
Fetal Effects of Psychoactive Drugs

Amy L. Salisbury, PhDa,c,d, Kathryn L. Ponder, BSb,c, James F. Padbury, MDb,c, and Barry
M. Lester, PhDa,c,d

a Brown Center for the Study of Children at Risk, Department of Pediatrics, Women & Infants
Hospital of Rhode Island b Department of Pediatrics, Women & Infants Hospital of Rhode Island c
Department of Pediatrics, Warren Alpert Medical School of Brown University d Department of
Psychiatry, Warren Alpert Medical School of Brown University

Keywords
cocaine; methamphetamine; SSRI; maternal depression; fetal behavior

There has been a longstanding concern with the fetal effects of psychoactive drug use by
pregnant women. In this article we describe the effects of three drugs with similar molecular
targets that involve monoaminergic transmitter systems. These stimulants include the illegal
drugs cocaine and methamphetamine and the class of selective serotonin re-uptake inhibitors
(SSRIs) used to treat maternal depression during pregnancy. We discuss the mechanisms of
action of each drug, including a possible common epigenetic mechanism for their effects on
the developing child. We also discuss fetal neurobehavioral techniques that may be useful in
the early detection of the effects of in utero drug exposure.

In the past three decades, the concept of behavioral teratology1 expanded the field of teratology
to examine behavioral effects in the neonate due to acute exposure to substances in utero,
including environmental, nutritional, and drug exposures.2,3 The developmental consequences
of prenatal exposure to a toxic substance may include central nervous system (CNS) insult
related to the period during gestation of the exposure. In contrast to the effects of drugs on the
adult brain, which result in deformation of the developed brain, fetal effects are more likely to
produce malformation in which the developing brain is prevented from forming normally.4
The effects of exposure during the first half of gestation will impact processes related to
cytogenesis and histogenesis whereas effects during the second half of gestation relate to brain
growth and differentiation. During this organizational phase in the second half of gestation,
progressive events (neuroblast proliferation and migration, axonal projection, and

Corresponding author for proof and reprints: Amy L. Salisbury Ph.D., R.N., B.C., Assistant Professor of Pediatrics & Psychiatry, Brown
Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital of Rhode
Island, 101 Dudley Street, Providence, RI 02905, P: 1-401-453-7960, F: 1-401-453-7646, Amy_Salisbury@Brown.EDU.
Co-Author Addresses: Kathryn L. Ponder, B.S., Warren Alpert Medical School of Brown University, Women & Infants’ Hospital of
Rhode Island, P: 610-405-0502, Kathryn.Ponder@gmail.com
James F. Padbury, MD, Oh-Zopfi Professor of Pediatrics and Perinatal Biology, Warren Alpert Medical School of Brown University,
Pediatrician-in-Chief Program Director, COBRE for Perinatal Biology, Women and Infants Hospital of Rhode Island, 101 Dudley Street,
Providence, RI 02905, P: 1-401-274-1122, ext. 1205, F: 1-401-453-7571, jpadbury@wihri.org
Barry M. Lester, Ph.D., Professor of Psychiatry & Human Behavior, Professor of Pediatrics, Director, Brown Center for the Study of
Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street,
Providence, RI 02905, P: 1-401-453-7640, F: 1-401-453-7646, Barry_Lester@Brown.edu
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Clin Perinatol. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:
Clin Perinatol. 2009 September ; 36(3): 595–619. doi:10.1016/j.clp.2009.06.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



synaptogenesis) and regressive events (programmed cell death and selective elimination of
processes) affect the maturation of brain circuitry. Thus toxic influences during this period
may dramatically alter brain development but may also alter the regressive events that underlie
the capacity of the developing brain to compensate for injury.4

Recent years have seen further expansion of the principles of behavioral teratology to examine
exposure effects on the human fetus at the time of the exposure. Epigenetic and organismic
models of developmental theory suggest that true understanding of a developing system can
occur with the study of its organization of form and structure as it moves toward a teleological
state.5,6 This study includes examination of the mutual influences of genes, physiology, and
behavior as well as the physical, cultural, and social environments of the organism.6

Increasing evidence from preclinical, prospective clinical and epidemiological studies suggests
that many biological factors acting during prenatal life are associated with adult disease as well
as long term neurobehavioral abnormalities7–17 and behavioral disorders.18–21 The notion that
the development of common adult cardiovascular and metabolic disorders are linked to factors
during prenatal development was originally known as the “Barker” or “fetal origins
hypothesis”.7,9,10 Although these early studies related low birthweight to adult disease, it is
generally accepted that low birth weight per se is not at the heart of these disorders, but that
there are common factors that influence intrauterine growth as well as adult physiological
systems.22 The “fetal origins” observations are due, in part, to environmental factors acting
early in life that affect developing systems, altering structure and function. It has been suggested
that the biological purpose of this “programming” is to alter the set-points or “hard-wire”
physiological systems to prepare the fetus for optimal adaptation to the postnatal environment.
23

Common factors arising from prenatal exposure to psychoactive drugs could include
mechanisms related to “fetal origins” and may also contribute to more long-term outcomes.
Longitudinal study of the organism and contexts beginning before or at the time of exposure,
as well as of long-term outcomes, is essential to understanding developmental trajectories
related to substance exposures.

Cocaine
In the 1980s, cocaine became one of the most frequently abused illicit drugs during pregnancy
and also one of the most studied with regard to its potential teratologic and neurodevelopmental
effects on the developing fetus and child. While early catastrophic predictions about the long-
term outcome of prenatally cocaine- exposed children were exaggerated, concern remains
about more “subtle” effects24 that may affect development, particularly in childhood and
adolescence.

The neurochemical and vasoconstrictive effects of cocaine have been well documented.
Cocaine acts primarily at the presynaptic level to block reuptake of the monoaminergic
neurotransmitters dopamine, norepinephrine and serotonin25,26 by specific, presynaptic
plasma membrane transporters.27 These transporters are expressed in discrete pathways of the
CNS, on postganglionic sympathetic neurons and in the adrenal medulla. These pharmacologic
actions lead to elevated circulating catecholamine levels and exaggerated sympathetic
responses including hypertension, tachycardia, vasoconstriction, agitation, euphoria, and
excitation. These effects are particularly profound in the fetus in which elevated sympathetic
tone has been demonstrated.28–31 Cocaine affects neuronal formation, proliferation and early
connectivity,32–34 and disrupts neuronal migration and resulting cortical architecture.35–38

Cocaine also affects the expression of transcription factors (IEGs or immediate early genes)
along dopaminergic39,40 and serotonergic pathways.41 Because monoamine neurotransmitter
receptors (NA, 5-HT, and DA) are present early in corticogenesis, areas highly expressing
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these neurotransmitter systems may be especially susceptible to elevated synaptic monoamine
neurotransmitter levels secondary to cocaine’s main effect of blocking catecholamine reuptake
at the presynaptic level.42–44 Also, because monoamine neurotransmitters play a key trophic
role in brain development,45 prenatal cocaine may alter normal mechanisms that modulate
neuronal growth.42

The effects of cocaine on fetal development have also been attributed to vasoconstrictive
mechanisms. Uptake inhibitors such as cocaine (as well asamphetamines and SSRIs), which
block catecholamine transport28,46 and decrease placental blood flow, reduce the supply of
oxygen and nutrients to the fetus. Fetal hypoxemia and possibly ischemic injury can
compromise brain development. Blood flow to the developing brain can also be reduced by
cocaine-related noradrenergic effects on the developing fetal vasculature.47,48 Norepinephrine
and particularly the monoamine serotonin (5-HT) exert vasoconstrictive effects on the
umbilical vein, thereby reducing blood flow from the placenta to the fetus.49,50 Furthermore,
the vascular response to 5-HT is potentiated by uptake inhibition.51,52 Vasoconstriction at the
uteroplacental complex coupled with anorexic effects of cocaine could explain the increase in
intrauterine growth retardation (IUGR) that has been reported in cocaine-exposed infants.53

In addition to neurochemical and vasoconstrictive effects, cocaine may also act as an
intrauterine stressor that alters “fetal programming” through epigenetic mechanisms that might
alter the offspring’s developmental trajectory.54 In this model, cocaine alters the expression of
key candidate genes and gene networks important to placental function in late gestation,
specifically the norepinephrine transporter NET 55 and a steroid metabolic enzyme, 11β-
HSD-2. Placental NET and 11β-HSD-2 protect the fetus from excess catecholamines and
glucocorticoids, which have harmful effects on the fetus.56 11β-HSD-2 in particular converts
maternal cortisol to inert cortisone, protecting the developing fetus from exposure to maternal
cortisol.57 Placental expression of 11β-HSD-2 is downregulated by norepinephrine, which is
in turn regulated by NET.58 Prenatal cocaine exposure is associated with downregulation of
NET,59,60 which leads to increased circulating catecholamines, downregulation of 11β-HSD-2,
and chronic fetal hypercortisolism. These changes in placental gene expression may be due to
epigenetic mechanisms including DNA methylation, as suggested by the findings in Figures
1 and 2.54 Figure 1 shows decreased 11β-HSD-2 expression in mothers who used cocaine (n=4)
or cigarettes (n=4) or were depressed (n=3), compared with 17 controls. The altered expression
of these two key candidate genes is likely associated with changes in networks of genes
involved in critical placental functions that maintain physiological homeostasis in utero and
otherwise promote intrauterine growth, development and preparation for postnatal life. Figure
2 suggests that these changes inplacental gene expression are associated with methylation of
placental genomic DNA, particularly in promoter regions. These findings in Figure 2 are based
on the same group of subjects with pregnancies complicated by cocaine, nicotine, and
depression, and controls, shown in Figure 1. The relative incorporation of cytosine used to
measure methylation was comparable in promoter and genomic DNA in the cocaine and
nicotine exposed subjects, suggesting hypermethylation of the promoter regions of DNA that
contain CpG islands. This hypermethylation of DNA suggests gene silencing related to in
utero cocaine exposure.

There is a substantial literature on the effects of cortisol on children61 including infants with
prenatal cocaine exposure.62–64 Preclinical studies suggest effects of prenatal cocaine exposure
on the developing monoaminergic system, resulting in both structural and functional changes
to circuitry subserving functions such as arousal, regulation, and reactivity.43,65 Human infant
studies show effects of prenatal cocaine exposure on arousal, hypertonicity and excitability,
acoustic cry characteristics,66 and auditory brain response.67 At school age these children show
more behavior problems68 and they are more likely referred for special education services.69

On functional neuroimaging (fMRI) they show differences in the right inferior frontal cortex
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and caudate during response inhibition, suggesting cocaine effects on brain systems involved
in the regulation of attention and response inhibition.70 This set of cognitive abilities is referred
to as executive function and is particularly important as children reach school age. A recent
review of 42 follow-up studies of cocaine-exposed children suggested that executive function
and behavior problems were major domains affected by prenatal cocaine exposure.71 Thus,
fetal programming effects that alter the intrauterine neuroendocrine environment may be a
marker for long-term behavioral consequences of prenatal cocaine exposure.

Methamphetamine
Methamphetamine (MA) is the dominant drug problem in the Western and Midwestern
portions of the United States, second only to alcohol and marijuana,72 and is the most widely
abused drug worldwide.73,74 The number of adults age 12 and over who have tried MA once
in their lifetime has increased to 5.3% in 2007 from 4.3% in 1999 and 2.5% in 1997.75 This
increase has led to the concern that MA is the growing drug of choice for adults in the United
States, including pregnant women.76–78

Although there is controversy about the nature and extent of the MA problem in the U.S.,
including exaggerations reminiscent of the cocaine “epidemic,” there is little argument that
MA is a dangerous drug that substantially challenges policymakers, health care professionals,
social service providers, and the law enforcement community,79 and there is little information
about MA use by pregnant women.

MA is a CNS stimulant of the sympathetic nervous system with neurotoxicpotential for
developing monoaminergic systems. As the “first cousin” of amphetamine with the addition
of a methyl radical, MA exerts its action by releasing dopamine and serotonin, blocking
monoamine reuptake mechanisms, and inhibiting monoamine oxidase.80 The mechanism of
action most likely occurs by increasing synaptic concentrations of the neurotransmitters
dopamine and norepinephrine80 either by direct release from storage vesicles or by inhibition
of reuptake.81,82 MA may enhance synaptic catecholamine levels by inhibiting monoamine
oxidase, the enzyme responsible for the oxidation of norepinephrine and serotonin.83 MA acts
on the dopamine transporter (DAT) that mediates the inward transmission of dopamine in the
neuron. The action of MA on DAT releases dopamine and inhibits reuptake of dopamine from
the presynaptic terminals, thus increasing dopamine activity.84 MA also decreases serotonin
(5HT) uptake and densities of binding sites.85 MA has been shown to be neurotoxic to mature
dopaminergic and serotonergic axons and axon terminal arbors,86 and potentially neurotoxic
to mature glutaminergic axons.87 The cellular and molecular mechanisms implicated in the
neurotoxicity induced by MA on mature neurons include the production of reactive oxygen
species and nitric oxide, p53 activation resulting in apoptosis, and mitochondrial dysfunction.
88 Less is known about the mechanisms involved in MA-induced toxicity in the developing
CNS; however, the early and widespread influence of serotonergic, dopaminergic and
glutaminergic systems on neuronal growth and connectivity suggests that prenatal exposure to
MA may result in alterations in developing neural circuitry.87

Amphetamines are considered noncatecholamine sympathomimetics because they lack
catecholamine structure yet have sympathomimetic actions.89 These structural characteristics
are important because they account for the wide distribution and long duration of action of
amphetamine. MA also has vasoconstrictive effects90,91 resulting in decreased uteroplacental
blood flow and fetal hypoxia.92 In addition, MA has anorexic effects on the mother. These
maternal/placental effects could affect fetal development to the above monoaminergic effects.
Weight control may also help explain the popularity of MA with women, including pregnant
women.
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Unfortunately, the scant human literature that is available on the effects of prenatal MA
exposure is beset by methodological problems.93 Recent, more reliable findings showed that
MA-exposed infants, although born at term, are more likely to be small for gestational age.
94 Newborn neurobehavioral effects were reminiscent of cocaine-exposed infants showing
effects on arousal and physiological stress.95 In addition, these findings showed a dose response
relationship between amphetamine metabolites in meconium and newborn neurobehavior.

