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Abstract
Many physiological responses elicited by neuronal spikes—intracellular calcium transients, synaptic
potentials, muscle contractions—are built up of discrete, elementary responses to each spike.
However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response
not only sums with previous ones, but can itself be modified by the previous history of the activity.
A basic goal in system identification is to characterize the spike-response transform in terms of a
small number of functions—the elementary response kernel and additional kernels or functions that
describe the dependence on previous history—that will predict the response to any arbitrary spike
train. Here we do this by developing further and generalizing the “synaptic decoding” approach of
Sen et al. (J Neurosci 16:6307-6318, 1996). Given the spike times in a train and the observed overall
response, we use least-squares minimization to construct the best estimated response and at the same
time best estimates of the elementary response kernel and the other functions that characterize the
spike-response transform. We avoid the need for any specific initial assumptions about these
functions by using techniques of mathematical analysis and linear algebra that allow us to solve
simultaneously for all of the numerical function values treated as independent parameters. The
functions are such that they may be interpreted mechanistically. We examine the performance of the
method as applied to synthetic data. We then use the method to decode real synaptic and muscle
contraction transforms.
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Introduction
The spike is a basic organizing unit of neural activity. Each discrete spike stimulus elicits a
discrete elementary response that propagates through various neurophysiological pathways.
The prototypical example is at the synapse, where each presynaptic spike elicits, in turn, a
discrete rise in presynaptic calcium concentration, release of neurotransmitter, and changes in
postsynaptic conductance, current, and potential (Katz 1969; Johnston and Wu, 1995; Sabatini
and Regehr, 1999). The fundamental difficulty in understanding the stimulus-response
relationship in such cases comes from the fact that the spikes occur in trains of arbitrary
temporal complexity, and that each elementary response not only sums with previous ones, but
can itself be greatly modified by the previous history of the activity—in synaptic physiology,
by the well-known processes of synaptic plasticity such as facilitation, depression, and post-
tetanic potentiation (Magleby and Zengel, 1975, 1982; Krausz and Friesen, 1977; Zengel and
Magleby 1982; Sen et al., 1996; Hunter and Milton, 2001; Zucker and Regehr, 2002).
Downstream of but implicitly including these processes of synaptic plasticity, when they occur
at a neuromuscular junction, is then such a response as muscle contraction. In this paper we
will analyze, in addition to synthetic data, experimental data from a “slow” invertebrate muscle
where prolonged response summation and a highly nonlinear and plastic neuromuscular
transform (Brezina et al., 2000) make for a very complex, irregular response that, at first sight,
appears extremely challenging to understand and predict quantitatively. Fig. 1 illustrates some
of the factors that are responsible for the complexity of the spike-response transform with
synthetic data.

To achieve a predictive understanding of the spike-response transform is our goal here. As
indicated in Fig. 1, from the observable data, just the spike train and overall response to it, we
wish to extract a set of building-block functions—the elementary response kernel and other
functions that describe the dependence of the response on the previous history—that will allow
us to predict quantitatively the response not only to that particular spike train, but to any
arbitrary spike train. This will constitute a complete spike-level characterization of the spike-
response transform.

The problem is one of nonlinear system identification. In neurophysiology, and synaptic
physiology in particular, such problems have been approached by several methods (for a
comparative overview see Marmarelis, 2004). A classic method is to fit the data with a specific
model (e.g., Magleby and Zengel, 1975, 1982; Zengel and Magleby, 1982). However, the
choice of model must typically be guided by the limited dataset itself, so that often the model
fails to generalize. In a model-free approach, on the other hand, white-noise stimulation is used
to determine the system's Volterra, Wiener, or other similar kernel expansion (e.g., Marmarelis
and Naka, 1973; Krausz and Friesen, 1977; Gamble and DiCaprio, 2003; Song et al.,
2009a,b; for reviews see Sakai, 1992; Marmarelis, 2004). Although in principle providing a
complete, general characterization, the higher-order kernels are difficult to compute, visualize,
and interpret mechanistically. To combine the strengths and minimize the drawbacks of these
two approaches, Sen et al. (1996) introduced, and Hunter and Milton (2001) extended, the
method of “synaptic decoding.” This method follows the model-free approach as far as to find
the system's first-order, linear kernel (the elementary response kernel), but then, rather than
computing the higher-order kernels, combines the first-order kernel with a small number of
additional linear kernels and simple functions—thus constituting a model, but a relatively
general one—to account for the higher-order nonlinearities. Here we adopt this basic strategy.
We cannot adopt, however, the simplifications that Sen et al. and Hunter and Milton were able
to make by virtue of the fact that their decoding method was geared toward synaptic physiology,
where, for example, some function forms were a priori more plausible than others. With the
fast and rarely summating synaptic responses, they were furthermore able to obtain the shape
of the elementary response kernel and the amplitude to which it was scaled at each spike
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essentially by inspection (Hunter and Milton, 2001). In many slow neuromuscular systems, in
contrast, an isolated single spike produces no contraction at all, and when spikes are sufficiently
close together to produce contractions, the contractions summate and fuse, so that the
elementary response can never be seen in isolation. (Fig. 1 shows this with synthetic data.)
Finally, Sen et al. and Hunter and Milton extracted parameters by a gradient descent search,
requiring many iterations and a good initial guess. Here we describe, and apply to synaptic and
neuromuscular data, a decoding method that largely avoids such simplifying assumptions and
limitations.

Following Sen et al. (1996), we use the term “decoding” as a convenient shorthand for the
process of system identification of the spike-response transform from its input and output, the
spike train and the response to it. However, the formulation of our method then offers the
possibility of a decoding also in the more usual sense, of the spike train from the response in
which, through the transform, the spike train has been encoded (see Discussion).

Methods
In this section we provide an overview of the method's mathematical algorithm.

The fundamental assumption of the method is that the overall response was, in fact, built up
in such a way that it is meaningful to decompose it again into a small number of elementary
functions or kernels. Furthermore, we must assume some model of how these functions are
coupled together. However, in contrast to traditional model-based methods and to some extent
even the previous decoding methods, we do not have to assume any specific forms for these
functions.

An illustrative model
We will illustrate how the method works with one particular model, motivated by the models
that are typically used for synaptic transmission (Magleby and Zengel, 1975, 1982; Zengel and
Magleby, 1982; Sen et al., 1996; Hunter and Milton, 2001). Other possible models are discussed
in the Results.

In formulating the model, we assume that

(1)

where t = time; ti = time of spike i, i = 1, 2, …; R = overall response to the spike train; K =
single-spike response kernel; A(ti) = Ai = factor that scales the amplitude of K at spike i.

We further assume that

(2)

where tj = time of spike j, j = 1, 2, …; H = single-spike “history” kernel; F = nonlinear function.

Thus, the overall response is built up by the summation of the individual responses to each
spike, each scaled by an amplitude factor that depends in a nonlinear way on the summated
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history of the previous spikes. In Fig. 1, which was constructed using this model, the operation
of Eqs. 1 and 2 can be graphically followed in panels A and B.

The decoding algorithm operates on a particular dataset of Ns successive spike times ti, which
we will collectively designate {ti}, together with the overall response to this particular spike
train, Rexp(t). The algorithm then proceeds in two major steps. The first step is to find the
function K(t) and the numbers Ai that give the best fit, in the sense defined below, of R(t) as
given by Eq. 1 to the response Rexp(t). The second step determines the functions H and F that
optimize the fit of the function A(t) as given by Eq. 2 to the values Ai that were found in the
first step. A flowchart of the entire algorithm is shown in Fig. 2.

Step 1: Finding K and A
A complete derivation of the algorithm of Step 1 is provided in Supplement 1. The task of the
algorithm is to minimize

with respect to the discrete variables Ai and the continuous function K(t). To simplify the
problem, we first discretize time into bins of duration Δt. Thus, t = nΔt, ti = niΔt, Kn = K(nΔt),

, where n and ni are integers. Then I0 is replaced by the Riemann sum I:

We also assume that the kernel K is both causal and has finite memory, so that Kn = 0 for n ≤
0 and also for n > N for some integer N (the “length” of K). Thus, the nonzero values of K are
at most K1, …, KN. The task is therefore to minimize I with respect to the N + Ns variables
K1, …, KN, A1, …, ANs. This is a calculus problem. To solve it, we differentiate I with respect
to each of the variables and set the result equal to 0.

For K, this leads (see Supplement 1) to a linear system of N equations in N unknowns given
by

(3)

where
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for m = 1, …, N and n = 1, …, N. The matrix  (a Toeplitz matrix) is symmetric and positive
definite, guaranteeing that the linear system has a unique solution K1, …, KN. However, the
solution depends upon the Ai's, which are also unknown.

Similarly, for the Ai's, we have a linear system of Ns equations in Ns unknowns given by

(4)

where

for k = 1, …, Ns and i = 1, …, Ns. Since Kn = 0 for n ≤ 0 and for n > N, the sums over n in these
definitions of Xki and Yk involve only a finite number of nonzero terms. The matrix X (a banded
matrix) is symmetric and positive definite, guaranteeing that the linear system has a unique
solution A1, …, ANs. However, this solution depends on K1, …, KN.

Thus, we have a linear system that determines K given A, Eq. 3, and a linear system that
determines A given K, Eq. 4. To solve for the values of K and A that simultaneously minimize
I, we use the following iterative scheme:

for iteration number l = 0, 1, …. Here ( −1Q)(l) is shorthand for the value of −1Q when A =
Â(l), and (X−lY)(l) is shorthand for the value of X−1Y when K = K̂(l). To start the iterations, we

arbitrarily (see Results) set  for i = l, …, Ns. [We can equally well reverse the order of
finding K and A within each iteration and start the iterations with  or 1/N (see Results)
for n = 1, …, N.]

For l ≥ 1, the iterative scheme generates an estimate K̂(l) of K and an estimate Â(l) of A. We use
these to construct an estimate R̂(l) of R according to

Then we follow the progress of the algorithm by monitoring

(5)
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Since each step of our iterative scheme finds the optimal value of K or A, given the current
estimate of A or K, respectively, it is guaranteed that

Moreover, since I(l) is bounded from below by 0, it is also guaranteed that I(l) converges as l
→ ∞. In practice, we continue the iterations until I(l) is sufficiently small or until a preset
maximal number of iterations is reached.

Performance-enhancing modification—To accelerate the convergence of some
decodings (see Results), we smoothed Â with a Gaussian kernel density estimation filter
(Parzen, 1962; Szücs et al., 2003). In each iteration in which the smoothing was applied, as
soon as Â was obtained by solving Eq. 4, it was replaced by Â′ given by

(6)

The numerator of Eq. 6 is the sum of the values of Â and the denominator is the number of the
values of Â included under the Gaussian smoothing kernel centered on the spike time bin ni of
each particular Âi. The standard deviation of the Gaussian kernel, σ, was governed by a function
that allowed σ to decrease—the smoothing to weaken—with increasing iteration number l ≥
1. A typical function was σ = Nt/klp, where Nt is the total number of time bins of Rexp and k
and p are constants. For the typical dataset with Ns = 100 spikes at a mean spike rate r = 0.1,
and so Nt ≈ 1,000 (see Results), k was set to 20 or 30 and p between 1 (for slowly weakening
smoothing) and 2 (for more rapidly weakening smoothing). The smoothing was usually
removed entirely after 10-20 iterations. While the smoothing was applied, it was no longer
guaranteed that I(l+1) ≤ I(l), although this usually remained true in practice (see Results and Fig.
5).

Step 2: Finding H and F
The presence in Eq. 2 of the nonlinear function F prevents us from applying a strategy like that
in Step 1 directly to Eq. 2. However, we can apply it to the simpler equation

In this case, a derivation like that in Step 1 (see Supplement 2) leads to the system

(7)

where
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for m = 1, …, N and n = 1, …, N. (The matrix  simply counts the spikes with the specified
interspike intervals.) This is a linear system of N equations in the N unknowns H1, …, HN.

To use Eq. 7 to find H and at the same time to deal with F, indeed to find F, in the full Eq. 2,
we add to the assumptions of our model two further assumptions about F. The first assumption
is that F is invertible. In that case, if we know F and so F−1, we can set S(t) = F−1 (A(t)).

Like Step 1, Step 2 therefore proceeds iteratively (see Fig. 2). Before the first iteration, we
initialize the estimate of F, F̂, to the identity function, so that S(t) = A(t). We solve Eq. 7 to
obtain an estimate of H, Ĥ, and construct [Σj Ĥ](t). We use Eq. 2 to construct F̂ from the pairs
([Σj Ĥ](t), A(t)). Finally, applying F̂ to [Σj Ĥ](t), we construct an estimate of A(t), Â (t).

By themselves, these constructions would produce, of course, Â(t) = A(t). We would have fit
A(t) perfectly, but only by collecting all of the error in the underlying F̂ and Ĥ. Furthermore,
if we now took F̂−1 to be the inverse of F̂ in this form, the algorithm would cycle through
precisely the same values in the next iteration: F̂ and Ĥ would never improve. To improve
them, we make a second assumption about F, namely that it is a relatively simple, “smooth”
curve with no very sharp changes in slope. When plotted, the raw F̂ is a scatter of points, many
of which have very different values of A for similar (even, to a given precision, the same) values
of Σj Ĥ, contrary to this assumption. We therefore smooth F̂, and simultaneously F̂−1, using
some smoothing filter (see below). The smoothing improves F̂ and so, in the next iteration,
also Ĥ. With the smoothed F̂, Â(t) ≠ A(t). The iterations continue as long as the error between
Â(t) and A(t) continues to decrease or until a preset maximal number of iterations is reached.

A difficulty in implementing Step 2 exactly as just described is that, to solve Eq. 7 for the time-
continuous function H(t), the function S(t) = F−1(A(t)) must likewise be time-continuous. (With
discretized time, “continuous” here means “having a value in each time bin.”) However, from
Step 1 we know only {Aj}, that is, the values of A(t) sampled only at the spike times {tj}, in
general not in every time bin. In each iteration we therefore use only the values at the spike
times to construct F̂, and F̂−1 and compute {Sj} = F̂−1 ({Aj}), but then fill in these points by
linear interpolation. Even though only {Aj} is known, the algorithm continues to construct the
estimate Â(t) of the entire continuous A(t). As a termination criterion, however, we use only
the error between the known {Aj} and its estimate {Âj} taken from Â (t).

Performance-enhancing modification—In practice we found that the efficacy of the
algorithm was significantly greater if we modified each Sj to F̂−1(Aj) − [Σi Ĥ]j, where the last
term is the value at the spike time tj of the summed Ĥ constructed in the previous iteration.
Now, instead of finding the whole Ĥ anew in each iteration, the algorithm found a residual
component, δĤ, that corrected Ