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Abstract
Human immunodeficiency virus type 1 (HIV-1) originated in chimpanzees; yet, several previous
studies have shown that primary HIV-1 isolates replicate poorly in chimpanzee CD4+ T lymphocytes
in vitro and in vivo. The reasons for this apparent restriction are not understood. Here, we describe
a new activation protocol that led to a reproducible expansion and activation of chimpanzee CD4+
T lymphocytes in vitro. Using this protocol, we uncovered species-specific differences in the
activation profiles of human and chimpanzee CD4+ T cells, including HLA-DR and CD62L.
Moreover, we found that improved activation facilitated the replication of both CXCR4 and CCR5-
tropic HIV-1 in CD4+ T cell cultures from over 30 different chimpanzees. Thus, the previously
reported “replication block” of CCR5-tropic HIV-1 in chimpanzee lymphocytes appears to be due,
at least in large part, to suboptimal T cell activation.
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Introduction
Chimpanzees are 98% genetically identical to humans and were one of the first non-human
primate species that were experimentally infected with HIV-1 in an attempt to develop an
animal model for AIDS pathogenesis (Alter et al., 1984; Gendelman et al., 1991; Watanabe et
al., 1991). Early studies showed that certain strains of HIV-1 were capable of establishing a
persistent infection in chimpanzees in vivo; however, all of these were T cell line adapted
viruses. In contrast, primary HIV-1 isolates generally failed to replicate in chimpanzee CD4+
T lymphocytes, and this was true in vitro as well as in vivo (Benton et al., 1999; Bogers et al.,
1998; Gendelman et al., 1991; Pischinger et al., 1998; Schuitemaker et al., 1993; Shibata et
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al., 1995; Watanabe et al., 1991). In fact, it was subsequently determined that all HIV-1 strains
capable of replicating in chimpanzee PBMCs in vitro used the CXCR4 chemokine receptor for
entry, either exclusively (X4) or as dual tropic (X4R5) strains (Cho, Shibata, and Martin,
1996; Schuitemaker et al., 1993; Shibata et al., 1995). Conversely, HIV-1 primary isolates that
were CCR5 tropic (R5) failed to establish a productive infection in chimpanzee PBMCs in
vitro (Benton et al., 1999; Cho, Shibata, and Martin, 1996; Ondoa et al., 2002; Schuitemaker
et al., 1993; Shibata et al., 1995). Collectively, these findings were taken to indicate that there
was a coreceptor-dependent entry restriction for HIV-1 in chimpanzee cells.

The apparent replication block of R5 strains was difficult to reconcile with the subsequent
observation that naturally occurring SIVcpz strains were all R5 tropic (Bibollet-Ruche et al.,
2004; Muller-Trutwin et al., 2000; Ondoa et al., 2001; Takehisa et al., 2007). Moreover, R5
HIV-1 variants were subsequently identified that were capable of establishing a persistent
infection in vivo (Conley et al., 1996; ten Haaft et al., 2001). Finally, human and chimpanzee
CCR5 differ by only two amino acids, at position 13 (Asn in human, Asp in chimpanzee) and
130 (Val in human, Ile in chimpanzee) and multiple studies have shown that these two positions
are not involved in HIV-1 gp120 binding (Benton, Lee, and Kennedy, 1998; Dragic et al.,
1998; Martin et al., 1997; Muller-Trutwin et al., 1999; Pretet et al., 1997; Samson et al.,
1996; Zacharova, Zachar, and Goustin, 1997). Survey of a large number of chimpanzees also
failed to identify inactivating mutations of the CCR5 gene, such as the CCR5-Δ32
nonfunctional human allele (Martinson et al., 1997; Mummidi et al., 2000; ten Haaft et al.,
1997; Voevodin, Samilchuk, and Dashti, 1998). Together, these finding argued against a
coreceptor related entry block of R5 tropic HIV-1 in chimpanzees T lymphocytes.

The lack of replication of HIV-1 R5 isolates in chimpanzee T-cells could be explained by a
differential CCR5 expression on in vitro activated chimpanzee compared to human
lymphocytes. A minimal CCR5 threshold appears to be required for efficient viral entry and
this threshold seems to be dependent on CD4 expression levels (Dejucq, Simmons, and
Clapham, 1999; Lin et al., 2002; Platt et al., 1998). CCR5 cell surface expression on activated
human CD4+ lymphocytes varies considerably among different human donors, possibly
because of polymorphisms in the CCR5 5′ cis-regulatory region (Lee et al., 1999; Trkola et
al., 1996; Wu et al., 1997). Polymorphisms in the chimpanzee CCR5 5′ cis-regulatory region
have been reported, distinct from the polymorphisms found in humans (Bamshad et al.,
2002; Tang et al., 1999; Wooding et al., 2005). CCR5 expression on human CD4+ T
lymphocytes is known to be dependent on the degree of cellular activation, on memory versus
naïve phenotypes of these cells, and on the ligand used for polyclonal T cell activation (Bleul
et al., 1997; Mengozzi et al., 2001; Riley et al., 1998). Indeed phytohaemaglutinin (PHA), the
mitogen used in most previous studies of chimpanzee PBMCs activation, is rather ineffective
at inducing CCR5 cell surface expression in human CD4+ lymphocytes (Bleul et al., 1997).
The secretion of β-chemokines, such as CCL3 (MIP-1 alpha), CCL4 (MIP-1 beta), or CCL5
(RANTES) by chimpanzee T-cells could also account for the replication block of HIV-1 R5
strains in vitro. These β-chemokines can block infection either directly via blocking gp120-
CD4 interaction, or indirectly by inducing CCR5 internalization (Creson et al., 1999; Mack et
al., 1998; Riley et al., 1997; Sabbe et al., 2001). Consistent with this hypothesis, the gene copy
number of the β-chemokine CCL3L1, a duplicated isoform of CCL3, was reported to be higher
in chimpanzees compared to humans (Gonzalez et al., 2005; Shao et al., 2007).

In this study, we asked whether the previously reported failure of R5 HIV-1 to replicate in
chimpanzee CD4+ T cell cultures might reflect an experimental artifact. Specifically, we asked
whether different levels of T cell activation could account for the observed replication
differences, as the level of T-cell activation determines the level of HIV-1 replication. Our
results show that this is indeed the case. Employing a novel lymphocyte activation protocol,
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we show that chimpanzee CD4+ T cells can support efficient replication of prototypic R5
HIV-1 strains.

Materials and Methods
Chimpanzee and human blood

Blood samples were collected from captive chimpanzees housed at the Yerkes Primate
Research Center during their annual health survey, a procedure approved by the Emory
Institutional Animal Care and Use Committee. None of the chimpanzees studied were infected
with HIV-1 or SIVcpz. Human blood from healthy HIV-1-negative individuals was obtained
from Research Blood Components (Boston, MA). Blood samples, collected using ACD as
anticoagulant, were processed within 24 hours.

Isolation of CD4+ cells
Chimpanzee and human peripheral blood mononuclear cells (PBMCs) were isolated by density
separation using Ficoll-Hypaque Plus (GE-Healthcare, Piscataway, NJ) and centrifuged at
1800 rpm for 25 min at 22°C. Interphase mononuclear cells were washed once at room
temperature in Hanks Balanced Saline Solution (HBSS) + 4 mM EDTA and once at 4°C in
HBSS + 1% FCS. CD4+ cells were purified from total PBMCs by positive selection using
magnetic MicroBeads and an autoMACS™ (Miltenyi Biotec, Auburn, CA). Human CD4
MicroBeads were used for human and non-human primate CD4 MicroBeads for chimpanzee,
according to manufacturer's protocols and recommendations. Purity of the CD4+ population
was determined to be >90% by flow cytometric analysis.

Standard CD4+ T lymphocyte activation
Five to ten million CD4+ mononuclear cells (monocytes and lymphocytes) in 3 ml of RPMI
media + 15% FCS were placed in one well of a 6 well plate in the presence of PHA (PHA-P,
Sigma-Aldridge, St Louis, MO) (3μg/ml) or Staphylococcal Enterotoxin B (SEB, Sigma-
Aldridge, St Louis, MO) (3μg/ml) for 48 to 72 hours at 37°C in a 5% CO2 incubator. Following
activation, cells were cultured at 1 × 106/ml and infected in complete media (RPMI + 10%
FBS with 30 units/ml of IL-2 (Roche Diagnostics)).

Improved CD4+ T lymphocyte activation
Briefly, the optimized activation procedure can be divided in three steps: (i) to enable efficient
lymphocyte activation and proliferation, the ratio of monocytes to lymphocytes in the CD4+
positively selected cell fraction is changed from 1:10 to about 1:2 by successive plating, (ii)
monocytes are pulsed overnight with SEB and (iii) upon monocytes differentiation in
macrophages, CD4+ lymphocytes are allowed to proliferate for 6 to 7 days. For the first step,
twenty to forty million CD4+ mononuclear cells (monocytes and lymphocytes) were plated in
2 ml of serum-free RPMI media in one well of a 6 well plate for 30 minutes at 37°C in a 5%
CO2 incubator. Cells were allowed to adhere and non-adherent cells were subsequently placed
into a new well. This procedure was repeated a total of three times to increase the ratio of
adherent monocyte/macrophages (10-25% of the initial cells) to non-adherent CD4+ T
lymphocytes (Koller et al., 1973). For the second step, monocytes and lymphocytes were pulsed
for 12-15 hours with 3μg/ml of SEB in 1.5 ml RPMI + 15% FCS. For the third step, SEB was
removed by media exchange and washing non-adherent cells with HBSS, monocytes were
differentiated in 2.5 ml of DMEM with 10% Giant Cell Tumor conditioned medium (BioVeris
Corp., Gaithersburg, MD) and 10% Human AB serum (Fisher Bioreagents, Fair Lawn, NJ);
lymphocytes were then allowed to proliferate for 6-7 days. During this time, an additional 2
ml of the same media was added to each well to sustain lymphocyte proliferation. Combining
non-adherent cells from all wells, 30-40 million activated CD4+ lymphocytes were typically
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harvested by day 6-7. Following proliferation, cells were cultured at a density of 1 × 106/ml
in complete media (DMEM + 10% FBS with 30 units/ml of IL-2 (Roche Diagnostics)) for 24
hours prior to infection. Culturing the cells in complete media for at least 24 hours prior to
infection increased the activated cells susceptibility to HIV-1 infection (data not shown). Once
activated, CD4+ lymphocytes continued to proliferate in complete media in the absence of
further stimuli for at least two weeks.

