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Abstract
Chemotherapy for metastatic bladder cancer is rarely curative. The recently developed small molecule, lapatinib, a
dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor-2 receptor tyrosine kinase
inhibitor, might improve this situation. Recent findings suggest that identifying which patients are likely to benefit
from targeted therapies is beneficial, although controversy remains regarding what types of evaluation might yield
optimal candidate biomarkers of sensitivity. Here, we address this issue by developing and comparing lapatinib sen-
sitivity prediction models for human bladder cancer cells. After empirically determining in vitro sensitivities (drug
concentration necessary to cause a 50% growth inhibition) of a panel of 39 such lines to lapatinib treatment, we
developed prediction models based on profiling the baseline transcriptome, the phosphorylation status of EGFR
pathway signaling targets, or a combination of both data sets. We observed that models derived from microarray
gene expression data showed better prediction performance (93%-98% accuracy) compared with models derived
from EGFR pathway profiling of 23 selected phosphoproteins known to be involved in EGFR-driven signaling (54%-
61% accuracy) or from a subset of the microarray data for transcripts in the EGFR pathway (86% accuracy). Com-
biningmicroarray data and phosphoprotein profiling provided a combinationmodel with 98% accuracy. Our findings
suggest that transcriptome-wide profiling for biomarkers of lapatinib sensitivity in cancer cells provides models with
excellent predictive performance and may be effectively combined with EGFR pathway phosphoprotein profiling
data. These results have significant implications for the use of such tools in personalizing the approach to cancers
treated with EGFR-directed targeted therapies.
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Introduction
Bladder cancer is the fourth most common tumor diagnosed in the
United States [1] and among the most expensive cancers to treat [2].
Approximately 50% of bladder cancer patients that present with
muscle invasive disease develop metastasis [3]. Systemic chemother-
apy with the methotrexate, vinblastine, doxorubicin, and cisplatin
regimen has been used for more than a decade in patients producing
a median survival of 12 months [4]. Newer combinations such as
gemcitabine-cisplatin are gaining popularity given their diminished
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toxicity, yet they do not offer improvements in clinical outcome [5].
Hence, there is a strong impetus to discover more effective agents for
advanced bladder cancer whether to be used alone or in combination
with established drugs in the metastatic setting.

Epidermal growth factor receptor (EGFR) has been associated with
bladder tumor progression and hence is an important potential target
for therapy for invasive or metastatic bladder cancer [6]. The EGFR
family contains four distinct but structurally similar tyrosine kinase re-
ceptors encoded by the genes EGFR, ERBB2 (human epidermal growth
factor receptor-2 [HER2]),ERBB3 (HER3), andERBB4 (HER4).Gen-
erally, these receptors possess extracellular, transmembrane, and intra-
cellular tyrosine kinase domains. After ligand binding and formation
of homodimers or heterodimers among family members, the ligand-
receptor complex undergoes tyrosine autophosphorylation in trans, re-
sulting in signaling that supports cell survival, angiogenesis, and even
metastatic activity of tumors [7]. Studies have reported associations be-
tween EGFR and HER2 expression with both higher bladder tumor
grade and invasion [8], whereas expression of HER2 alone, or in as-
sociation with EGFR and HER3, was negatively associated with pa-
tient survival [9]. Experimental models have also confirmed a role for
these receptors in bladder cancer cell migration and other surrogates
of metastasis [10,11].

Lapatinib (Tykerb, GW572016) is a reversible noncovalent inhibitor
of both EGFR and HER2 receptors that has shown promise in clinical
trials in breast and other cancers [12]. Expression of HER2 has been
established as a minimal requirement for patient inclusion in previous
breast cancer trials [13]. Beyond that, there remains significant disagree-
ment regarding whether expression or phosphorylation level, genetic
amplification, or other measures of HER2 or EGFR expression and ac-
tivity may predict response to lapatinib [14]. In addition, a recent study
of 61 human tumor cell lines from 12 different histologies found that
expression levels of both EGFR andHER2 have to be considered for pre-
diction, along with the type of tissue of origin, to provide the best pre-
diction of response to lapatinib [15]. A phase 2 clinical trial of lapatinib in
inflammatory breast carcinoma found that expression of phosphorylated
HER3 and lack of p53 expression independently associated with re-
sponse, whereas patients whose tumors coexpressed phosphorylated
HER2 and HER3 were more likely to respond than tumors that did
not [16]. Together, these findings suggest assessing the activity of EGFR
family signaling pathways to predict lapatinib sensitivity.

Profiling cells using genomic technologies has also predicted drug
sensitivity. Recently, we generated gene expression signatures of sensi-
tivity to three common chemotherapeutic agents, namely, gemcitabine,
cisplatin, and paclitaxel, finding that such signatures predict sensitivity
in human bladder cancer cells [17]. Another group has developed, based
on in vitro cell line testing,microarray-based signatures to predict in vitro
sensitivity of cell lines to erlotinib and found that such signatures can
predict EGFR activation and mutation in human lung cancer clinical
samples [18]. Such findings suggest that predictive biomarkers of
lapatinib sensitivity might also be discovered through high throughput
gene expression analysis.

These findings raise important and timely questions. First, can gene
expression profiling and EGFR pathway phosphoprotein profiling pro-
vide useful tools to predict response to lapatinib? Second, if both ap-
proaches provide some prediction, can a combination of both provide
even better results? Answering these questions would lay the conceptual
framework for a practical implementation of cancer evaluation for the
prediction of EGFR-targeted therapeutics. Here, we use a panel of hu-
man bladder cancer cell lines as a model to answer these questions.
Materials and Methods

Cell Lines, Cell Culture, and Generation of Lapatinib
Response Data

Human bladder cancer cell lines used in this study and their growth
conditions were previously described [17,19–21]. Lapatinib was pro-
vided by GlaxoSmithKline, Research Triangle Park, NC, dissolved in
100%DMSO, and aliquoted as 8-mM stock until use. Cell lines were
seeded at a density of 1000 cells per well in 96-well cell culture plates.
After 24 hours, lapatinib was added to each well in RPMI-1640 plus
10% FBS (all cell lines used were tested in this standard medium for
the sake of internal consistency), in a total volume of 200 μl. Lapatinib
doses used were 0.25, 0.5, 1, 2, 4, and 8 μM. Every dose of lapatinib
was tested in triplicate, and each experiment was repeated four to
seven times for each cell line. Each 96-well plate contained a row
of 8 wells with RPMI-1640 media plus 10% FBS and 0.1% DMSO
as an untreated control. Plates were incubated for 72 hours with media
only or the above lapatinib doses, after which growth inhibition was
assessed by Alamar Blue (BioSource International, Camarillo, CA)
[17,22]. For immunoprecipitation experiments, cells were exposed
to either DMSO vehicle or lapatinib at their calculated drug concen-
tration necessary to cause a 50% growth inhibition (GI50; see below)
for 24 hours, conventional immunoprecipitations were carried out with
anti–phosphotyrosine antibodies, then precipitates were immunoblotted
for total EGFR (both antibodies from Cell Signaling Technologies,
Danvers, MA).
Preparation of Cells for Phosphoproteomic Analysis
Bladder cancer cells were seeded in 100-mm cell culture plates. After

reaching 80% to 90% confluence, cells were rinsedwith 5ml of ice-cold
PBS. Cells were rapidly scraped using a rubber policeman and trans-
ferred tomicrocentrifuge tubes. Cell pellets were collected, snap-frozen
with liquid nitrogen, and stored at −80°C until analysis.
Gene Expression and Reverse-Phase Protein Microarray
Profiling of Bladder Cell Lines

Gene expression profiling data of the 39 cell lines on theHG-U133A
GeneChip oligonucleotide microarray (Affymetrix, Santa Clara, CA)
were obtained from previous publications [19,21–24]. The image file
was analyzed with Robust Multichip Average to obtain the expression
intensity values of the microarray data [25]. Reverse-phase protein
microarrays (RPMAs), constructed from lysates of these 39 cell lines,
were protein quantitated, stored, and blocked for immunodetection as
described previously [26,27]. These arrays were then stained with anti-
bodies recognizing total EGFR, and given its previous association with
sensitivity to trastuzumab, HER2 pTyr-1248 [28], as well as 21 phos-
phospecific antibodies against signaling proteins in the EGFR path-
way, using an automated slide stainer (Dako Cytomation, Carpinteria,
CA) using the Catalyzed Signal Amplification System kit according to
the manufacturer’s recommendation (CSA; Dako Cytomation). Each
antibody was extensively validated for single-band specificity and ligand
induction by Western blot. The targets are listed in Figure 2D, whereas
the sources, specificity workup, staining and detection procedures, and
data analysis protocol for these antibodies have been reported recently
[29]. This protein microarray platform has been demonstrated to be
sensitive (detection levels approaching attogram quantities of target
and variances of less than 10%) [30] and useful for analysis of patient
tumor samples [31].
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Bioinformatic and Statistical Analyses
For the cell lines used in the study, GI50s and GI30s were estimated

based on in vitro dose-response curves fitted to a nonlinear regression
model, as reported before [17,20]. As we [17,20] and others [32] have
reported before, classification of cell lines as sensitive or resistant was
done by the application of a criterion dose (CR) concept designed to
classify based on both the 1) relevant biologic difference (sensitivity) and
2) ability to provide enough cell lines, approximately 10, in each class for
robust statistical analysis of gene expression. Thus, we chose 8 μM
as CR, defining cells as sensitive if GI50 < CR and resistant if GI30 >
CR. Correlations of cell line’s GI50s to microarray expression values of
EGFR and HER2 were nonparametric Spearman correlations per-
formed in GraphPad Prism Software (La Jolla, CA) and 2-tailed t tests
and χ 2 tests in Excel. For the development of predictionmodels, four dis-
covery strategies were used. The first used HG-U133A (22,215 probes)
microarray probes differentially expressed (significance analysis of micro-
arrays [33] and local pooled error tests [34]) between sensitive and resis-
tant cell lines. The second used the 23 EGFR-related phosphoproteins
assayed by the RPMA platform. The third used a subset of the gene ex-
pression data, 60 EGFR pathway–relevant genomic expression biomark-
ers selected from the microarray based on the Kyoto Encyclopedia of
Genes and Genomes database (www.genome.jp). The fourth strategy
pooled both microarray gene expression and EGFR phosphoprotein ac-
tivation data to generate and evaluate the relative contributions of the
gene expression and EGFR pathway activation components to the effi-
cacy of prediction.
Figure 1. Experimental overview. Schematic overview for the develop
cancer cell lines. Thirty-nine bladder cancer cell lines were subjected
gene expression profiling, and EGFR pathway phosphoprotein profilin
for cell lines showing in vitro sensitivity and resistance to lapatinib th
based on all microarray data, EGFR pathway phosphoprotein data an
Accurate, parsimonious prediction models for lapatinib sensitivity
were then identified for the above four discovery strategies by the
misclassification-penalized posterior (MiPP) method [35], which evalu-
ates candidate prediction models based on both their accuracy and their
strength of prediction. In brief, the MiPP algorithm first generates mul-
tiple independent splits of training and test data sets, which, in turn, re-
sult inmultiple predictionmodels. Then, to evaluate the performance of
the predictionmodels generated from this first step, the data set was split
into test and training sets more than 100 times to generate a distribution
of prediction scores for each model, from which their objective con-
fidence bounds can be obtained. The performance of suchmodels is de-
scribed through use of the standardized MiPP score (sMiPP), which
varies between −1 and 1, from the worst (low strength of prediction and
least accuracy) to the best (high strength prediction and high accuracy).
From this confidence interval evaluation, mean and lower 5% sMiPP
scores (i.e., 95% likelihood that the model outperforms that value) and
mean misclassification rates were obtained for each of the candidate
prediction models. The MiPP algorithm is summarized in Figure W1.
Results

Sensitivity of Human Bladder Cell Lines to Lapatinib
Our experimental algorithm for the development of molecular

models predicting the sensitivity of bladder cancer cell lines to lapatinib
is shown in Figure 1. The first step was to test in vitro the growth
ment of prediction models for lapatinib sensitivity in human bladder
to in vitro determination of lapatinib sensitivity, baseline microarray
g by reverse-phase protein microarrays in parallel. Using these data
rough the MiPP algorithm, models were developed and evaluated
d a subset of array data for known EGFR pathway proteins.
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inhibitory activity of lapatinib in 39 bladder cancer cell lines. We gen-
erated classic dose-response curves, estimated GI50s using nonlinear re-
gression analysis, and reported these in Table 1. To define cell lines as
“sensitive” or “resistant” for downstream data analysis, we devised a crite-
rion dose [17,20] as described inMaterials andMethods. Eleven cell lines
met our criterion for sensitivity, whereas 16 cell lines were determined
to be resistant to lapatinib (Table 1). Cell lines that did not meet this cri-
terion (i.e., had intermediate sensitivities) were excluded from further
analysis (Figure W2).
Evaluation of Gene Expression Prediction Models for
Sensitivity to Lapatinib

Using published HG-U133A data for the 39 cell lines, we exam-
ined whether there was any relationship between the cell line’s GI50s
and the expression of lapatinib targets EGFR and HER2. Neither did
we observe significant correlation between the cell line’s GI50s and
expression of these targets (rs = −0.1854, P = .33; rs = 0.08, P = .66,
respectively; Figure 2A) nor did we observe a statistically significantly
differential expression of these targets in cells defined as sensitive or resis-
tant (P = .90 and P = .72, respectively). Given these findings, we wished
to demonstrate that the drug was indeed functionally inhibiting its tar-
get; thus, we performed immunoprecipitation experiments with anti–
phosphotyrosine antibodies and blot analysis with anti–total EGFR,
finding variable inhibition of EGFR phosphorylation at cell lines’ cal-
culated GI50s (Figure 2B).

Next, we decided to use the entire microarray data to discover probes
differentially expressed between sensitive and resistant cell lines. This
analysis resulted in discovery of 33 probes significantly associated with
lapatinib sensitivity (false discovery rate < 10%). Unsupervised two-
dimensional hierarchical clustering of these the 11 sensitive and 16 resis-
tant cell lines by these 33 probes can be seen in Figure 2C , where each
row represents the relative level of expression for the indicated probe
(higher and lower expressions are shown as red or blue, respectively).
We noted that clustering divided the cell lines into two large groups,
roughly corresponding to sensitive and resistant clusters. Although the
exchange of three sensitive and three resistant lines among these clus-
ters rendered this split nonsignificant (P = .60), we interpreted the heat
map as suggestive that predictive models might be built based on these
probe sets.

As reported before [17], we used the 33 sensitivity-related probes to
construct prediction models of lapatinib sensitivity based on gene ex-
pression models using the MiPP technique [35]. Because of the func-
tion of the MiPP algorithm, which develops predictive models based
on splitting training and test data (Figure W1), predictive models may
contain some of the same or different genes (Table W1). A priori, we
adopted the criterion that models evince at a minimum a lower 5%
sMiPP score > 0.7 (i.e., 95% likelihood that the model performs better
than an sMiPP of 0.7) and found that two predictive models met this
criterion, Gene Expression Models 1 and 2, mean prediction accuracies
98.2% and 93.2%, respectively (Table 2). Gene Expression Model 1 in-
cluded cyclin D2, membrane-associated ring finger (C3HC4) 7, and
zinc finger protein 226.Gene ExpressionModel 2 was similar toModel 1,
with the substitution of phosphodiesterase 4D interacting protein as
the third prediction gene. The performance of these probes within
these models across sensitive and resistant cell lines can be seen in
Figure 3A.
Evaluation of Proteomic Prediction Models
Because sensitivity to EGFR family inhibitors has also been corre-

lated to the signaling status of this pathway [15], we sought to deter-
mine whether lapatinib sensitivity in our cell lines was associated with
differential activation status. We used RPMA [26] to quantitatively in-
terrogate the status of targets in this pathway. Thus, we spotted serial
dilutions of the 39 cell line lysates onto nitrocellulose-coated glass slides
and quantitated the activation/phosphorylation levels of 22 EGFR path-
way phosphoproteins and total EGFR for each cell line, as described in
Materials and Methods and reported before [29]. Unsupervised two-
dimensional hierarchical clustering of the 11 sensitive and 16 resistant
cell lines by these 23 phosphoproteins can be seen in Figure 2D, clus-
tered as in Figure 2C . Again, the clusters provided twomain groupings
of the cell lines, including one with many of the resistant cell lines,
although compared with the microarray probes–based clusters, the
EGFR-based groups showed greater divergence from actual in vitro
sensitivity status.

TheMiPP approach was used to develop sensitivity predictionmod-
els based on these EGFR pathway data. Whereas none of the models
could satisfy our criterion of lower 5% sMiPP > 0.7, three top performing
Table 1. Bladder Cell Lines, Lapatinib Sensitivity, and EGFR and HER2 Expression.
Cell Line
 Aliases
 Sensitivity*
 GI50
 GI30
 EGFR†
 Her2‡
253J LAVAL
 Sensitive
 9.46e − 06
 1.51e − 17
 197.662
 475.005

UMUC6
 Sensitive
 0.472486
 0.019145
 312.573
 222.158

1A6
 Sensitive
 2.617867
 0.376715
 290.071
 344.306

MGHU4
 Sensitive
 3.001725
 0.779046
 198.757
 675.296

VMCUB2
 Sensitive
 6.047518
 3.111507
 165.954
 430.082

5637
 HTB-9
 Sensitive
 6.542723
 3.393761
 225.347
 572.962

Hs172.T
 CRL-7833
 Sensitive
 7.537695
 5.072047
 320.731
 180.246

MGHU3
 Sensitive
 7.562033
 5.280242
 248.547
 713.548

UM-UC-3
 CRL-1749
 Sensitive
 7.776003
 6.140231
 201.152
 207.442

SL4
 Sensitive
 7.898453
 5.909908
 180.938
 385.1395

SW1710
 Sensitive
 7.9103
 4.426662
 194.459
 746.945

T24T
 Intermediate
 8.281807
 3.704375
 160.312
 635.74

T24
 HTB-4
 Intermediate
 9.131583
 7.233934
 164.519
 417.595

KK47
 Intermediate
 9.319498
 2.25336
 254.375
 183.997

UMUC3E
 Intermediate
 9.543492
 7.066357
 204.852
 187.281

VMCUB3
 Intermediate
 10.67859
 5.603397
 153.964
 763.236

TCCSUP
 HTB-5
 Intermediate
 11.75994
 6.516546
 215.506
 385.619

SCABER
 HTB-3
 Intermediate
 12.92753
 1.309457
 158.343
 465.638

SW780
 CRL-2169
 Intermediate
 21.97725
 4.588134
 213.838
 546.201

UMUC9
 Intermediate
 37.4769
 3.124082
 122.157
 1238.58

HT-1376
 CRL-1472
 Intermediate
 38.20096
 5.763254
 175.057
 531.779

CUBIII
 Intermediate
 43.1401
 1.203082
 246.761
 609.188

BC16.1
 Intermediate
 204.1396
 6.68218
 157.73
 988.223

HT-1197
 CRL-1473
 Resistant
 12.42569
 9.231061
 209.47
 311.749

253JP
 Resistant
 288.4687
 12.22306
 281.861
 248.071

253JBV
 Resistant
 288.1026
 13.28975
 282.737
 260.826

PSI
 Resistant
 694.7739
 30.68547
 302.276
 239.202

UMUC14
 Resistant
 3016.783
 33.70369
 149.282
 331.882

575A
 Resistant
 23,083.92
 231.1572
 200.782
 1146.17

Hs228.T
 CRL-7193
 Resistant
 §
 §
 330.749
 231.088

FL3
 Resistant
 §
 §
 157.9835
 573.9055

J82
 HTB-1
 Resistant
 §
 §
 163.089
 477.636

JON
 Resistant
 §
 §
 225.689
 1384.9

KU7
 Resistant
 §
 §
 256.618
 202.81

RT4
 HTB-2
 Resistant
 §
 §
 240.453
 1273.03

UMUC1
 Resistant
 §
 §
 235.984
 193.294

UMUC13D
 Resistant
 §
 §
 221.113
 167.805

UMUC2
 Resistant
 §
 §
 231.446
 295.99

VMCUB1
 Resistant
 §
 §
 202.734
 701.373
*Cell line sensitivity was determined by the criterion dose 8 μM; sensitive cell lines, GI50 < 8 μM;
resistant cell lines, GI30 > 8 μM.Cell lines were ranked within groups byGI50 (sensitive, intermediate)
or GI30 (resistant).
†Epidermal growth factor receptor, Affymetrix Probe ID: 211551_at.
‡HER2, ERBB2, Affymetrix Probe ID: 216836_s_at.
§Resistant lines where growth curves were invariant across concentrations tested, precluding estima-
tion of GI50 by regression analysis.



Figure 2. Lapatinib sensitivity compared with candidate biomarkers. (A) Cell lines were sorted by increasing lapatinib GI50 (concentration
necessary to reduce cellular growth by one half relative to no drug) and their log10GI50s were plotted with their logged expression of the
EGFR and HER2 (Affymetrix probe sets 211551_at and 216836_s_at). (B) The indicated cell lines, including those classified as sensitive
(UMUC3), intermediate (KK47), and resistant (KU7, UMUC2 and 13D, and 253JP), were treated at their lapatinib GI50 or control for 24 hours
before immunoprecipitation with anti–phosphotyrosine antibodies and detectionwith anti–EGFR antibodies. (C) Hierarchical clustering, as
reported recently [63], of 27 (11 sensitive, 16 resistant) bladder cancer cell lines by 33 microarray probes significantly differentially ex-
pressed between them. The upper white and black panel shows a “predicted” split of the cell lines into two major clusters based on their
expression of these genes, whereas the lower white (sensitive) and black (resistant) boxes show their actual in vitro determined sensitivity
status. (D) A similar hierarchical cluster to panel (B) but clustering based on expression of 23 phosphoproteins in the EGFR pathway.
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models were EGFR ProteomicsModel 1, including the two phosphopro-
tein p70S6 kinase (pSer-371) and HER2 (pTyr-1248), mean accuracy
61%; EGFR Proteomics Model 2, including HER2 (pTyr-1248) alone,
mean accuracy 55%; and EGFR Proteomics Model 3, including detection
of FOX01 (pThr-24) and FOX03a (pThr-32) by a single antibody, mean
accuracy 55% (Table 2 and Figure 3B).
Evaluation of Gene Expression Prediction Models from EGFR
Pathway–Related Genes

Given our finding that proteomic prediction models based on EGFR
pathway signaling status alone underperformed relative to those based
on global gene expression, we were interested in evaluating models lim-
ited to gene expression data for components of the EGFR signaling
Table 2. Microarray Probe or Phosphoprotein-Specific Composition of the Five Predictive Models and Their Accuracy.
Platform
 Microarray Data
 EGFR Pathway Genes
 Reverse Phase Protein Microarray
 Combination
Mean accuracy
 0.98
 0.93
 0.86
 0.61
 0.55
 0.55
 0.98

Mean MiPP
 8.60
 7.59
 5.04
 0.76
 0.44
 0.35
 5.78

Mean sMiPP
 0.96
 0.84
 0.63
 0.19
 0.11
 0.09
 0.96

5% sMiPP
 0.80
 0.71
 0.36
 −0.31
 −0.05
 0.00
 0.67

95% sMiPP
 1.00
 0.98
 0.84
 0.67
 0.33
 0.35
 0.99

Biomarker 1
 CCND2
 CCND2
 GRB2
 p70S6 S371
 HER2 Y1248
 FOX01/03a T24/32
 FAM128B

Biomarker 2
 MARCH7
 MARCH7
 PTK2
 HER2 Y1248
 SLC6A8

Biomarker 3
 ZNF226
 PDE4DIP
 AKT3
 EGFR Y1173

Biomarker 4
 ABL1



Figure 3.MiPP models predictive of lapatinib sensitivity. (A) Two three-probe gene expression models were built based on a total of four
probes for expression of the genes CCND2,MARCH7, ZNF226, and PDE4DIP. The sensitive (white) or resistant (black) cell lines’ expres-
sion of each of these probes were z-scored (units of SD) for easy visualization and sorted before being plotted to show their differences of
expressionwithin sensitive and resistant groups. (B) Similar plots to panel (A) but of three EGFR pathway phosphoproteins contained in the
three EGFR pathway models. (C) Similar plots to panels (A) and (B), but this time showing the expression patterns of four EGFR pathway–
related gene expression probes comprising one model. Composition, accuracy, and MiPP performance parameters of these models are
summarized in Table 2.
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pathway. We used the Kyoto encyclopedia of Genes and Genomes gene
network database (www.genome.jp) to preselect 60 EGFR pathway–
related genes for developing such prediction models. Using the same
MiPP technique for discovery and evaluation of predictive models, we
again found that there were no predictivemodels such that the lower 5%
sMiPP score was higher than 0.7. The highest performance was shown
by one model that included four probes and with a mean prediction ac-
curacy of 86.2% (Table 2 and Figure 3C). Thus, transcriptional prediction
based on models restricted to EGFR pathway also underperformed
compared with models derived from unbiased genome-wide searches.
Evaluation of Combination Prediction Models
Because the predictive performance of nomograms can sometimes

be enhanced by combination of several types of data [36], we were in-
terested in whether a combination of both data sets (gene expression
and phosphoproteomics) could provide equivalent or even improved
predictive information beyond that provided by models derived from
global transcriptional assessment.We used theMiPP algorithm to gen-
erate and evaluate combination models composed of both gene expres-
sion and EGFR pathway phosphoproteomics data. This was performed
in an unbiasedmanner, pooling both data sets before application of the
algorithm, which resulted in the discovery of three gene MiPP models
that included one, two, or three probes from either data type. Then, top
combination models were examined to evaluate the relative contribu-
tions of the gene expression probes versus EGFR phosphoproteins to
predictive efficacy. We found that most of the top-performing models
included only gene expression probes; however, the top-performing com-
bination model included the phosphoprotein EGFR (pTyr-1173), with a
mean prediction accuracy of 98.3%, similar to the gene expression–based
models discovered based on differential expression between sensitive and
resistant cell lines (Table 2).

Discussion
As more data become available from clinical trials of molecularly tar-
geted drugs, it is increasingly clear that selection of patients that are likely
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to respond to such drugs needs to be undertaken a priori, to optimize the
value of trials and discover patient subsets likely to benefit from treat-
ment [37]. The development of response biomarkers, be they mutation,
gene expression, proteomics-based, or, for that matter, a combination of
these, is key in accomplishing this goal. Clinical trials done on patients
with non–small cell lung cancer (NSCLC) and gefitinib highlight these
points and demonstrate the utility of even a single biomarker in the pre-
diction of patient response [38,39]. Recently identified somatic muta-
tions in the tyrosine kinase domain of the EGFR gene in exons 18, 19,
and 21 were identified in 18.9% of patients and found to be in a direct
correlation with clinical response in these NSCLC patients to gefitinib.
It was shown that 88.2% of patients with identified EGFR mutations
experienced clinical benefit from treatment with gefitinib and that these
mutations predicted not only response but also survival. On the basis
of these results, the authors recommended testing patient tissues for
such mutations and use as a first-line therapy in mutation-positive
patients [36]. Recently, it was found that concomitant activation
of Y1068 and Y1148 of the EGFR could predict mutation status
of the gene in human lung cancer clinical specimens, revealing a com-
mon functional consequence of the known mutations on signaling
activation [29].
However, no such EGFRmutations have been identified in bladder

cancer cell lines and biopsy specimens [6], although a recent analysis
of EGFR mutation in NCI-60 cell lines panel suggested that EGFR
tyrosine kinase domain mutations may be rare in histologies other than
NSCLC and potentially associated with resistance to inhibitors [40].
Also, although immunohistochemical markers based on known path-
way targets have shown some promise in being found to be correlated
with patient response to gefitinib [36] or even lapatinib [16], accurate
prediction of response to these drugs, despite its importance to trial
design and patient selection, remains a challenge.
To address the lack of lapatinib biomarkers in bladder cancer we

used 1) genome-widemicroarray data, 2) RPMA-based profiling of tar-
gets in the EGFR pathway, and 3) a subset of the microarray data rel-
evant to the EGFR pathway to discover predictionmodels for lapatinib
sensitivity across 39 bladder cancer cell lines. We found that a substan-
tial proportion (11/39 or 28.2%) of bladder cancer cell lines exhibited
sensitivity in vitro to lapatinib with GI50s lower than 8 μM. Although
these values may initially appear higher than published studies [15], it
is important to note that our studies were performed in RPMI with
10% serum (necessarily, to be able to grow all bladder cell lines in
an internally consistent medium). Moreover, the proportion of cell
lines classified as sensitive by application of the 8 μM criterion dose
(∼25%) is similar to the proportion of patients showing clinical benefit
from lapatinib in a very recently published clinical trial in advanced
bladder cancer patients (∼35%) [41] and previous trials of lapatinib
in breast cancer (∼18%) [42]. On the basis of this sensitivity classifica-
tion scheme, we developed predictive algorithms based on comparing
the aforementioned three types of molecular data between the 11 most
sensitive and the 16 most resistant cell types.
We observed that predictivemodels based on 33 probes significantly

differentially expressed between the 11 sensitive and the 16 resistant
cell lines (mean accuracies across cross-validation loops, 93% and
98%) substantially outperformed models based on the EGFR pathway
alone, whether it was interrogated through protein microarrays (mean
accuracies, 55%, 55%, and 61%) or as a subset of the microarray data
(mean accuracy, 86%). However, the potential to combine EGFR path-
way data with gene expression data was demonstrated by our observa-
tion that EGFR pTyr-1173 could also contribute to a top-performing
combination model (mean accuracy, 98%), supporting the importance
of profiling phosphoprotein expression for biomarker discovery. Such
combination strategies may, in the future, provide the opportunity for
increased precision or robustness of prediction by combining data from
different technologies and even traditional clinicopathologic parameters
as has been noted in previous reports developing prognostic nomograms
of bladder cancer [43,44].

Although we were intrigued that signatures developed based only
on data from EGFR pathway targets underperformed, in retrospect,
this may not be unexpected. One possible explanation is that, although
the pathwaymapping using RPMAproduces a multiplexed view of cell
signaling, the pathway signature in this study did not include every
single known protein signaling end point of EGFR signaling, includ-
ing several known direct downstream signaling targets of EGFR signal-
ing such as SRC and SHC, STAT3, STAT5, as well as phosphospecific
EGFR site Y992, and other EGFR family members, c-erbB3 and 4. In-
deed, because broad-scale profiling of activation states of hundreds of
signaling proteins is possible using RPMA, it may be possible to iden-
tify a pathway biomarker signature composed of other components of
EGFR signaling that could provide a much enhanced predictive signa-
ture to lapatinib sensitivity. Such exploratory studies are underway.

Although two of the three phosphoproteomic models included
HER2 pY1248, a site associated with activation [45], poor prognosis
[46], therapeutic response to another anti-HER2 therapy (trastuzumab)
breast cancer patients [28], and to be regulated in vitro [47] and in vivo
[48] by lapatinib treatment, in this cohort of bladder cancer cell lines,
the expression of the EGFR and HER2 protein targets themselves was
not correlated to sensitivity to lapatinib (Figure 2). Consistent with that
finding, in our previous reports, developing predictive signatures for
combination sensitivity to the cytotoxic drugs, cisplatin, gemcitabine,
and paclitaxel [17], we observed that most predictive probes did not
have clear relationships to the drugs’ knownmechanism of action, sug-
gesting the existence of novel pathways of drug response modulation.

Our gene expression models contained genes such as CCND2,
MARCH7,ZNF226, and PDE4DIP, none of which, to our knowledge,
have been associated with resistance to perturbation of EGFR family
signaling before. Appearing in both of the models, cyclin D2 (CCND2)
is a regulatory subunit of CDK4 and CDK6 kinases that are required
for proper functioning of cell cycle G1/S transition, although related
cyclin D1 expression has been shown to be modulated by lapatinib
treatment in breast cancer cells [49]. Another gene appearing in both
models wasMARCH7 (membrane-associated ring finger (C3HC4)-7 or
axotrophin). Although, as yet, uninvestigated in cancer, this gene is
known to be involved in the regulation of the role of T lymphocytes in
immune tolerance [50]. In the end, although our gene expression models
do not contain biomarkers known to be associated with sensitivity to
lapatinib, bladder cancer, which does not seem to harbor EGFR muta-
tions [51] yet includes patient subsets who benefit from lapatinib ther-
apy [41], may require such markers for optimal patient stratification.

Our findings come at a time of renaissance for cell lines as a bona fide
platform for preclinical evaluation because of the development of pre-
dictive algorithms for patient tumors [52,53]. Two recent reports have
shown the ability to predict, based on informatic approaches to gene
expression and drug activity data in cell lines, the outcome of human
clinical trials with available matched microarray data [20,54]. One of
these algorithms, COXEN, also has the ability to perform in silico drug
discovery, allowing generalization of novel agents in the development
of specific tumor histologies of other tumor types based on core mo-
lecular similarities that transcend tissue-specific differences [20,52].
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Thus, the data produced herein might, through such an approach, sug-
gest investigation of lapatinib application for tumor types heretofore
untried. Most compelling would be the application of ourMiPP-based
signatures and COXEN technology to attempt to predict clinical out-
comes for a microarray data–matched lapatinib human clinical trial
based on in vitro studies in our cell lines and other published cell line
series [55,56]. At present, we are seeking such data for downstream
validation of these signatures.

Whether such extrapolation is possible in the future, lapatinib rep-
resents an exciting new agent for bladder cancer. Not only do pathologic
tissue studies [8,57,58] and in vitromodels [10,11,59] suggest a signif-
icant role for EGFR andHER2 signaling in bladder cancer but also early
clinical trial data in bladder cancer patients [60] suggest it might have
activity in this histologic diagnosis. Indeed, a trial of lapatinib alongside
the standard doublet, gemcitabine and cisplatin, as first-line therapy for
locally advanced andmetastatic EGFRorHER2 overexpressing bladder
cancer, is currently in the recruiting stage (clinicaltrials.gov identifier:
NCT00623064). Intriguingly, lapatinib-mediated reversal of drug resis-
tance has been observed in other cell linemodels [61], whereas data from
a new report suggest synergy between lapatinib and gemcitabine, pacli-
taxel, and cisplatin (a chemotherapeutic combination used in advanced
disease) in a bladder cancer cell line [62]. Together, these exciting find-
ings suggest that this agent deserves strong attention from investigators
and trialists in urologic oncology.
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Figure W1. TheMiPP algorithm. In Step 1, gene expression or phosphoproteomics data for the 11 sensitive and 16 resistant cell lineswere
split into multiple training and test sets and subjected to the development of prediction models for prediction by linear discriminant anal-
ysis. In Step 2, these models are then evaluated against a large number of random splits of the data into training and test sets so as to
provide objective confidence intervals for prediction performance and average accuracy. Models may then be ranked by their MiPP score
(the sum of the correct classification probabilities of correctly predicted samples minus the sum of incorrect classification probabilities of
the incorrectly predicted samples) or the sMiPP (standardizedMiPP score ranging to from−1 to 1). This second step thus allows candidate
models to be ranked by their objective overall performance, selecting against models overfitting their training data. More detailed infor-
mation (Soukup et al, Bioinformatics 2005;21 Suppl 1:i423–30) and code are available (www.bioconductor.org).



Figure W2. Examples of dose-response curves of (A) five sensitive and (B) five resistant bladder cancer cell lines. Sensitivity was defined as
GI50< 8 μM,whereas resistancewas defined asGI30> 8 μM.All cell lineswere incubatedwith lapatinib for 72 hours in RPMIwith 10%FBS
to ensure internal consistency, with quantitation through the Alamar Blue assay. Cell counts were determined in at least three biologic re-
plicates, normalized by the fraction of control growth for interassay comparison, and means were plotted for the indicated cell lines.



Table W1. Thirty-three Probes Associated with Sensitivity*.
Probe Set†
 Name
 Symbol
 Fold‡
200951_s_at
 Cyclin D2
 CCND2
 −5.94

200953_s_at
 Cyclin D2
 CCND2
 −3.97

217767_at
 Complement component 3
 C3
 −3.13

202219_at
 Solute carrier family 6 (neurotransmitter transporter, creatine), member 8
 SLC6A8
 −2.70

212599_at
 Autism susceptibility candidate 2
 AUTS2
 −2.70

213843_x_at
 Solute carrier family 6 (neurotransmitter transporter, creatine), member 8
 SLC6A8
 −2.70

213506_at
 Coagulation factor II (thrombin) receptor-like 1
 F2RL1
 −2.57

212399_s_at
 Vestigial like 4 (Drosophila)
 VGLL4
 −2.02

210910_s_at
 POM (POM121 homolog, rat) and ZP3 fusion
 POMZP3
 −1.74

218055_s_at
 WD repeat domain 41
 WDR41
 −1.53

203066_at
 B-cell RAG associated protein
 GALNAC4S-6ST
 −1.41

202653_s_at
 Membrane-associated ring finger (C3HC4) 7
 MARCH7
 −1.33

212150_at
 EFR3 homolog A (S. cerevisiae)
 EFR3A
 −1.07

206110_at
 —
 —
 1.21

203765_at
 Grancalcin, EF-hand calcium binding protein
 GCA
 1.24

219603_s_at
 Zinc finger protein 226
 ZNF226
 1.24

218538_s_at
 MRS2 magnesium homeostasis factor homolog (S. cerevisiae)
 MRS2
 1.25

214099_s_at
 Phosphodiesterase 4D interacting protein
 PDE4DIP
 1.27

210102_at
 von Willebrand factor A domain containing 5A
 VWA5A
 1.29

200733_s_at
 Protein tyrosine phosphatase type IVA, member 1
 PTP4A1
 1.30

210054_at
 HAUS augmin-like complex, subunit 3
 HAUS3
 1.39

219474_at
 Chromosome 3 open reading frame 52
 C3orf52
 1.49

218000_s_at
 Pleckstrin homology-like domain, family A, member 1
 PHLDA1
 1.53

203865_s_at
 Adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)
 ADARB1
 1.56

219676_at
 Zinc finger and SCAN domain containing 16
 ZSCAN16
 1.65

207655_s_at
 B-cell linker
 BLNK
 1.70

221304_at
 UDP glucuronosyltransferase 1 family, polypeptide A10
 UGT1A10
 1.93

205428_s_at
 Calbindin 2
 CALB2
 2.06

204035_at
 Secretogranin II (chromogranin C)
 SCG2
 2.14

205402_x_at
 Protease, serine, 2 (trypsin 2)
 PRSS2
 2.28

210105_s_at
 FYN oncogene related to SRC, FGR, YES
 FYN
 2.35

209942_x_at
 Melanoma antigen family A, 3
 MAGEA3
 2.41

210467_x_at
 Melanoma antigen family A, 12
 MAGEA12
 5.67
*Using SAM analysis (see Materials and Methods) for differential expression between 11 sensitive cell lines compared with 16 resistant cell lines.
†Probeset ID from the Affymetrix HG-U133A oligonucleotide microarray platform.
‡Fold change comparing resistant cell lines to sensitive ones.