In preclinical work, administration of MA to laboratory animals results in profound and long-
lasting toxicity to the developing CNS. Brain studies in the ovine model have found MA
increases fetal blood pressure and decreases fetal oxyhemoglobin saturation and arterial pH.
96,97 In rodents, MA is toxic to dopaminergic and serotonergic neurons.98,99 Damage to
dopamine (DA) terminals100,101 are thought to reflect irreversible terminal degeneration.102

Positron emission tomography (PET) studies in abstinent MA users demonstrated decreased
dopamine transporters, suggesting long-lasting neurotoxicity due to MA abuse.103

Neurotoxic effects of prenatal MA exposure on serotonergic neurons produce neurochemical
alternations in the CNS104,105 thought to be associated with learning impairment, behavioral
deficits,105 increased motor activity,106 enhanced conditioned avoidance responses,107 and
postural motor movements108 seen in MA-exposed animals. Rhesus monkeys showed reduced
brain monoamines 4 years after the last drug exposure.109

Administration of MA to laboratory animals also results in motor110 and learning and memory
impairment.111 Studies with rats have shown a range of physical, motor, neurotransmitter, and
behavioral effects in MA-exposed offspring. These include increased maternal and offspring
mortality, retinal eye defects,106,112,113 cleft palate and rib malformations,113 and decreased
rate of physical growth and delayed motor development.107,112 MA exposure to pregnant dams
showed effects on spatial learning in their adult offspring.108 Spatial learning and attenuated
corticosterone response was found in rats with prenatal MA exposure.114 In pregnant mice,
MA caused dopaminergic nerve terminal degeneration and long-term motor deficits in
offspring.115

Consistent with the “fetal programming” model described above, the human placenta may also
be a direct target for MA. MA causes inhibition of the norepinephrine and serotonin
transporters, suggesting cellular mechanisms by which MA could affect the developing fetus.
116 Blockage of these transporters would increase the concentrations of norepinephrine and
serotonin, resulting in constriction of blood vessels and decrease blood flow to the placenta.
Also, placental norepinephrine transporter (NET) downregulation resulting from MA could
lead to increases in circulating catecholamines, downregulation of 11β-hydroxysteroid
dehydrogenase-2 (11β-HSD-2), and chronic fetal hypercortisolism,59,117 which could affect
behavior through alteration of the HPA axis, especially arousal regulation and attention.43

SSRIs
Each year at least 600,000 infants born in the United States are exposed to maternal Major
Depressive Disorder (MDD) during gestation, which is associated with newborn medical and
neurobehavioral deficits and long-term emotional, behavioral, and social problems in the child.
Pharmacological treatment of MDD during pregnancy remains the most common form of
treatment. The current first-line choice of clinicians for somatic therapies during pregnancy is
selective serotonin reuptake inhibitors (SSRIs) and dual-action serotonin and norepinephrine
reuptake inhibitors (SNRIs)(referred to collectively here as SRIs) due to their lower side-effect
profiles and relatively low risk to the fetus.118,119 Over the past two decades, the use of newer
antidepressants has dramatically increased over the use of tricyclic antidepressants (TCAs) and
monoamine oxidase inhibitors. A survey of national patterns of antidepressant medication
prescribed by physicians from 1987–2001 reported that SRIs were prescribed in 69% of office
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visits for depression in 2001.120 Similarly, another study reported that in 2000, 65% of all
antidepressants prescribed by primary care providers were SSRIs (fluoxetine, sertraline,
paroxetine, fluvoxamine and citalopram), and newer antidepressants, including SNRIs such
asvenlafaxine, comprised an additional 17% of antidepressants prescribed.121 A recent study
examining antidepressant treatment rates during pregnancy found that at least 37% of depressed
pregnant women choose to take antidepressant medications during pregnancy.122 Another
large study conducted retrospectively from 1993 to 2007 showed the use of SRIs during
pregnancy to have a steady increase from 0.44% in 1993 to 6.61% of all pregnant women in
2007.

SRIs block the presynaptic reuptake of serotonin (5-HT) by binding to theserotonin transporter
SERT. Some of the SRIs also bind to the norepinephrine (NE) transporter gene, NET. SERT
and NET are responsible for the reuptake and transport of 5-HT and NE out of the synapse.
Inhibition of SERT and NET activity by SRIs prolongs neurotransmitter signaling. Fluoxetine
has also recently been found to antagonize 5-HT2c receptors. The antidepressant mechanisms
of SRIs and many other psychoactive drugs remain unclear, but are presumed to be a result of
the enhanced serotonergic neurotransmission at postsynaptic receptors, the effect on
intracellular signal transduction cascades, and the modulation of other neurotransmitters.123

SRIs and their metabolites have been detected in both umbilical cord blood and amniotic fluid.
The potency of serotonin placental passage, expressed as a ratio of medication concentration
in cord blood to maternal serum, ranged from 0.29 (sertraline and paroxetine) to 0.89
(citalopram and fluoxetine).124 A study of cord:maternal serum levels found roughly equivalent
values for fluoxetine, sertraline, and paroxetine and their metabolites (.52–67), while the
concentration for the SRI venlafaxine was 1.1.125 SRIs have also been found in amniotic fluid,
representing another source of exposure as the fetus swallows an increasing amount of amniotic
fluid throughout pregnancy.126 Administration of fluoxetine to pregnant ewes was associated
with a transient decrease in uterine artery blood flow, perhaps due to serotonin activity
following administration.127 Immediately following fluoxetine administration, there is an
increase in plasma serotonin concentrations. However, with prolonged exposure, plasma
serotonin levels decline. Serotonin acts as a vasoconstrictor; therefore, elevations in serotonin
followed by a decline might explain the uterine artery blood flow findings. Decreases in
serotonin levels in exposed offspring may be one mechanism by which SRI medication
influencesadverse effects.

The serotonergic system develops early in gestation and is likely to be influenced by serotonin
levels in all trimesters of pregnancy.128 Serotonin is widely distributed throughout the central
and peripheral nervous systems and is involved in the development of multiple brain areas.
128–131 Alterations in the 5HT system during development are associated with changes in
somatosensory processing, motor output, and emotional responses.132,133 Recent evidence
suggests that components of the serotonin system are critical to the development of
neurobehavioral systems involved inmood, anxiety, aggression, and substance abuse.133,134

The serotonin system includes at least 14 receptors, multiple enzymes, and transporter proteins
that exert influence on 5HT metabolism, release, and reuptake. The serotonin transporter gene,
or 5-HTT (SLC6A4), encodes for the transporter protein. The promoter region of the gene
contains two common polymorphic alleles, a short or “S” allele with 14 repeated elements, and
a long or “L” allele with 16 repeated elements. The variant region has been labeled the serotonin
transporter linked polymorphic region (5-HTTLPR).135 Functionally, the deletion
polymorphism (“s”, or short allele) appears to cause a reduction in basal and stimulated
transcription activity, 5-HTT mRNA, and 5-HT binding and uptake.136 Individuals with the S
allele (S/S or S/L) have been more susceptible to stress, depression, anxiety, suicidal ideation,
and irritable temperament. Longitudinal research suggests a gene × environment interaction,
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in that those with the S allele are more susceptible to depression given stressful conditions.
137 Allelic differences have also been linked to responsiveness to antidepressant medication.
138

The most recent meta-analysis of the effects of SRIs on pregnancy and fetalphysical
development included published reports from 1995 through August of 2005.139 The findings
of the meta-analysis are in agreement with most of the previous reviews that did not find an
increased risk of major, cardiovascular or minor malformations, but did find an increased risk
of spontaneous abortion.140,141 The findings are in disagreement with reports of a higher rate
of major cardiac malformations and persistent pulmonary hypertension of the newborn for
infants exposed to SRIs compared with other antidepressant medications and controls.142,143

Lower birth weight, younger gestational age at birth, and lower Apgar scoreshave been reported
with SRI exposure.144 Similar results were seen with third trimester exposure of fluoxetine but
not with first or second trimester exposure.140 Lower birth weight has been associated with
higher doses of fluoxetine compared with lower doses or other SRIs,145 while other studies
failed to find birth weight differences between early and late SRI exposed infants146 or between
SRI exposed and nonexposed infants.147,148

Recent evidence supports acute effects of SRI exposure on neonatal neurobehavior. Several
reviews were published in 2005 looking at recent case reports, database analyses, and cohort
studies on the effects of SRI exposure on neonatal outcomes.149–152 In general, a cluster of
symptoms was observed in newborns who were prenatally exposed to SRIs. These symptoms
include irritability, tremors, jitteriness, trouble feeding, agitation, respiratory distress, and poor
sleep. Other symptoms reported include convulsions, abnormal posturing, and shivering.153,
154 These symptoms have been reported most often in infants exposed to paroxetine, but all
SRIs have been indicated,140,151,152 and the symptoms were originally described as a syndrome
called “poor neonatal adaptation” which included respiratory difficulties, jitteriness, poor
motor tone, hypothermia, hypoglycemia, weak or absent cry, and trouble feeding.140 Since that
time, frequent reports of “poor neonatal adaptation” have been seen in the literature. Data from
a 2006 review suggest that 30% of SRI–exposed neonates have symptoms consistent with
“neonatal abstinence syndrome,” a condition often described in newborns withdrawing from
other (mostly opioid) prenatal drug exposures.155–158 The long-term outcomes associated with
these apparently transient symptoms following delivery have only just begun to be studied.
The few empirical studies have shown SRIs related to increased active sleep159 and decreased
facial and behavioral responses to acute pain in the first week postnatally and at 2 months of
age, suggesting a blunting of pain reactivity.160,161 SRI-exposed infants were found to have
decreased basal cortisol levels in the early evening compared with non-exposed infants at 3
months of age, although this effect was not related to prenatal exposure level or current SRI
level measured in infant plasma.162 A related paper suggested that third trimester maternal
mood, rather than SRI exposure, is related to increased infant HPA reactivity and that this effect
is mediated by increased methylation of NR3C1 (human glucocorticoid receptor gene).163 In
a recent review of studies on the long-term development of children with prenatal SSRI
exposure, 11 studies (306 children) suggested no impairment with exposure, and 2 studies (81
children) suggested mild adverse effects.150

It is also possible that SRIs affect fetal neurobehavior. Studies of SRI effects on sleep state
development in the fetus are limited to the work of Morrison et al., who examined fetal sheep
after fluoxetine exposure and found a significant decrease in fetal rapid eye movement (REM)
sleep.164 By contrast, a study of sleep state in the first 2–3days postnatally reported more active
sleep, more arousals, and more activity during sleep in SSRI-exposed newborns.159 It is
possible that the increase in REM sleep reported after birth by Zeskind et al.159 was
compensatory following REM sleep deprivation based on the fetal sheep data.165 This finding
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could be due to the fact that serotonergic neurons in the dorsal raphe nucleus appear to be
involved in the “turning-off” of active sleep and are a central monoamine involved in the
regulation of ultradian rhythms.166 The initial action of antidepressant medications is to
enhance postsynaptic transmission of serotonin. Therefore, it is reasonable to expect that SRI
exposure wouldinitially decrease the amount of active sleep. Another possibility is that the
newborn effects are related to the discontinuation of the SRIs following delivery.

The effects of SRIs on fetal neurobehavior can be studied by incorporating fetal
actocardiography with ultrasound observations of fetal behavior.167–170 The FEtal
Neurobehavior coding System (FENS) is a method of fetal neurobehavioral observation and
scoring that includes measurement of fetal heart rate, motor activity, behavioral state, and
responsiveness to external or extra-uterine stimuli.171 A fetal actocardiograph provides
measurement of fetal heart rate, fetal heart patterns, and motor activity. The use of ultrasound
technology enables visualization of the fetus to observe specific fetal action patterns, quality
and amplitude of movements, and eye movements. Thus, ultrasound technology coupled with
fetal actocardiography allows for a comprehensive assessment of fetal neurobehavior. Table
1 presents the behavioral variables coded in the FENS coding system.

Effects of SRIs on FENS neurobehavioral measures are shown in Figures 3 and4. Fetal
behavioral and physiological data were collected simultaneously by a research nurse certified
in obstetrical ultrasound and fetal heart rate monitoring. The data were obtained using a Toshiba
ultrasound machine model SSA-340A with a 3.75 MHz transducer and a Toitu MT325
actocardiograph. The time of the recordings was standardized to between 12 and 5:00 pm to
account for possible variability in fetal activity levels at different times of the day.172 The
participants were asked to fast for at 1 ½ hours before their scheduled appointment to increase
their appetite. Upon arrival to the appointment, the participants were given a small meal,
standardized for calories andcontent, to standardize the immediate nutritional influence on fetal
activity. Participants were asked about their smoking as well as nutritional and caffeine intake
on the day of the observation to account for the potential acute effects of caffeine and nicotine
on fetal behavior. Baseline behaviors and heart rate were collected for the first 40 minutes. A
single, 3-second single vibroacoustic stimulus (VAS) (Toitu) was applied to the maternal
abdomen during the first quiescent period following the 40-minute baseline period. Recording
continued for 20 minutes post VAS presentation. Additionally, a VAS-stimulus control trial
was conducted in the baseline period to control for maternal reaction to the VAS. Research
assistants trained on the FENS and blinded to maternal condition conducted the coding of fetal
behaviors. Coders use the Mangold Interact Video Coding Software to score digital recording
files for fetal movements and behaviors in 10-second epochs. The presence or absence of
isolated limb and head movements, gross body movements, and behavior patterns were scored
within each 10-second epoch. All movements were categorized as smooth, jerky, or
indeterminate, with high inter-rater reliability. The actocardiograph data were scored for mean
fetalheart rate (FHR), FHR accelerations, and fetal movement measures.169,173

In Figures 3 and 4, the data are shown for fetuses (n=60) exposed and unexposed to SRIs, with
maternal depression scores used as a covariate. Fetuses in both groups demonstrated the
expected developmental decrease in jerky movements from 26 to 36 weeks’ gestational age;
however, fetuses exposed to SRIs had more jerky movements at both gestational ages (Figure
3). The SRI-exposed fetuses did not show the anticipated developmental increase in fetal
breathing movements at 36 weeks’ gestational age, and they had significantly fewer fetal
breathing movements than nonSRI fetuses (Fig. 4).
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Biogenic amine transporters
Some of the adverse effects on the fetus of the three uptake inhibitors that we have reviewed--
cocaine, methamphetamine and SRIs--may be due to their action on blocking catecholamine
transport, especially serotonin (5-HT). Catecholamines also exert vasoconstrictive effects on
the umbilical vein, thereby reducing blood flow from the placenta to the fetus.49,50

Furthermore, the vascular response to 5-HT is potentiated by uptake inhibition.51,52 As the
umbilical cord is not innervated, transporter-dependent uptake by the placenta is also protecting
the umbilical-placental circulation from deleterious effects of these neurotransmitters.174,175

Nonetheless, regulation of the placental capacity for catecholamine uptake should not be
viewed solely in the context of protecting the fetus from exaggerated elevations in
catecholamines and/or serotonin. Endogenous catecholamines are critical to fetal and neonatal
growth, development, and survival. This conclusion is supported by studies inmice in which
the gene for either tyrosine hydroxylase176,177 or dopamine beta-hydroxylase178,179 has been
disrupted. The majority of fetuses homozygous for the disruption of either gene die during
embryonic development. Small proportions (5–10%) of fetuses survive, suggested to be rescue
of the lethal phenotype by passage of maternal catecholamines across the placenta. Serotonin
(5HT) is also important at critical stages of development. 5HT is present in early embryos and
has been suggested to be maternal in origin.180 Mouse embryos grown in the presence of high
concentrations of 5HT or serotonin uptake inhibitors develop cranio-facial and cardiac
abnormalities of the 3rd-5th brachial arches.181 Similar abnormalities have been seen in rat
and chick embryos.182 Thus, highly regulated mechanisms control the concentration of
intrauterine biogenic amines, which are central to fetal growth and development.
Administration of uptake inhibitors to mouse dams in early to mid-gestation during
placentation and embryogenesis leads to a high incidence of fetal/placental resorption.183 In
survivors, there is a significant reduction in birth weight and delay in maturational milestones
(ear opening).183 Thus, the capacity for placental biogenic amine uptake and/or transport has
a significant impact on intrauterine growth and development. Understanding the ontogeny and
regulation of placental biogenic amine transport is important in understanding the way in which
the intrauterine neuroendocrine milieu programs develop.

Previous studies on the regulation of monoamine transporters suggest that drugs as well as
maternal mood and anxiety are able to alter transporter activity.184 Male rats exposed to stress
in early gestation were shown to have behavioral manifestations similar to major depression,
including maladaptive behavioral reactivity and anhedonia with subsequent increased
sensitivity to SRI medication. These rats were found to have decreased SERT in the
hippocampus. The authors state that a potential mechanism could be increased 5-HT output
and decreased reuptake by SERT. This mechanism may explain increased sensitivity to acute
postnatal SRI administration.185

Other drugs that affect transporters, such as cocaine, given during fetal rat brain development
have been related to increased norepinephrine turnover rate in older animals186 and altered
cerebral glucose uptake.187,188 Interestingly, the cocaine-treated animals had enhanced
acoustic startle responses to selective serotonin agonists whichwere attenuated by the
fluoxetine exposure.188 This finding is consistent with our observations on the effects of
antenatal cocaine exposure on auditory brain stem responses, newborn cry, fetal heart rate, and
arousal responses.189,190 In other work, we showed that disorders linked to chronic intrauterine
stress, including cocaine exposure and/or intrauterine growth retardation, are associated with
decreased placental NET expression, directly proportional to the elevation in umbilical arterial
plasma norepinephrine concentrations.59 The decreased placental NET gene expression we
have observed, and resultant increases in circulating catecholamines, may explain the adverse
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effects on the fetus of drugs such as cocaine and methamphetamine, which block catecholamine
transport and render the fetus more vulnerable to other physiologic derangements.

As described above, 11β-HSD is expressed in the placenta and converts biologically active
cortisol to cortisone.191,192 11β-HSD-2 expression in the placenta is widely considered to
protect the fetus from maternal hypercortisolism during pregnancy. We also know that
placental 11β-HSD-2 is downregulated by norepinephrine and thatchronic intrauterine stress
leads to downregulation of placental NET gene expression and increased circulating
catecholamine levels in the fetus and the placental microenvironment. Dysregulation of
norepinephrine levels in the placental microenvironment in turn leads to alterations in the
placental neuroendocrine milieu. One potential mechanism for neurobehavioral effects of
drugs such as cocaine, methamphetamine and SRIs involves the alteration of fetal placental
monoamine transporter expression and the resulting alterations in neuroendocirne and
neurotransmitter system development. As an example of how placental geneexpression may
be related to substance exposure and maternal health conditions, we present in Figure 5
placental SERT data from 33 mothers. These data demonstrate an interaction for MDD/SRI
use on SERT expression in the placenta. The MDD-exposed fetuses (no SRI exposure) had
lower SERT levels than controls and MDD+SRI-exposed fetuses, but were not different from
those of SRI-exposed fetuses whose mothers no longer met criteria for MDD. These data
highlight how maternal diagnosis might change the outcome of substance exposure-related
outcomes. We have also shown this same type of alteration in neurobehavioral outcomes in
cocaine-exposed infants whose mothers were depressed in the first month of pregnancy.193

Fetal Origins
The developmental trajectories of fetuses exposed to psychoactive substances may be altered
by multiple factors. However, we suggest that drugs such as cocaine, methamphetamine and
SRIs can be stressors that affect fetal programming, disrupt fetal placental monoamine
transporter expression, and alter neuroendocrine and neurotransmitter system development.
Stress hormones such as catecholamines and glucocorticoids can alter regulation of the
neuroendocrine environment by acting on the hypothalamic-pituitary-adrenal (HPA) axis,
which results in an altered set point for physiologic, metabolic, and behavioral outcomes.194

Because they are an important feature of the stress response, glucocorticoids have become
prominent candidates as mediators of the effects of “programming.” Effects on gene expression
through epigenetic mechanisms such as DNA methylation or chromatin remodeling could
result in altered developmental trajectories.
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Figure 1.
Mean 11β-HSD-2 expression in risk groups.
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Figure 2.
Hypermethylation of DNA in placentas from cocaine/nicotine exposed.
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Figure 3.
Fetal jerky movements.
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Figure 4.
Fetal breathing movements.
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Figure 5.
Placental SERT levels.
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Table 1

Fetal Behaviors Coded from Ultrasound Recordings in the FENS System
Summary Variable Variable Description

Fetal Eye Movement
Present Clear movement of the pupil or eyelid
Absent A clear view of the eye is obtained and there is

no movement

Fetal Breathing Movements

Regular Displacement of the diaphragm with outward
movement of the abdomen

Vigorous FBM’s that are large enough to move the entire
fetus’ body

Hiccup Consists of a jerky, repetitive contraction of
the diaphragm

General Body Movements

Smooth Pattern of movement involving smooth,
simultaneous movement of a limb, trunk and
head that results in a change in plane

Jerky GBM that involves jerky movements of limbs
or entire body

Incomplete GBM that is not fluid or coordinated and does
not result in change

Flexion Flexion of the trunk

Patterned Body Movements

Stretch A single event including a back extension or
upward movement of the shoulder with
retroflexion of the head Typically includes a
pause at the movement with subsequent
relaxation

Backarche Extension of the trunk and maintenance in this
position for greater than 1 second

Startle A quick, generalized movement, involving
abduction or extension of the limbs with or
without movement of the trunk and head,
followed by a return to a resting position.

Fidget Nearly continuous limb movements that are
not part of a GBM or other patterned
movement

Head Movements

Rotation Movement of the head in the lateral plane for
at least a 30 degree angle from starting position

Extension A small movement of the head that extends
upward in the vertical plane

General Small Movement of the head that is not an
extension or rotation

Mouthing Movements

Rhythmic Rhythmical bursts of jaw opening and closing
at least 4 times in 5 seconds (sucking)

NonRhythmic Mouth opening and closing that is isolated or
limited to less than 4 at one time, often with
tongue protrusion or lapping (drinking)

Yawning The timing of a yawn is similar to a stretch that
includes prolonged wide opening of the jaws
followed by relaxation. Often accompanied by
a stretch or a subsequent GBM.

Limb Movements

Smooth Limb(s) moves from origin to destination
without backtracking

Jerky Limb movement is interrupted by
backtracking

Indeterminate Unable to determine quality of movement
Lower Limb Lower limb is moving but unable to determine

quality of movement
Multiple Repetitive limb movement in the same plane

in a single epoch.
Hand to Face The hand slowly touches the face or mouth

Tremor Small rhythmic, jerky movement of an
extremity
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