Immunofluorescent staining and flow cytometric analysis
Activated T cells were transferred in staining buffer (PBS + 2% FBS + 0.2% sodium azide)
and the following conjugated monoclonal antibodies against human differentiation antigens
were used to determine the cell surface expression of the corresponding markers (clone number
indicated in parenthesis): anti-CD3 (UCHT1), anti-CD8 (RPA-T8), anti-CD4 (RPA-T4), anti-
CD69 (FN50), anti-HLA-DR (G46-6), anti-CD25 (M-A251), anti-CD45RO (UCHL1), anti-
CD45RA (HI100), anti-CD62L (Dreg 56), anti-CD184 (12G5), all from BD Biosciences (BD
Biosciences, San Jose, CA), anti-CD195 (CTC5) from R&D Systems (R&D Systems, Inc.,
Minneapolis, MN). Stained cells were analyzed on a Cell Lab Quanta™ SC MPL flow
cytometer (Beckman Coulter, Fullerton, CA) and a minimum of 10,000 events per 3-color stain
were collected. Matching antibody isotype control stains were included as negative controls
for each antibody combination in all runs. Results were analyzed using Cell Lab Quanta™
software (Beckman Coulter, Fullerton, CA) and CellQuest™ Pro (BD Biosciences, San Jose,
CA).

Viruses and virus stocks
HIV-1 SG3, YU2, JRCSF and ADA virus stocks were generated by transfecting the respective
full-length molecular clone into 293T cells using FuGene 6 (Roche Applied Science,
Indianapolis, IN), according to manufacturer's protocol. Forty-eight to seventy-two hours post-
transfection, culture supernatants were harvested, clarified by low speed centrifugation, and
aliquots were stored at -70°C. The HIV-1 Bal isolate was obtained from the NIH AIDS
Research and Reference Reagent Program and propagated on SEB-activated human CD4+
lymphocytes to generate virus stock. Culture supernatants were harvested, clarified by low
speed centrifugation, and aliquots were stored at -70°C. Infectious titers of virus stocks were
determined using the JC53BL assay as described previously (Derdeyn et al., 2000; Wei et al.,
2002).

Infection and replication kinetics
Chimpanzee and human activated CD4+ T lymphocytes (0.5 106/vial) were infected overnight
at a multiplicity of infection (MOI) of 0.1 (based on JC53BL infectious titer) in 300μl of
complete media. Overnight incubation in this small volume was necessary for optimal infection
of chimpanzee lymphocytes. After 12-15 hours, cells were washed three times with HBSS
medium and plated in a well of a 24 well plate in 2 ml of complete media. Forty microliters of
supernatant were collected every 2-3 days and stored at -70°C. To monitor virus replication,
the p24 viral antigen was quantified in the culture supernatants using the HIV-1 p24 antigen
EIA kit according to the manufacturer's protocol (Beckman Coulter, Fullerton, CA).

Bio-Plex™ cytokine assay
Activated lymphocytes culture supernatants were collected after 24 hours incubation in
complete media, and stored at -70°C. Cytokines concentration for IL-4, IFN-γ, CCL3 and
CCL5 were determined from 50 μl of supernatant using the corresponding Bio-Plex™ Human
Cytokine Assay according to manufacturer's protocol (Bio-Rad Laboratories, Hercules, CA).
Data were collected using a Bio-Plex™ 200 suspension array system (Bio-Rad Laboratories)
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and statistical analyses of the results were performed using Prism software version 4.0c for
Macintosh (GraphPad Software Inc.).

Statistical analyses
The nonparametric Mann-Whitney U test (two-tailed) was used to analyze the cell surface
markers expression and cytokine production differences between chimpanzee and human
donors. Differences in expression between the two groups were considered significant when
p values were ≤0.01. Correlation analysis for the HIV-1 SG3 and YU2 replication in activated
chimpanzee T cells was performed using the Spearman's rank correlation test. These statistical
analyses were performed using Prism software version 4.0c for Macintosh (GraphPad Software
Inc.).

