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Abstract

There is considerable recent interest in developing humanoid robots. An important substrate for many
motor actions in both humans and biped robots is the ability to maintain a statically or dynamically
stable posture. Given the success of the human design, one would expect there are lessons to be
learned in formulating a postural control mechanism for robots. In this study we limit ourselves to
considering the problem of maintaining upright stance. Human stance control is compared to a
suggested method for robot stance control called zero moment point (ZMP) compensation. Results
from experimental and modeling studies suggest there are two important subsystems that account
for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control.
These subsystems are 1) a “sensory integration” mechanism whereby orientation information from
multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to
provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting)
that compensate for changing environmental conditions, and 2) an “effort control” mechanism that
uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body
orientation from upright. Functionally, ZMP compensation is directly analogous to how humans
appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body
orientation. However, a flexible sensory integration mechanism is missing from robot control leaving
the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest
the addition of a simple form of sensory integration to improve robot stance control. We also
investigate how the biological constraint of feedback time delay influences the human stance control
design. The human system may serve as a guide for improved robot control, but should not be directly
copied because the constraints on robot and human control are different.

Keywords
Robot; human; stance control; zero moment point; ZMP; sensory integration

© 2009 Elsevier Ltd. All rights reserved.

Corresponding Author: Robert J. Pete[]ka, Ph.D., Biomedical Engineering Division, Oregon Health & Science University, OHSU West
Campus, Mail Code NSI, 505 NW 185! Avenue, Beaverton, Oregon 97006, USA, peterkar@ohsu.edu, Phone: +1-503-418-2616, Fax:
+1-503-418-2701.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 2

1. Introduction

The human stance control system can be viewed as a conglomeration of subsystems that are
configured to achieve the goal of maintaining stance and compensating for internal and external
disturbances while overcoming the constraints imposed by biology (Horak and Macpherson,
1996). The ability to maintain upright stance confers survivability advantages by allowing
humans to operate in a variety of environments that sometimes limit the availability or accuracy
of sensory orientation cues (e.g. absence of vision, stance on compliant surfaces, altered inertial
environments), under conditions that alter the mechanics of the system (e.g. changing loads,
different body postures, altered gravity), and in conditions were unexpected external or internal
perturbations are applied (e.g. external forces, moving surface, moving visual surround,
sensory dysfunction).

In contrast to human stance control, robot stance control is at an early stage of evolution. The
need for some form of stance control system has been recognized during the recent rapid
development of humanoid robots (see Mahboobin et al., 2008). However, the design of most
robot balance systems has not taken advantage of existing knowledge of human stance control
systems. A possible reason for this is that engineers focused on the obviously important
interaction that occurs at the interface between the robot’s feet and the ground. This interaction
can be measured using force sensors in the feet to calculate the center-of-pressure (COP)
position which represents the location of the equivalent point of application of net ground
reaction force. In static conditions, the projection of the body center-of-mass (COM) position
onto the ground corresponds to the COP location. This provides some intuitive notion that COP
location includes information about COM location, and that stability is ensured if the COM
and COP location remains within the base-of-support (i.e. within or between the outline of the
feet).

The COP corresponds to what is termed the zero moment point (ZMP) under conditions where
the system is statically or dynamically balanced (\Vukobratovic and Borovac, 2004). Engineers
have utilized the ability to measure and to calculate the ZMP to develop control methods known
as ZMP compensation for robot stance control, disturbance compensation, and motion control
under dynamically balanced conditions (Caballero et al., 2006; Prahlad et al., 2008).

In a freestanding human or robot in both static and dynamic situations, the COP is proportional
(to a good approximation) to the corrective torque, T, exerted about the ankle joint by the
stance control system (van der Kooij et al., 2005). Specifically

‘mg )

where m is the body mass (not including the feet) and g is acceleration due to gravity.

Additionally, for a simplified mechanical system where the body is represented by a single-
link inverted pendulum, the COP displacement (xcop) is proportional (again to a good
approximation) to a linear combination of COM displacement (Xcopn) and COM acceleration

(¥0y) (Winter et al., 1998)
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where J is body moment of inertia about the ankle joint, m is body mass, and h is height of the
COM above the ankle joint. From this equation, one can see that any deviation of xcop from
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Xcom Will produce an acceleration of the body. Therefore, a control system that can keep
Xcom and xcop closely aligned will limit the acceleration of the COM and therefore will
provide for stable stance.

Because of the relationship between COP and corrective torque, one can say that a control
system making use of COP information is making use of kinetic (i.e. force-related) information
for stance control. In the ZMP compensation method described by Prahlad et al. 2008 and
similarly by Cabellero et al., 2006 (Caballero et al., 2006), this kinetic information provides a
setpoint for a control system that regulates the ankle joint angle. This ankle joint control system
can be thought of as using kinematic information (i.e. ankle joint angular position and velocity
information) to regulate ankle joint angle. Therefore, the overall ZMP compensation scheme
combines kinetic and kinematic information for stance control.

