 2.5.5 novel ND NP 236-262 RNPGNAEIEDLTFLARS 4 2.5.5 novel ND NP 236-274 FLARSALLARS 4 2.2.5 novel ND PA 2310 EGYSLVGVDPFKLDGTS 4 2.2.2 novel ND PA 210-326 CMRTFGWKEPTVVKPH 4 2.2 novel ND PA 516-532 DVNNFYSGTENFRAVDGTS 1 2.2 novel ND PA 516-532 DVNNFYSGTENFRAVDGTS 4 2.2 A*0201 ND PA 516-532 DVNNFYSGTENTRAVDGT 1 2.2 A*0201 ND PA 516-532 DVNNFYSGTENTLAVDSL 1 2.0 novel ND PB 406-422 GMMGMFNLLTVLOSLQQI 4 2.6 A*0201 ND PB1	NP^{e}	187-203	G<u>T</u>MVLELIRMIKRGIND	3	75	$\mathrm{A}{*}1101^{f}$	CD4
NP 246-262 RNPGNAEIEDLTFLARS 4 2.2.5 novel ND NP 258-274 FLARSALILRGSVAHKS 1 40 33	NP^{e}	193-209	LIRMIKRGINDRNFWRG	3	102	novel	CD4
NP 258274 FLARSALILRGSVAHKS 1 40 A3 CD8 NP 294-310 EGYSLVGVDFKLLQTS 4 22 movel ND PA 294-310 EGYSLVGVDFKLLQTS 4 22 movel ND PA 310-326 CMRTFGWKESTTVKPH 4 22 A*0201 CD8 PA 316-532 CMRTFGWKESTTVKPH 4 32 movel ND PA 516-592 KWGMENTTOPRL 1 226 MOVEl ND PBI 447-463 FALIVNAPNYAGIQACV 1 26 A*0201 ND PBI 447-463 FALIVNAPNYAGIQACV 1 26 B7 CD8 PBI 66-581 KNPTGGLGTK 1 26 B7 CD8 PBI 66-81 LQLIKDVRYTYRCHRG 1 36 movel ND PB1 66-81 LQLIKUN 1 36 movel ND PB1 66-82 10	ЧN	246-262	RNPGNAEIEDLTFLARS	4	22.5	novel	Q
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ЧN	258274	FLARSAL <u>ILRGSVAHK</u> S	1	40	A3	CD8
PA 220-236 PDNFSCIENTRAYVDGF 1 22 A*0201 CD8 PA 516-532 CMRTFFGWKEPTVVKPH 4 32 novel ND PA 516-532 DVNFVSKHENTTOPRL 1 20 novel ND PA 516-532 DVNFVKPH 4 32 novel ND PA 576-592 KWOMENRENLTDPRL 1 20 novel ND PB1 406-422 GMMMGMFNMLSTVLGVS 1 26 A*0201 CD8 PB1 447-463 FALIVNAPNYAGIQAGV 1 26 A*0201 CD8 PB1 ^e 537-553 NDLGPATAQMALQLFIK 1 32 B7 CD8 PB1 ^e 537-553 NDLGPATAQMALQLFIK 1 36 novel ND PB1 ^e 548-564 LQLFIKDYRYTYRCHRG 1 36 novel ND PB1 ^e 548-564 LQLFIKDYRYTYRCHRG 1 36 novel ND PB2 2	ЧN	294-310	EGYSLVGVDPFKLLQTS	4	22	novel	Q
PA 310-326 CMRTFFGWKEPTVVKPH 4 32 novel ND PA 516-532 DVVNFYSMEFSLTDPRL 1 20 novel ND PA 516-532 DVVNFYSMEFSLTDPRL 1 20 novel ND PA 516-532 DVVNFYSMEFSLTDPRL 1 20 novel ND PB1 406-422 GMMMGMFNMLSTVLGSLQQI 4 36 A*0201 ND PB1 447-463 FALIVNAPNYAGIQAGV 1 24 36 NO ND PB1 537-553 NDLGPATAQMALQUFIK 1 24 37 CD8 ND PB1 ^e 537-553 NDLGPATAQMALQUFIK 1 32 B7 CD8 ND PB1 ^e 537-553 NDLGPATAQMALQUFIK 1 32 ND ND PB1 ^e 548-564 LQLFIKDYRTYRCHRG 1 36 novel ND PB1 ^e 548-564 LQLFIKDYRTYRTKHRG 1 36 novel <td< td=""><td>PA</td><td>220-236</td><td>PPNF<u>SCIENFRAYV</u>DGF</td><td>1</td><td>22</td><td>$A^{*}0201$</td><td>CD8</td></td<>	PA	220-236	PPNF<u>SCIENFRAYV</u>DGF	1	22	$A^{*}0201$	CD8
PA 516-532 DVVNFVSMEFSLTDPRL 1 20 novel ND PA 576-592 KWGMEMRRCLLQSLQOI 4 36 novel ND PB1 406-422 GMMMGRFNMLSTVLGVS 1 26 A*0201 CD8 PB1 447-463 FALIVAPNYGGGV 1 44 novel ND PB1 537-553 NDLGPATAQMALQLFIK 1 32 B7 CD8 PB1 ^e 537-553 NDLGPATAQMALQLFIK 1 36 novel ND PB1 ^e 537-553 NDLGPATAQMALQLFIK 1 36 novel ND PB1 ^e 548-564 LQLFIKDYRYTYKCHRG 1 36 novel ND PB2 203-219 VAYMLERLVKTRFLP 2 30 novel ND	PA	310-326	CMRTFFGWKEPTVVKPH	4	32	novel	Q
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PA	516-532	DVVNFVSMEFSLTDPRL	1	20	novel	QN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PA	576-592	KWGMEMRRCLLQSLQQI	4	36	novel	QN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PB1	406-422	GMMMGMFNMLSTVLGVS	-	26	A*0201	CD8
PB1 ^e 537-553 NDL <u>GPATAQMAL</u> QLFIK 1 32 B7 CD8 PB1 ^e 548-564 LQLFIKDYRYTYRCHRG 1 36 novel ND I1-F2 (H3N2) 65-81 KNPTQGSLRTHALKQWK 1 48 novel ND PB2 203-219 VAYMLERELVRKTRFLP 2 30 novel ND	PB1	447-463	FALIVNAPNYAGIQAGV	1	44	novel	QN
PB1e548-564LQLFIKDYRYTYRCHRG136novelND1-F2 (H3N2)65-81KNPTQGSLRTHALKQWK148novelNDPB2203-219VAYMLERELVRKTRFLP230novelND	$PB1^{e}$	537-553	NDL <u>GPATAQMAL</u> QLFIK	1	32	B7	CD8
1-F2 (H3N2) 65-81 KNPTQGSLRTHALKQWK 1 48 novel ND PB2 203-219 VAYMLERELVRKTRFLP 2 30 novel ND	$PB1^{\ell}$	548-564	LQLFIKDYRYTYRCHRG	1	36	novel	QN
PB2 203-219 VAYMLERELVRKTRFLP 2 30 novel ND	(1-F2 (H3N2)	65-81	KNPTQGSLRTHALKQWK		48	novel	Q
	PB2	203-219	VAYMLEREL VRKTRFLP	2	30	novel	QN