Results
Limited proliferation of chimpanzee CD4+ T lymphocytes under standard activation
conditions

Standard lymphocyte activation protocols make use of a variety of agents such as lectins,
enterotoxins or monoclonal antibodies that induce T-cell activation and proliferation via T-cell
receptor cross-linking (Kruisbeek, Shevach, and Thornton, 2004; Vicenzi and Poli, 2005). In
an initial set of experiments, we thus used phytohaemaglutinin (PHA) to activate chimpanzee
CD4+ T lymphocytes as previously described (Beaumont et al., 2000; Gendelman et al.,
1991; Nguyen et al., 2006; Schuitemaker et al., 1993; Shibata et al., 1995; Watanabe et al.,
1991). Replication of the X4-tropic HIV-1 SG3 strain in these PHA-activated T cell cultures
was highly variable among chimpanzee donors (n=8, day 8 post infection median p24 = 13ng/
ml, range 0-72 ng/ml), ranging from no replication (n=2) to levels 10-fold lower compared to
human donors (n=6, day 8 post-infection median p24 = 193 ng/ml, range 120-430 ng/ml)
(Figure 1A). Although HIV-1 SG3 was specifically selected for its ability to efficiently
replicate in chimpanzee T-cells (Ghosh et al., 1993), lymphocytes from some chimpanzee
donors were unable to support SG3 replication under these conditions. Moreover, the R5 strain
YU2 did not replicate in any of the chimpanzee T cell cultures following this standard protocol
(data not shown). Similar results were obtained when chimpanzee CD4+ lymphocytes were
stimulated with concanavalin A (data not shown). Flow cytometry analysis of PHA-stimulated
cells identified activated CD4+ lymphocytes in both human and chimpanzee cultures, as shown
by the appearance of larger cells with increased granularity (Figure 1B). However, trypan blue
staining revealed two to three-fold lower numbers of viable cells in PHA activated chimpanzee
compared to human cultures. We thus explored conditions under which human and chimpanzee
CD4+ lymphocytes would be activated and proliferate to the same extent and supporting HIV-1
replication.

We first evaluated a stimulation protocol using anti-CD3 or a combination of anti-CD3 + anti-
CD28 monoclonal antibodies (mAbs) and the results were recently reported (Bibollet-Ruche
et al., 2008). We found that not all anti-CD3 mAb isotype were equally capable of stimulating
chimpanzee T cells. While immunological activation of chimpanzee lymphocytes was
achieved with anti-CD3 mAbs of the IgG2a isotype, these activated cells still remained resistant
to infection with the R5 tropic HIV-1 YU2 strain and less supportive of the X4-tropic HIV-1
SG3 replication compared to human lymphocytes activated under the same protocol.

We next tested the Staphylococcal Enterotoxin B (SEB) superantigen activation competence
of human and chimpanzee CD4+ lymphocytes. Previous studies demonstrated that bacterial
superantigens such as SEB induce a more robust proliferative response in non-human primate
T-cells, including macaque and chimpanzee, compared to lectin stimulation (Bavari, Hunt, and
Ulrich, 1995; Kakimoto et al., 1999; Loffredo et al., 2004). As with PHA, we found that cellular
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proliferation was reduced in chimpanzee compared to human CD4+ lymphocyte cultures.
However, SEB stimulation increased HIV-1 SG3 replication in both chimpanzee and human
CD4+ lymphocytes by 3 to 40-fold compared to PHA activated cells (Figure 2A). Although
SEB stimulated chimpanzee CD4+ lymphocytes were still refractory to HIV-1 YU2, a 4-fold
growth increase was observed in SEB-activated human cells (Figure 2B). We thus selected
SEB as the mitogen for all further studies.

Optimization of the activation protocol for chimpanzee CD4+ T lymphocytes
Original experiments aimed at deciphering the mode of action of mitogens, such as PHA or
SEB, in respect to T cell activation were performed in the presence of antigen presenting cells
(APCs), including dendritic cells and macrophages (Bhardwaj et al., 1993; Boshell et al.,
1996; Damaj, Mourad, and Naccache, 1992; Hewitt et al., 1992; Mills et al., 1985; Spertini,
Spits, and Geha, 1991; Wakasugi et al., 1985). We thus hypothesized that APCs, specifically
macrophages, may provide additional signals, via direct cell-cell contact or cytokine
production, that could promote and sustain activation of chimpanzee T lymphocytes. To induce
monocyte differentiation into macrophages, we supplemented the culture medium with 10%
Giant Cell Tumor conditioned medium, which contains M-CSF. Similar activation schemes
using SEB-pulsed dendritic cells for the expansion of human CD4+ lymphocytes have recently
been described (Oswald-Richter et al., 2007; Unutmaz et al., 1999). The results showed that
chimpanzee, as well as human, CD4+ lymphocytes activated by SEB and cocultured in the
presence of autologous monocyte-derived macrophages exhibit a strong and reproducible
proliferative response.

Phenotypic characterization of activated lymphocytes
Differences in susceptibility to HIV-1 infection have been reported for various human
lymphocyte populations, including naïve and memory T-cells, subsets of memory cells, as well
as cells with T helper type 1 (Th1) or type 2 (Th2) phenotypes (Annunziato et al., 2000;
Bonecchi et al., 1998; Cayota et al., 1993; Chun et al., 1997; Oswald-Richter et al., 2007; Song
et al., 2005b). We thus determined the phenotype of the activated lymphocytes to ensure that
HIV-1 replication in human and chimpanzee cultures was not biased by species-specific
differences in the expanded T cell populations.

For sixteen chimpanzee and seven human donors, activated CD4+ T cells were analyzed for
the expression of lymphocyte surface markers. Flow cytometric analyses were performed using
monoclonal antibodies against human cell surface antigens known to cross-react with the
cognate chimpanzee antigen. The expanded cells were CD3+ CD4+ with a reproducible purity
of over 90% (data not shown). The cell surface markers expression profiles for representative
human and chimpanzee are shown in Figure 3. The magnitude of expression for CD4, CD69,
CD25, CCR5, CD28 and CD45RO was comparable between chimpanzees and humans (Figure
4). The mean fluorescence intensity of these markers on activated lymphocytes was not
statistically significant between human and chimpanzees (p > 0.1) and showed limited inter-
individual differences (data not shown). Expression of the CD69 and CD25 early and late
activation markers, respectively, were comparable between human and chimpanzee. On
average, > 50% of the cells expressed CD25, indicative of an activated phenotype (Figure 4).
The CXCR4, CD62L and CD45RA markers were consistently detected on chimpanzee T cells,
while their expression was lower or not detected on human T cells (Figure 3 and 4).
Significantly lower levels of HLA-DR expressing cells were detected in chimpanzee compared
to human cultures (p=0.0002). Further analysis of HLA-DR expression prior to activation
revealed low expression on CD4+ lymphocytes and high expression on monocytes for both
human and chimpanzee cultures (Figure 5). Thus, T-cell activation induced HLA-DR
expression in human but not chimpanzee CD4+ lymphocytes (Figure 5). The HIV-1 coreceptor
CCR5 was expressed at high levels in both species, while CXCR4 expression was significantly
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lower in humans (p=0.01) (Figure 3 and 4). Activated lymphocytes also expressed the CD45RO
marker, indicating that the expanded cells were derived from the memory subset (Figure 3 and
4). Analysis of the CD45RO and CD45RA markers expression on CD4+ lymphocytes prior to
stimulation revealed that naïve (CD45RA+) and memory (CD45RO+) subsets were equally
represented (data not shown), indicating that our activation procedure preferentially induced
the proliferation of CD4+ CD45RO+ memory lymphocytes. Low levels of the CD45RA marker
were consistently detected on chimpanzee cells while not detected on human cells (p = 0.0005,
Figure 3 and 4). Cells from human donors expressed low to undetectable levels of the CD62L
marker, while this marker was expressed at higher levels on chimpanzee T cells (p = 0.0009,
Figure 3 and 4). Upon stimulation, cell surface CD62L is hydrolyzed by metalloproteases and
the low expression on human cells is likely due to degradation as no metalloproteinase
inhibitors were included during the activation procedure or during the 24 hours incubation in
complete media (Kayagaki et al., 1995;Preece, Murphy, and Ager, 1996). The CD62L
expression detected on activated chimpanzee cells suggests a differential regulation of L-
selectin between human and chimpanzees.

We next monitored the production of interferon gamma (IFN-γ) and interleukin-4 (IL-4) by
activated lymphocytes as markers for Th1 and Th2 subsets, respectively. No IL-4 production
(detection limit 1 pg/ml) and high level of IFN-γ were detected in both species. The average
level IFN-γ in culture supernatant was 985 pg/ml (range 77-2168, median 898 pg/ml) and 968
pg/ml (range 176-2877 pg/ml, median 780 pg/ml), in human and chimpanzee activated CD4+
lymphocytes culture supernantants, respectively. The IFN-γ levels were not statistically
different between species. These results indicate that the lymphocytes expanded under our
protocol are predominantly from the Th1 subset.

Beta-chemokines secretion by activated lymphocytes
Although there was no significant difference in the number of CCR5 expressing cells between
activated human and chimpanzee lymphocytes (Figure 4), a higher production of CCR5-
binding chemokines (CCL5, CCL3, CCL4) by chimpanzee cells could theoretically block
infection (Annunziato et al., 2000;Margolis et al., 1998;Trkola et al., 1998). This possibility
was of particular interest since chimpanzees were reported to have a higher copy number of
the CCL3L1 gene, an isoform of the CCL3 chemokine (Gonzalez et al., 2005;Shao et al.,
2007). To test this hypothesis, we quantified the production of CCL5 and CCL3 (+ CCL3L1
isoform as the Bio-Plex assay detects both chemokines) in the culture supernatants of activated
lymphocytes. High levels of CCL5 were measured in both species and, surprisingly, a median
10-fold lower secretion of CCL3 was found in chimpanzee compared to human donors (Figure
6). The CCL3 expression differences were highly significant (p=0.0002). These results indicate
that a higher secretion of CCR5-binding cytokines by chimpanzee cells does not explain the
reported replication block observed for R5 HIV-1 in chimpanzee lymphocytes.

SG3 and YU2 replication in chimpanzee CD4+ T lymphocytes
We next asked whether chimpanzee lymphocytes activated with the new protocol support
HIV-1 replication, using the HIV-1 SG3 and YU2 prototypic strains. The results showed that
both viruses replicated in T cells from all chimpanzee donors tested. Mean p24 levels in the
supernatants of SG3- and YU2-infected CD4+ lymphocytes of 23 chimpanzees at 7 days post-
infection was 375 ng/ml (range 74-2480 ng/ml, median 374 ng/ml) and 33 ng/ml (range 1-460
ng/ml, median 40 ng/ml), respectively (Figure 7A). This profile was similar to the replication
levels of these two viruses in human CD4+ T lymphocytes, although relative growth differences
between SG3 and YU2 were less pronounced in human lymphocytes. The chimpanzee cultures
exhibited a wider range of HIV-1 replication compared to human (Figure 7B and 7C), including
five individuals with reduced YU2 replication (p24 <10 ng/ml, Figure 7C). This was not due
to sub-optimal activation as SG3 replicated efficiently in these same cultures (p24 values for
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SG3 at day 7 in these five chimpanzees: average 488 ng/ml, range 320-670ng/ml, median 550
ng/ml). These results thus showed that chimpanzee CD4+ T cell cultures differed significantly
more in their ability to replicate HIV-1 than human cultures, indicating significant intrinsic
inter-individual differences among chimpanzee donors in supporting the replication various
HIV-1 strains.

Susceptibility of chimpanzee CD4+ T lymphocytes to primary HIV-1 isolates
To validate the SG3 and YU2 isolates replication results, we next analyzed the replication of
the HIV-1 R5 prototypic strains ADA, BaL and JRCSF in activated CD4+ lymphocytes from
four human and chimpanzee donors. All strains replicated efficiently and with comparable
replication kinetics in activated human T-cells (Figure 8A). Conversely, the BaL isolate
replicated efficiently in chimpanzee cells, to levels comparable to the SG3 and YU2 prototypic
strains. The ADA strain typically exhibited lower replication levels and, unexpectedly, the
JRCSF strain did not replicate in CD4+ lymphocytes from any of the chimpanzee donor tested
(Figure 8B). Taken together these results indicate that the previously reported failure of R5
HIV-1 to replicate in chimpanzee T cells was due, at least in part, to inadequate T cell activation
but also suggest that chimpanzee donors differ in their susceptibility to HIV-1 infection or that
some human adapted HIV-1 strains can be restricted for replication in chimpanzee cells.

Discussion
In this study, we investigated the replication potential of R5 and X4 HIV-1 strains in human
and chimpanzee lymphocytes. We show that efficient and reproducible activation of
chimpanzee CD4+ lymphocytes can be achieved in the presence of SEB and autologous
macrophages, and that this mode of activation renders chimpanzee T cells capable of supporting
the replication of both prototypic X4 and R5 tropic HIV-1 strains. Characterization of activated
T cell also revealed differences in surface marker between human and chimpanzee, expanding
previously reported species-specific differences of cell surface protein expression.

In the past, investigators screened chimpanzees by in vitro culture to find those most susceptible
to HIV-1 infection (Eichberg et al., 1987; Nguyen et al., 2006; Pischinger et al., 1998;
Schuitemaker et al., 1993; Shibata et al., 1995); however, the level of T cell activation in these
experiments was not determined. A more recent study noted differences in the proliferative
response between human and chimpanzee T-cells (Nguyen et al., 2006). This suggested that
chimpanzee lymphocytes might require different activation stimuli than human lymphocytes
to support HIV-1 replication. We reasoned that autologous macrophages might provide signals
that would induce a longer lasting and/or more robust activation state. We found that the
presence of differentiated macrophages early in the activation process was indeed key since it
facilitated sustained SEB-induced CD4+ lymphocyte proliferation, a function not provided by
monocytes or B-lymphocytes in this system (FB-R, unpublished).

Chimpanzee CD4+ lymphocytes activated under the new protocol supported efficient
replication of the prototypic R5 YU2 strain, revealing for the first time that the previously
reported R5 replication block was likely a tissue culture artifact (Beaumont et al., 2000; Cho,
Shibata, and Martin, 1996; Schuitemaker et al., 1993; Shibata et al., 1995). We did, however,
find that lymphocytes from different chimpanzee donors varied in their ability to support YU2
replication, more so than comparable human cultures (Figure 7B and C). This was not due to
lymphocyte activation levels, coreceptor expression, or availability of target cells, and may
thus reflect as yet unidentified host factors that influence viral replication. The mechanisms
underlying these differences among chimpanzee donors remain to be explored.

The phenotypic characterization of CD4+ lymphocytes activated under the new protocol also
revealed species-specific differences in the expression of surface marker possibly linked to the
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regulation of T-cell activation. Because human and chimpanzee monocytes express
comparable levels of HLA-DR, the low level of HLA-DR expression on activated chimpanzee
CD4+ lymphocytes (Figure 4) suggests that these cells might be less functional as APCs in
vivo compared to their human counterpart. The role of MHC class II expression on CD4+
lymphocytes remain unclear, but several reports suggest that the MHC class II-mediated
interaction between T-cells could regulate adaptive immune responses (Barnaba et al.,
1994;Fischer et al., 2007;LaSalle, Ota, and Hafler, 1991). In addition, MHC class II proteins
differ in their ability to bind superantigens such as SEB and amino acid differences between
human and chimpanzee MHC class II have been described (de Groot and Bontrop,
1999;Herman et al., 1990;Herrmann, Accolla, and MacDonald, 1989). Thus, it is possible that
differences in HLA-DR cell surface expression and/or allelic polymorphism (via differences
in SEB affinity) account for the limited proliferative response of chimpanzee CD4+
lymphocytes to SEB stimulation in the absence of macrophages. Activated chimpanzee CD4
+ lymphocytes also expressed high levels of the CD62L homing receptor which adds to the
list of adhesion molecules involved in co-stimulatory receptor/ligand interactions, including
CD33-related Siglecs (Nguyen et al., 2006), ICAMs (Walter, Stebbing, and Messier, 2005)
that could differentially modulate CD4+ lymphocyte activation and proliferation in vitro and
in vivo. The basis of these differences between these two species, as well as their relevance to
in vivo functional differences, will require further exploration.