There is some general correspondence between ZMP compensation and human stance control
regarding the combined use of kinetic and kinematic orientation information. Specifically,
there is evidence that human subjects make use of force-related information derived from
somatosensors in the feet (Magnusson et al., 1990; Maurer et al., 2001) as well as kinematic
information derived from ankle proprioceptors for stance control (Kavounoudias et al.,
1999). However, it has long been known that humans make use of orientation information from
other sensory systems such as graviception provided by the vestibular system and vision (Day
etal., 1997; Hlavacka and Njiokiktjien, 1985; Lee and Lishman, 1975; Nashner and Berthoz,
1978). One purpose of this paper is to make an explicit comparison between a robotic stance
control system using ZMP compensation and the human balance control system, and to show
how the human system has been extended to incorporate orientation information from other
sensory systems.

Avre there any limitations to the use of ZMP compensation for robot stance control? This paper
will demonstrate that there are limitations, but will illustrate how some of these limitations can
be overcome by incorporating graviceptive information in a manner related to the human
control system. One might argue, then, that it would be better to build a robotic stance control
system that closely mimics human control, as best we currently understand it (Mergner,
2007; Mergner et al., 2006; Tahboub and Mergner, 2007). However, the human system was
designed by evolutionary forces that presumably accounted for various biological constraints.
These constraints include (1) time delays associated with both the transmission of sensory and
motor signals and with the neural processing required to interpret distributed raw sensory
signals and to integrate (fuse) orientation information from multiple sensor systems, (2) the
complex properties of muscles including muscle activation and contraction dynamics, (3) the
dynamics of force generation via muscle/tendon systems, (4) the problem of transmitting
sufficient force through compliant tendons, (5) the requirement to generate coordinated
activation of multiple muscles, (6) the noise or variability in sensory and motor systems that
limits the accuracy of sensory orientation estimates and reduces the ability to deliver precise
motor responses. These biological constraints generally are not the same as those involved in
robot design. Therefore one would expect that a robotic control system that simply mimics
human control would likely be sub-optimal. This point is illustrated by demonstrating how a
biological constraint (feedback time delay), which would not necessarily be a constraint in a
robot design, is likely to have influenced the design of the human stance control system.

2. Methods

All results are derived from mathematical simulations of model control systems that represent
the mechanisms that regulate the upright stance of robots or humans. The body mechanics are
those of a single-link inverted pendulum represented by a linearized differential equation
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d*BS (1
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where BS is the body-in-space sway angle with respect to earth-vertical. Other variables were
previously defined for Equations 1 and 2. Values of J, m, and h are given in Table 1 along with
other model parameters defined later. COP displacement was calculated using Equation 1.

Equation 3 can also be represented as an algebraic equation relating the output (BS) to the input
(To) by taking the Laplace transform of Equation 3

BS(s) 1
T.(s) Js*>—mgh (4)

where s is the Laplace variable.

With a Laplace domain representation of body mechanics as well as other components of the
stance control system, it is easy to write an equation that relates various potential input
disturbances (stimuli), such as tilt of the support surface or an external force applied to the
body, to output responses which we will take to be either BS, COM displacement, or COP
displacement. By substituting s=j-o=xf into the overall Laplace domain equation of the control
system, where j is the imaginary number V=1 and f is frequency (in Hz), one can calculate the
frequency response function (FRF) representing how the dynamic characteristics of the system
transform a sinusoidal input stimulus to an output response. The FRF can be expressed as gain
and phase curves that vary as a function of frequency. The gain value of the FRF at any
particular frequency gives the ratio of response magnitude to stimulus magnitude, and the phase
(in degrees) represents the relative timing between the stimulus and response. The dynamic
properties of the overall system are characterized by the particular pattern of gain and phase
changes with frequency.

The dynamic characteristics of a ZMP robot control system and of models that have previously
been shown to accurately represent the dynamic characteristics of human stance control
(Cenciarini and Peterka, 2006; Peterka, 2002, 2003) will be illustrated by showing their FRFs
and by showing time domain responses of these systems to step stimuli. The time domain
responses were generated using Matlab version 7.5 and Simulink version 7.0 (The MathWorks
Inc., Natick, MA, USA).