Hum Immunol. Author manuscript; available in PMC 2010 September 1.

^aUnderlined amino acid sequences are previously published T cell epitopes (also see comments). Amino acid/s highlighted in bold reflects an amino acid change in our peptide sequence compared to the previously published epitope.

 $^b\mathrm{SFC}$ values are representative of one ELISPOT experiment with three replicate wells per donor.

Babon et al.

^cThe HLA class I and class II alleles described in the comments are the restricting MHC allele of the underlined amino acid sequence.

dr-cell phenotype was determined by either IFN-7 ELISPOT using CD4 or CD8 depleted donor PBMC or IFN-7 ICS using peptide-stimulated bulk culture cells as effectors. ND (not determined).

 e^{t} This peptide contains amino acid residues that overlaps with another peptide and is identified by the same donor.

 $f_{
m This}$ peptide contains a known CD8 T-cell epitope, but the peptide-stimulated bulk culture we generated has a CD4 T-cell phenotype.

Table 4

Phenotype of IFN- γ -producing cells after CD4⁺ or CD8⁺ cell depletion

		SFC/10 ⁶	
Peptide	Whole PBMC	CD4-depleted PBMC	CD8-depleted PBMC
NOR 1			
^a M1 ₅₈₋₆₆	401.7	281.7	0
$b_{\rm H3 \ HA_{322,334}}$	8.3	6.7	25
H3 HA ₂₇₃₋₂₈₉	46.7	8.3	65
M1 ₂₃₄₋₂₅₀	53.3	1.3	57.3
N2 ₁₇₆₋₁₉₂	34.7	0	68
NOR 3			
$M1_{91-107}$	90.7	0.0	164.2
M1 ₉₇₋₁₁₃	124	27.5	152.5
M1 ₂₀₅₋₂₂₁	68.0	7.5	174.2
M1 ₂₁₀₋₂₂₆	97.3	7.5	235
M1 ₂₁₆₋₂₃₂	22.7	0.8	50
N2 ₁₇₆₋₁₉₂	44	0.8	135
NP ₁₀₉₋₁₂₅	74.7	7.5	95
NP ₁₁₅₋₁₃₁	30	0.8	45
NP ₁₇₅₋₁₉₁	22	0.8	20
NP ₁₈₇₋₂₀₃	37.3	2.5	42.5
NP ₁₉₃₋₂₀₉	52	4.2	102.5
H3 HA ₂₄₉₋₂₆₅	25	2.5	25

^aM158-66 is an HLA-A2-restricted immunodominant epitope. It is used here as a control peptide for positive CD8 T cell responses in HLA-A2 donors.

^bH3 HA322-334 is a HLA-DR1-restricted epitope. It is used here as a control peptide for positive CD4 T cell responses in HLA-DR1 donors.

Table 5

H1 and H3 HA peptides that gave a positive IFN- γ response in ELISPOT screening using PBMC from an additional 30 donors

Protein	AA Position	Sequence ^{<i>a</i>}	No. of Positive Donors	SFC/10 ^{6b}
НЗ НА	13-29	LVFAQKLPGNDNSTATL	1	62.5
H3 HA	37-53	PNGTIVKTITNDGIEVT	2	50, 107.5
H3 HA	43-59	KTITNDQIEVTNATELV	2	30, 37.5
H3 HA	59-75	VQSSSTGGICDSPHQIL	1	57.5
H3 HA	83-99	IDALLGDPQCDGFQNKK	1	52.5
H3 HA	107-123	SKAYSNCYPYDVPDYAS	2	40, 50
H3 HA	119-135	PDYASLRSLVASSGTLE	1	22.5
H3 HA	131-147	SGTLEFNNESFNWTGVT	1	37.5
H3 HA	155-171	CKRRSNNSFFSRLNWLT	1	20
H3 HA ^C	209-225	SLYAOASGRITVSTKRS	4	20, 25, 330, 167,5
H3 HA^c	215-231	SGRITVSTKRSQQTVIP	2	37.5
H3 HA ^{c}	243-259	PSRISIYWTIVKPGDIL	5	33.3, 37.5, 40, 42.5, 75
$H3 HA^{C}$	249-265	YWTIVKPGDILLINSTG	4	27 5 27 5 32 5 32 5
	255-271	PGDILLINSTGNLIAPR	1	30 22 5 35 50
	255-271	LIADCVERIDSCRSSI		20
	207-283	CVCNSECITDNCSIDND	1	20
	291-307	CDDVVVONTLVLATCMD	1	22.J 50 25 67 5
	244 260	TRCIECALACEIENCWE	5	50, 55, 67.5
	344-300		1	27.5
	286 402	TO A A INOINCE VI NILLO	1	27.5
	207 412	I NRI ICETNEVEHOIEV	2 1	27.5, 52.5
	397-413 402-410	LINKLIGKINEKFRQIEK	1	22.3 57.5
	405-419	KINEKFRQIEKEFSEVE HOJEVEESEVECDIODI	1	57.5
	409-423	PIODI EKVVEDTKIDI W	1	90
	421-437	VIDI WSVNAELI VALEN	1	25 27 5 57 5
	433-449	VIAELI VALENOUTIDI	2	22 5 25
	457 455	DSEMNKI EEDTKKOI DE	2	55
	457-475	L EEDTKKOL DENAEDMC	1	20
	405-479		1	62 5 22 5 80
	505 521	DVVDDEAL NNDEOIKGV	5	02.3, 22.3, 80
	529 542		1	50
	550 566	EIMWACOKCNIPCNICI	1	50 47 5
пэпа	550-500	FIMWACQKONIKCNICI	1	47.5
H1 HA	37-53	LEKNVTVTHSVNLLEDS	1	27.5
H1 HA	156-172	GKSSFYRNLLWLTGKNG	1	35
H1 HA	262-278	GNLIAPWYAFALSRGFG	1	60
H1 HA	416-432	LERRMENLNKKVDDGFL	1	40
H1 HA	434-450	IWTYNAELLVLLENERT	1	25
H1 HA	458-474	VKNLYEKVKSQLKNNAK	1	37.5
H1 HA	464-479	KVKSQLKNNAKEIGNG	2	65, 75
H1 HA	480-496	CFEFYHKCNNECMESVK	1	45
H1 HA	510-526	KLNREKIDGVKLESMGV	1	35
H1 HA	527-543	YQILAIYSTVASSLVLL	1	20
H1 HA	545-560	SLGAISFWMCSNGSLQ	1	42.5
H1 HA	550-565	SFWMCSNGSLQCRICI	1	20

 a Underlined sequences are known influenza HA epitopes. Amino acids highlighted in bold reflect an amino acid change in our peptide sequence compared to the previously published epitope.

 b SFC values are representative of one ELISPOT experiment with three replicate wells for each donor positive for the peptide.

^cThis peptide contains amino acid residues that overlaps with another peptide and tested positive for IFN-γ response using PBMC from the same donor.

_
1
~
_
_
~
-
~
-
_
-
_
-
0
<u> </u>
_
_
~
>
b b b b b b b b b b b b b b b b b b b
=
5
-
<u> </u>
10
0)
0
U
_
75
<u> </u>

Table 6

Recognition of influenza virus peptides by CTL lines generated from donor PBMC

% Specific ⁵¹ Cr release ^a	0.001 μg/ml peptide	31.5 8.4 7.4
	0.1 µg/ml peptide	31.7 12.9 37.9
	1 µg/ml peptide	38.0 8.5 35.5
	10µg/ml peptide	59.2 30.2 55.7
HLA restriction e		DRB1*01 N.D. N.D.
% CD4 T-cells producing IFN-y ^d		84.5 0.73 ^f 27.6
CD4/CD8 ^c		CD4 CD4 CD4
Epitope (AA position)		267-283 350-366 205-221
Protein		H3 HA H3 HA M1
	Cell Line ^b	1-3E2 2-10D8 3-1C9

^dE:T ratio was 10:1; values are representative of one experiment. Specific lysis was determined by subtracting the percentage of lysis of unpulsed targets by effector cells from that of peptide-pulsed targets. Lysis of unpulsed targets were <5%.

 b Cell lines were tested in CTL as say at least twice in triplicate wells.

 c T cell phenotype was determined by flow cytometry. Purity of T cell population is >98%.

^dIFN-7 producing cells were identified by ICS. Cell lines were added to either virus or peptide-stimulated autologous BLCLs. PMA/ionomycin was used as a positive control.

e HLA restriction was determined by CTL assay against various BLCLs expressing different combinations of MHC class II molecules and by pre-treating target cells with anti-HLA-DR, -DQ, and -DP antibodies.

fror this T-cell line, 62.4% of CD4 T-cells produced IFN-y upon PMA/ionomycin stimulation, but only 0.22% of CD4 T-cells produced IFN-y upon H3N2 virus infection.

Babon et al.