In summary, we report here a new activation protocol that renders chimpanzee CD4 T cells
capable of replicating R5 tropic HIV-1 strains. This activation protocol has already proven
useful to assess the biological relevance of an HIV-1 matrix protein adaptive change selected
upon cross-species transmission of SIVcpz to humans and to analyze the replication potential
of novel fecal-consensus SIVcpz and SIVgor molecular clones in chimpanzee CD4+
lymphocytes (Takehisa et al., 2009; Takehisa et al., 2007; Wain et al., 2007). However,
unanswered questions remain. We show here that chimpanzee donors vary significantly in the
level of HIV-1 replication, much more so than human donors. The receptor and coreceptor
expression levels are equivalent between human and chimpanzees (Figure 4), thus it seems
improbable that, like natural SIV hosts such as sooty mangabeys and African green monkeys
(Beaumier et al., 2009; Sodora et al., 2009), CD4 or CCR5 expression differences account for
the susceptibility differences. Moreover, we have recently identified additional HIV-1 strains
and primary isolates that, similar to JRSCF, do not replicate in chimpanzee lymphocytes,
including strains that use CXCR4 as coreceptor. These results point to chimpanzee-specific
host factors can may block or modulate HIV-1 replication in chimpanzee lymphocytes. These
restriction factors are likely different from currently know human HIV-1 restriction factors
such as TRIM5a, APOBEC3G, since the human and chimpanzee alleles seem equivalent with
respect to their anti-HIV-1 function (Kratovac et al., 2008; Sawyer, Emerman, and Malik,
2004; Song et al., 2005a). Our new lymphocyte activation approach provides the basis for
comparative studies of human and chimpanzee susceptibility to HIV-1 that could lead to the
identification of novel host factors that control or are required for HIV-1 replication.
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Figure 1. HIV-1 SG3 replication in PHA-activated chimpanzee and human CD4+ lymphocytes
A. CD4+ lymphocytes from eight chimpanzees (C1 to C8) and six human (H1 to H6) donors
were activated with PHA and tested for their ability to support HIV-1 SG3 replication.
Infections were initiated at a multiplicity of infection (MOI) of 0.1. Virus replication was
monitored by quantifying the p24 viral antigen in the culture supernatants on day 8 post-
infection (y axis, nanograms of p24 per ml of culture supernatant). The grey box indicate the
cutoff (1ng/ml) below which replication is considered negative. B. Representative flow
cytometric density plots (x-axis, electronic volume; y axis, side scatter) of CD4+ lymphocytes
at baseline (left panels) and 48 hours post PHA activation (right panels) for human (top panels)
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and chimpanzee (lower panels). The percentage of activated cells located in gate R2 are
indicated.
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Figure 2. HIV-1 replication in PHA or SEB activated T-cells
CD4+ lymphocytes from three chimpanzees (C-1 to C-3) and one human (H-1) donors were
activated with PHA or SEB and tested for their ability to support HIV-1 SG3 (A) and YU2 (B)
replication. Infections were initiated at a multiplicity of infection (MOI) of 0.1. Virus
replication was monitored by quantifying the p24 viral antigen in the culture supernatants on
day 8 post-infection (y axis, nanograms of p24 per ml of culture supernatant). Virus replication
was considered positive when the p24 antigen level reaches a cutoff value of 1 ng/ml (shaded
box). For the 3 chimpanzee cultures, the median p24 level for the SG3 infections the in PHA-
activated cells was 5.8 ng/ml and the median p24 in SEB-activated cells was 88.3 ng/ml.
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Figure 3. Phenotype of activated human and chimpanzee lymphocytes
Activated CD4+ T cells were stained and analyzed for cell surface activation (CD69, HLA-
DR, CD25) and phenotypic (CD28, CD45RO, CD62L and CD45RA) markers expression as
described in Materials & Methods. Expression of the HIV-1 CD4 receptor as well as the CCR5
and CXCR4 coreceptors were also analyzed. Representative histogram profiles are shown for
one human (left panels) and one chimpanzee (right panels) donor (x-axis: log fluorescence, y-
axis: cell number). The electronic gate was set for the CD4+ lymphocyte population and the
percentage of cells expressing this maker was calculated using the same gate for all stains.
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Figure 4. Surface expression of select antigens on activated CD4+ lymphocytes
Activated CD4+ lymphocytes from 16 chimpanzee (open circles) and 7 human (filled squares)
donors were stained with antibodies as described in Materials and Methods. Surface antigen
expression is shown as the percentage of cells expressing the indicated antigen from the CD4
+ lymphocytes population electronic gate (y axis). For each antigen, a red horizontal bar
indicates the median value for human and chimpanzee donors. p values were obtained from
Mann-Whitney tests between human and chimpanzee donors, and non-significant (p>0.01)
values were omitted.
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Figure 5. Surface expression of HLA-DR on CD4+ lymphocytes and monocytes
CD4-positively selected cells (lymphocytes and monocytes) and activated CD4+ lymphocytes
were stained with anti-HLA-DR-FITC, anti-CD4-PECy5 and anti-CD3-PE antibodies. A
representative profile for one human (left panels) and one chimpanzee (right panels) donor is
shown (x-axis = log FITC fluorescence, y-axis = cell counts). Electronic gates were set for
lymphocyte (CD4+ CD3+ population) or monocyte (CD4+ CD3-) populations and HLA-DR
expression was analyzed. The percentage of cells expressing HLA-DR is indicated for each
cell type.

Decker et al. Page 21

Virology. Author manuscript; available in PMC 2010 November 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. CCL3 and CCL5 secretion by activated CD4+ lymphocytes
The production of the CCL3 and CCL5 beta-chemokines was quantified in the culture
supernatant of activated CD4+ lymphocytes from seven human (filled squares) and seventeen
chimpanzee (open circles) donors. (y axis, picograms of CCL3 or CCL5 per ml of culture
supernatant)
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Figure 7. HIV-1 SG3 and YU2 strains replication potential in chimpanzee and human CD4+
lymphocytes
(A) Median p24 values in the culture supernatant of SG3- (black) or YU2-infected (grey) in
activated CD4+ lymphocytes from chimpanzee (n=23) and human (n=4) donors. The error bars
represent one standard deviation. The p24 antigen was quantified 7 days post infection (y axis,
nanograms of p24 per ml of culture supernatant), initiated at day 0 at 0.1 MOI. The day 7 p.i.
p24 values for SG3 (x-axis) and YU2 (y-axis) plotted for 6 human (B) and 23 chimpanzee
donors (C). The filled circles represent the five chimpanzee donors that supported limited
HIV-1 YU2 replication (p24 < 10 ng/ml).
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Figure 8. Primary HIV-1 strains YU2, JRCSF, ADA, and BaL replication kinetics in human and
chimpanzee CD4+ lymphocytes
Virus replication was monitored by measuring the level of the p24 antigen in culture
supernatants. Replication curves for each strain are shown as the average of independent
experiments in CD4+ T lymphocytes from four different chimpanzee and human donors; the
error bars represent one standard deviation calculated for each time point. The grey box indicate
the cutoff (1ng/ml) below which replication is considered negative.
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