The disturbances investigated included 1) application of a external force which applies a torque
(Text) to the body of the simulated human subject or robot, 2) rotations of the support surface
uponwhich the simulated human subject or robot stands, and 3) sway-referencing of the support
surface (Nashner, 1982). Sway-referencing is a particularly challenging disturbance whereby
the support surface is rotated in equal proportion to the body sway angle with respect to earth
vertical. This results in a fixed ankle joint angle such that an ankle joint angle sensor no longer
encodes any useful information about the body orientation in space. However in a sway-
referenced condition, a human or robot can still exert a corrective torque about the ankle joint
to maintain balance if the stance-control system can make use of alternative sensory
information that encodes body sway relative to earth vertical.
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A block-diagram model of ZMP compensation as it applies to robot stance control is shown
in Fig. 1A. The block-diagram shows two control loops. Loop 1 uses negative feedback control
to regulate the ankle-joint angle. By analogy to human stance control (Fig. 1B), this loop
corresponds to the use of ankle proprioception to stabilize stance. The inherently unstable
inverted-pendulum body is stabilized by a “controller” that generates a corrective torque, T,
in proportion to a combination of body sway angular position and velocity. The gain constants
Kp and Kp in the controller determine the amount of position-related and velocity-related
torque, respectively. The value of Kp must be larger than mgh in order to counteract the
destabilizing torque due to gravity. The other constraint on Kp and Kp is the need to limit their
magnitude so that the torque generated by postural corrections would not lift the feet off the
ground and the ZMP does not move to the edge of the base-of-support. Within these constraints,
the particular values of Kp and Kp are fairly arbitrary and could be selected based on other
design criteria (torque limitations, energy considerations, specific stability criteria).

Loop 2 implements ZMP compensation. In a real robot, force sensors in the robot’s feet would
be used to calculate the COP location. In the model, Equation 1 is implemented to calculate
COP based on T.. The COP signal is scaled by the gain factor Kcop, low-pass filtered (time
constant zcop), and subtracted from the signal in Loop 1 representing the difference between
the support surface (SS) tilt position and BS. This ZMP control scheme is directly related to
the one discussed in Caballero et al., 2006, but differs from that of Prahlad et al., 2008. Prahlad
used the force sensor information to detect a ZMP that was outside of a specified threshold and
then used the ZMP value to calculate a new ankle-joint reference offset command angle for
the ankle-joint control loop (Loop 1). This is a non-linear control scheme that is not represented
by the continuous control model in Fig. 1A. Thus, there are different ways to make use of ZMP
information for robot stance compensation. This paper focuses on the linear control scheme
utilized by Caballero et al., 2006 because this scheme appears to resemble most a mechanism
utilized by humans.

Note that although the filtered COP signal is subtracted from the SS-BS signal, Loop 2
effectively provides positive feedback. For example, if the robot is initially leaning forward,
SS-BS will be negative and T, will have a negative value proportional to the forward body lean.
A negative value of T produces a positive COP displacement (Equation 1). When the filtered
positive COP value is subtracted from SS-BS, the controller input signal will become more
negative and a more negative T, value will be generated. The larger negative T, value will
overcome the torque due to gravity, and will thus move the body back toward an upright
position. The positive feedback nature of Loop 2 is appreciated by noting that Loop 2 operating
in isolation will always generate at time t+4 t a larger magnitude value of T, with the same
sign than was present at time t.

Positive feedback loops are typically associated with instability. Loop 2 alone is unstable, but
when operated in conjunction with Loop 1 the overall system can be stable for appropriate
values of Loop 2 parameters Kcop and zcop. For stable operation as a positive feedback loop,
a low-pass filter or mathematical integrator is required in Loop 2. It can be show that without
the low-pass filter (i.e., zcop Set to zero) the value of Kcop would have to have a negative
value between -1/h and zero. The negative valued Kcop required for stability when zcop = 0
means that the COP feedback loop would be providing negative feedback. Although the system
could be stable with negative COP feedback and with zcop = 0 the overall system would not
provide the desired compensation for disturbances.
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A wide range of Kcop and zcop parameters are compatible with stability. The particular
parameters shown in Table 1 were selected based on simulation results such as those shown
in Figs. 2B and 3B. The goal was to find parameters that gave non-resonant responses that
quickly reached steady-state conditions while generating peak COP amplitudes that were well
within the base-of-support in a robot with human size feet.

3.1.1 Robot response to external force perturbations—The FRFs for external torque,
Text, Perturbations applied by an external force acting at COM level are shown in Fig. 2A. The
response is BS tilt. In addition to the human FRF discussed later, two sets of curves are shown
for the robot. One set is for a robot with only Loop 1 control (i.e., without ZMP compensation)
and the other with both Loop 1 and Loop 2 control (i.e., with ZMP compensation). The two
gain curves are very similar. This might be interpreted as indicating that the addition of ZMP
compensation had very little effect on responses to Tey. However, the effect of ZMP
compensation is clearly evident in the phase curves. The phase curve for control with ZMP
compensation shows a phase lead approaching 180° at low frequencies while the low frequency
phase is approximately 0° for Loop 1 control. A 180° phase shift represents a sign inversion
indicating that the COM is moving opposite to the applied force, e.g. the body sways backward
when a forward directed force is applied. Functionally, this control scheme can be thought of
as using the torque due to gravity acting on the body to cancel the disturbance caused by

Text:

The effect of ZMP compensation is more easily seen in the time domain step responses shown
in Fig. 2B. Without ZMP compensation, a Tey; Step change of +10 Nm produces a sustained
forward (positive) BS, COM displacement, and COP displacement. The larger amplitude of
COP displacement compared to COM displacement reflects the fact that the total corrective
torque generated must compensate for Tey; in addition to body tilt. With ZMP compensation,
the same +10 Nm Ty initially causes a very slight transient forward displacement of BS, but
then the ZMP compensation causes a transient corrective torque to be generated, as reflected
by the transient positive COP displacement, that drives the body backward such that when
steady state conditions are reached, the COP is only slightly forward of the ankle joint and the
body is leaning backwards (negative BS and COM displacement). Effectively, the ZMP
compensation loop is tightly regulating the final COP displacement to keep it located close to
the ankle joint.

3.1.2 Robot response to surface tilt perturbations—The FRFs for support surface,
SS, tilt perturbations are shown in Fig. 3A both with and without ZMP compensation (in
addition there are two human FRFs). The robot gain and phase curves are quite different from
one another. For the case without ZMP, the BS/SS gain curve has greater than unity values
across much of the frequency range and approaches a value of Kp/(Kp - mgh) at low frequencies.
Gains greater than unity indicate that the body tilts further than the surface tilt. The addition
of ZMP compensation greatly reduces the gain at lower frequencies. Lower gains are desirable
in that they indicate that the body would remain closer to an upright orientation in response to
surface tilts.

The time domain responses shown in Fig. 3B demonstrate the effect of ZMP compensation.
Without ZMP, a 1° toe down tilt of the surface (positive sign) produces a steady state forward
body tilt of about 1.6° for the model parameters used in the simulations. With ZMP, BS quickly
returns to a value close to zero following a step change in surface tilt. The COM displacement
is proportional to BS. Both with and without ZMP, the COP displacement shows a biphasic
transient. The first phase has negative sign and is associated with the generation of a positive
corrective torque that initially moves the body forward toward alignment with the tilted surface.
The second phase has positive sign and is associated with the generation of a negative corrective
torque. Without ZMP compensation, the second phase transient arrests the forward body
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motion and then a positive COP value is maintained to hold the body in a forward leaning
position. With ZMP compensation, the larger magnitude COP transient acts to arrest forward
body motion and then to return the body to an orientation that is very close to upright.

Although the model in Fig. 1A applies to stance control, one could anticipate that the ZMP
control scheme could be incorporated into a dynamically balanced walking robot to provide
improved control of body orientation (where dynamic balance means that the COM and COP
always remain within the base-of-support). If the ZMP control scheme were utilized in a
dynamically balanced walking robot that was moving up or down a sloped ramp, the ZMP
control would cause the robot to appropriately lean forward or backward, respectively, to
compensate for the surface slope while it executed the motions necessary for walking. This
was demonstrated by Prahlad et al., 2008 although their ZMP control scheme was slightly
different than the one shown in Fig. 1A. Note, however, that balance control schemes that apply
to stance control and dynamically balanced walking robots would not necessarily be applicable
for other forms of walking control. Specifically, “dynamic walking” robots (Collins et al.,
2005), that appear to closely resemble human walking, would not necessarily satisfy the
criterion that COP remain within the base-of-support and thus could not be controlled using
the regulation schemes shown in Fig. 1.

One might assume that the time course of compensation for external disturbances would be
quite slow and perhaps not functionally useful given the fairly long time constant (4.5 s for
simulations in Fig. 2B and 3B) of the low-pass filter in the COP feedback loop. However, the
compensation time course depends on the dynamic characteristics of the entire system. As is
typical in feedback control systems, the overall system responsiveness can be faster than
individual components within the system. The responses to disturbances shown Figs. 2B and
3B have a time constant of about 1 s and thus are considerably faster than the COP feedback
loop itself.

3.2 Model of Human Stance Control

A simplified model of human stance control is shown in Fig. 1B. This model was developed
to account for experimental FRFs calculated from body sway responses to wide-bandwidth
pseudorandom perturbations that included tilts of the support surface and visual surround
(Peterka, 2002,2003). The model presented here is simplified in that it only includes torque
generation via an active, neurally mediated mechanism and does not include a mechanism for
passive torque generation due to the mechanical properties of joints, muscles, and tendons. Our
experimental results showed that passive mechanisms contributed only about 15% of the total
corrective torque, although there is controversy about the relative contribution of passive
mechanisms (Casadio et al., 2005;Loram and Lakie, 2002;Morasso and Sanguineti, 2002). Our
original model (Peterka, 2002) included a PID (proportional, integral, derivative components)
neural controller. The PID controller was not able to account for the FRF data below about
0.05 Hz. This motivated a later version of the model that utilized a torque feedback mechanism
that was better able to account for lower frequency experimental gain and phase data
(Cenciarini and Peterka, 2006;Peterka, 2003).

A comparison of the human stance control model (Fig. 1B) with the robot model (Fig. 1A)
shows some structural similarities. The human model includes a feedback loop that uses
kinematic ankle proprioception to generate corrective torque in relation to ankle joint motion.
This loop is labeled Loop 1 since it corresponds exactly to the ankle joint feedback loop in the
robot model. The model also includes a torque feedback loop that is labeled Loop 2 since it
corresponds to the COP feedback in the robot model. Remember that the robot calculates COP
(with sign inversion and 1/mg scaling) and subtracts a low-pass filtered version of this signal
from the ankle joint angle signal. The human model feeds back a low-pass filtered version of
T and adds it to the sensory error signal. Therefore, the functional correspondence of Loop 2
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is identical in the human and robot models, and both provide positive feedback. The only
difference is that the gain factor in the low-pass filter of the human model, Kiqrq, has different
units than the corresponding gain factor in the robot model, Kcop.

There are also obvious structural differences between the human and robot models. First, the
human model includes a significant time delay in its control loop that accounts for neural
transmission times, sensory processing, and muscle activation delays. A time delay value of
about 150 ms is required to account for experimental data (Maurer et al., 2006; Peterka,
2002). In contrast, the processing and transmission delays in a robot system are negligible and
can be set to zero for modeling purposes. Second, the human model includes feedback from
visual and vestibular systems that are not present in the robot. The experimental results revealed
that FRF gains varied as a function of stimulus amplitude (Peterka, 2002). The model-based
interpretation of these varying FRF gain curves is that humans are able to alter the source of
sensory information used for stance control as a function of stimulus conditions. This “sensory
re-weighting” is represented in the human model by weighting factors (Wprop, Wyis, Wyest) that
represent the relative proportion of proprioceptive, visual, and vestibular sensory orientation
information being used for stance control in a given test condition.

There are special cases where the human and robot models are the most similar. One case is a
model representing a human with bilaterally absent vestibular function during eyes closed
stance. This model is identical to the robot model except for the time delay term in the human
model. A second case is a model representing a human perturbed by an external force during
stance on a level surface while viewing an earth-fixed visual scene. In this case, proprioceptive,
visual, and vestibular sensory systems are functionally equivalent in that they are all encoding
body sway relative to earth-vertical. Therefore, the proprioceptive, visual, and vestibular
feedback loops can be collapsed into one feedback loop. Again, this model is identical to the
robot model except for the time delay term in the human model.

The FRFs and model simulations of human stance control discussed in sections 3.2.2 include
these special cases where robot and human control are quite similar in order to illustrate how
the presence or absence of a significant time delay affects control behavior.

3.2.1 Time delay constraint on human stance control—The presence of a time delay
inafeedback control system can affect stability and therefore imposes a constraint on the design
of the system. Figure 4 shows regions of stable operation for different selections of neural
controller parameters Kp and Kp at several values of loop delay times. These stability regions
were calculated for a model without the Loop 2 torque feedback. For a given time delay, the
stability region is smaller when torque feedback is included and the region shrinks as the
strength (gain) of the torque feedback increases. Independent of the time delay, the neural
controller must generate torque of sufficient magnitude to resist the torque due to gravity. This
constrains the value of Kp to be greater than mgh. The region of stable operation shrinks with
increasing delay, and therefore further constrains the choice of neural controller settings. For
human stance control, a time delay of about 150 ms is consistent with experimental data
(Maurer et al., 2006;Peterka, 2002). The mean values of Kp and Kp parameters derived from
model fits to experimental data are shown in Fig. 4 to lie inside the 250 ms stability region.
This suggests that the human stance control system is conservatively designed to avoid
instability due to time delays in feedback control.

In comparison to the human, the robot’s stability benefits from having higher stiffness (Kp and
Kp parameters) and a greater magnitude of torque feedback (robot Kcop/mg > human Kigrq).
However, with the robot parameters given in Table 1, the robot’s stability would be very
sensitive to any time delay in the system. Specifically, the robot would be unstable for any time
delay greater than about 36 ms. This comparison illustrates the interaction among control
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parameters and shows the need to select robot control parameters based on the constraints of
the robot system rather than simply replicating human control.

3.2.2 Human response to external force and surface tilt perturbations—Figures
2A,C and 3A,C shows FRFs and time domain step responses using the human control model
(Fig. 1B). The FRFs for surface tilt stimuli (Fig. 3A) show the large effect of sensory
reweighting on the gain curves from the two conditions with differing sensory weights. One
condition represents a subject with absent vestibular function standing eyes closed (Wprop=1.0,
Wiyest=0, Wy,is=0) (Peterka, 2002). The other condition represents a subject with normal sensory
function standing eyes closed on a surface moving with a fairly large amplitude (Wprop=0.3,
Wiyest=0.7, Wy,is=0). Although the FRF gain curves differ greatly in magnitude, the phase curves
for the conditions are identical. Due to the loop time delay, these phase curves show much
larger phase lags at higher frequencies than the corresponding robot phase curves. The step
responses (Fig. 3C) show BS, COM displacement, and COP displacement responses for the
two different sets of sensory weights.

The ability of humans to adjust sensory weights as a function of stimulus conditions confers
an ability to resist perturbations by reducing the responsiveness of the system to the perturbing
stimulus while still generating an adequate amount of corrective torque to resist the
destabilizing torque due to gravity. This capability is not present in the robot control system.
In addition, the fact that, for the human control system, 1) the phase characteristics as a function
of stimulus conditions remain unchanged and 2) the overall shape of the gain curves remains
unchanged (only the absolute gain changes) indicates that the fundamental dynamic properties
of the system remain unchanged as a function of the changing surface tilt amplitude. That is,
sensory re-weighting causes no change in the inherent stability of the system. A potential
alternative strategy to sensory re-weighting for resisting the effects of a perturbation would be
to increase the overall stiffness of the system by increasing the neural controller gains Kp and
Kp. However, this strategy would require fairly large changes in controller gains to produce
useful performance improvements. Such large changes would change the overall dynamic
characteristics of the system, and could move the system close to or beyond a stability
boundary.

In contrast to surface tilt responses, sensory re-weighting has no effect on the FRFs of body
sway responses to Tey: (Fig. 2A). During stance on a level surface ankle proprioception, the
vestibular system, and visual system all encode body tilt relative to earth vertical. Therefore,
sensory re-weighting does not change the orientation signal available to the control system.
The FRF gain values of the robot system are smaller than in the human system because the
neural controller gain factors Kp and Kp were assumed to be twice as large in the robot system.
The FRF phase values at lower frequencies for the human system are in between the phase
values of the robot systems with ZMP and without ZMP compensation. The robot with ZMP
compensation shows larger low frequency phase leads than the human because of the stronger
influence of the ZMP compensation as compared to the torque feedback in the human system.

3.3 A case where robot stance control fails but human control succeeds

From the comparison of robot and human stance control models discussed above, it may seem
that there are only minor differences between the dynamic characteristics of their control.
However, the ability of the human system to make use of orientation information from multiple
sensory sources and to use sensory re-weighting to rapidly change the source of sensory
orientation cues as environmental conditions change provides a high level of robustness that
is not present in the robot stance control system described in this paper.

A relevant example of this is the experimental manipulation referred to as “support surface
sway-referencing”. Sway-referencing is accomplished experimentally by continuously
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monitoring the body sway angle with respect to earth-vertical, and then using this signal as the
command input to a servo-system that controls the tilt angle of the support surface. The net
effect is to lock the ankle joint angle to a fixed and unchanging value. The whole body can still
sway and the subject can still exert torque about the ankle joint to control body sway.

Human subjects with normal sensory function are able to stand eyes closed on a sway-
referenced surface because they are able to rapidly re-weight toward a reliance on vestibular
orientation cues (Cenciarini and Peterka, 2006; Peterka and Loughlin, 2004). Consistent with
this interpretation, subjects with bilaterally absent vestibular function fall with a pendular sway
trajectory indicative of complete absence of control (Nashner et al., 1982).

The human control model (Fig. 1B) is consistent with these experimental results. Sway
referencing effectively opens the proprioceptive feedback loop (Loop 1). That is, SS is
commanded to be equal to BS. The input to ankle proprioception is SS-BS, which will be equal
to zero with sway-referencing. Therefore, no corrective torque is generated by the
proprioceptive feedback loop. However, if the vestibular sensory weight, Wyegt, is set to unity
value in the model, the vestibular signal will drive the generation of all of the corrective torque
necessary to maintain eyes closed stance.

As mentioned previously, the robot model is directly analogous to the human model in the case
of eyes closed stance and absent vestibular function. By the same arguments as given in the
previous paragraph, the robot model is unstable in a sway-referenced condition. There are no
parameter alterations to the ZMP compensation loop that can be made to provide stability since
this loop provides positive feedback.

3.4 Improving robot stance control

An obvious improvement to the robot would be to make it more like the human system by
adding a feedback loop that provides sensory information about body tilt relative to earth-
vertical, i.e. add a vestibular system to the robot. However, with an additional negative feedback
loop, the question is to what value should the sensory weights of these two loops be set, or
should they be made adjustable depending on environmental conditions? There exists a non-
linear model of balance control that incorporates a method of sensory re-weighting that mimics
human performance (Maurer et al., 2006; Mergner, 2007) and its non-linear control scheme
has been implemented in a bipedal robot (Mergner et al., 2006). But here we propose a simpler
linear control model that has some level of robustness and at least improves upon the control
scheme shown in Fig. 1A.

The proposed control system (Fig. 5A) simply adds a “body tilt” sensor (equivalent to the
vestibular system in the human model) that feeds back a signal proportional to body orientation
with respect to earth-vertical. The body tilt and ankle joint signals are multiplied by fixed and
equal gain factors of value 0.5 to give equal weight to these signals (equivalent to
Wprop=Wyest=0.5 in the human model). As in the previous robot models, the controller values
Kp and Kp are kept at twice the values typical for humans.

The FRF and step responses to external torque perturbations are identical to those shown for
the previous robot model with ZMP compensation (Fig. 2A,B) because the body tilt sensor
and ankle joint sensor both signal body orientation with respect to earth-vertical under the
conditions of this perturbation. However, the FRF and step responses to surface tilt
perturbations do differ from those of the previous robot model (Fig. 5B,C). The lower gain on
the ankle joint signal effectively reduces the sensitivity of the control system to surface tilts,
thus reducing the magnitude of the FRF gain curve across all frequencies. The phase curves
are identical for the previous and improved robot models. The surface tilt step responses are
improved relative to the previous model in that the peak body tilt and the peak COM and COP
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displacements are reduced by half. The reduction in peak COP displacement is indicative of a
reduction in the magnitude of corrective torque generated (Equation 1).

Finally, the improved robot control scheme is stable in a sway-referenced surface condition.
Although sway-referencing opens the ankle joint feedback loop, there is still sufficient
corrective torque generated from the body tilt feedback loop because the controller’s Kp and
Kp values were selected to be twice the values used by humans. Overall, the improved robot
control scheme is more robust than the robot with only ZMP compensation.

4. Discussion

The simple models discussed in this paper are tools for understanding the mechanisms
contributing to stance control. The comparison of a simplified model of human stance control
with a robot model employing ZMP compensation revealed similarities even though there is
little evidence that robot engineers are aware of research results on human stance control.
However, the comparison also revealed differences that highlighted deficiencies in the ZMP
compensation scheme by demonstrating situations were the robot model becomes unstable
while the human model does not. In the spirit of biomimetics, the comparison also led to the
suggested addition of a vestibular-like feedback loop to improve the robot stance control system

(Fig. 5).

The success of our simple biomimetic exercise suggests that it could be useful to implement
more sophisticated control schemes based on current, but still limited knowledge of human
stance control mechanisms. Recent experimental work in humans has revealed the presence of
very complex stance control schemes that are only partially represented in the simplified human
model presented here (Maurer et al., 2006; Schweigart and Mergner, 2008). In fact, some of
these more complex mechanisms have been implemented in a humanoid robot (Mergner et al.,
2006; Tahboub and Mergner, 2007). This implementation included a sizable feedback time
delay as is present in the biological system because a goal of this project was to better
understand the human control system. As illustrated in this paper and by others (Masani et al.,
2006), a time delay places constraints on the stance control system. But feedback time delay
would not necessarily be expected to have an impact on a robot stance control system because
the delay could be made arbitrarily small. Therefore, to the extent that a significant biological
constraint is removed from the design consideration, one imagines that a robot stance control
system could exceed the capabilities of the human system.

Another likely human design constraint is the signal-to-noise properties of sensory systems.
Results from studies attempting to understand experimental findings in humans indicate that
orientation information from the vestibular sensory system have poorer signal-to-noise
properties than proprioceptive and visual sensory systems (van der Kooij et al., 2001). To the
extent that humans are able to optimally estimate their orientation by fusing cues from different
sensory systems, one expects an overall orientation estimate to be derived from a weighted
combination of sensory cues with the weighting factors inversely related to the variability of
the sensory signals (Ernst and Banks, 2002).

The effective variability of sensory signals can change in different environmental conditions.
Examples include low light conditions were visual orientation signals are degraded, and stance
on compliant surfaces where proprioceptive signals are degraded. The combined effects of
inherent variability of sensory signals and the need to deal with changing environmental
conditions likely have influenced the evolution of the human stance control system.
Specifically, the ability of humans to perform sensory re-weighting is a major feature of the
human stance control system that compensates for the inherent limitations of sensory systems
while performing in complex environments. Sensory re-weighting also adds robustness to the
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human control system such that loss of sensory function, due to disease, aging, or injury, can
be more easily accommodated by the existing re-weighting mechanism without the need for
the nervous system to re-learn how to use remaining sensory information.

If robots were expected to perform in complex environments, then we would expect that
sensory re-weighting would also be in their control repertoire. However, the implementation
may not necessarily be the same as in humans because the design constraints would likely be
different. For example, humans have only one set of vestibular receptors that serve multiple
purposes. They are used to generate eye movements in the vestibulo-ocular reflex as well as
to contribute to postural control during stance and movement. However, the dynamic range of
head movements that must be encoded for use in generating vestibulo-ocular reflex eye
movements can be 10 to 100 times larger than the range associated with whole body
movements. The vestibular receptors must accommodate both functions in humans. But there
are more options in a robotic system. One could imagine having multiple vestibular receptors
in various locations in the body with different dynamic ranges that are appropriately matched
to targeted control functions.

Consideration of how biological systems process vestibular sensory information can facilitate
inclusion of artificial vestibular systems in future robot designs. The peripheral vestibular
system includes two types of sensors. The semicircular canals sense rotational velocity and
otolith organs sense linear acceleration and gravity (Wilson and Jones, 1979). These sensors
correspond to manmade rate gyros and linear accelerometers that are available for use in robotic
systems. Under dynamic conditions, neither the canals nor the otolith sensors alone are able to
provide the vestibular-derived spatial orientation information that was assumed to be available
in the human stance control model (Fig. 1B). The justification for the assumption that the
vestibular system provides accurate orientation information comes from considerable
experimental evidence that, by combining semicircular canal and otolith sensory information,
the brain is able to quite accurately estimate head angular velocity, linear acceleration, and tilt
with respect to gravity under everyday conditions despite some limitations of the biological
sensors (Angelaki et al., 1999). Models that account for the biological processing of canal and
otolith information have been developed (MacNeilage et al., 2008; Merfeld and Zupan,
2002; Mergner and Glasauer, 1999; Zupan et al., 2002) and could be used to process rate gyro
and linear acceleration signals used in robots. These biologically inspired methods of
combining angular rate and linear acceleration signals are surely more robust than the heuristic
methods that have been employed in a vestibular-like trunk orientation sensor used in a recent
robot design (Loffler et al., 2003).

Humans benefit from an active re-weighting of sensory information used for stance control
(Peterka 2002; Mauer et al. 2005). A recent study demonstrated how re-weighting between
proprioceptive and vestibular-like sensory orientation information could similarly benefit a
robot (Mahboobin et al., 2008). However, this study pre-computed sensory weights that were
appropriate for specific test conditions and then manually switched the weights to demonstrate
performance improvements. In reality, a robot system would need to automatically control the
re-weighting based only upon the array of sensory orientation information available to it.
Furthermore, the re-weighting would need to occur in a sufficiently short time interval to
prevent loss of balance. The closest realization of such an automatic re-weighting system is in
the robot designed by Mergner and colleagues (Mergner et al., 2006; Tahboub and Mergner,
2007) which implements a sensory fusion mechanism that produces robot behavior similar to
experimental results in humans (Maurer et al., 2006). As previously mentioned, this robot
system was meant to mimic a human system and therefore includes a significant time delay in
its feedback control. A robot without time delay and without numerous other biological
constraints could potentially benefit from a similar control system, but one imagines that there
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could be a better design that is more optimally tailored to the specific features and constraints
of the robot system.

5. Conclusions

The broad conclusion is that designers of humanoid robots should familiarize themselves with
experimental literature in human stance control in order to better appreciate the capabilities of
the human system. They should strive to at least match if not exceed human capabilities. If
human capabilities are to be exceeded, then it will be important to recognize what mechanisms
enhance human function so that these capabilities are included in the robot design. It will also
be important to recognize design constraints that differ between humans and robots so that
constraints specific to humans do not limit robot design.
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Block diagram model of robot stance control using ZMP compensation and a simplified model
of human stance control.
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Constraints on stance control due to feedback time delay. Region of stable control for different
choices of neural controller parameters Kp and Kp are shown for feedback time delays ranging
from 100 ms to 300 ms. Experimentally determined (Peterka, 2002) values of Kp and Kp in
humans are shown (star).
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Fig. 5.

Improved robot control model with frequency response functions for support surface
perturbations and step responses to 1° surface tilts. Scales on all plots are identical to those
used in Fig. 3 to facilitate comparisons.
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Parameter values used in model simulations

Table 1

Model Parameter Units Human ModelRobot Modellmproved Robot Model

J

kg m?
kg
m
Nm/rad
Nms/rad
s
rad/Nm
s
rad/m
s

66
76
0.87
862
302
0.15
0.0017
20

range 0-1
range 0-1
range 0-1
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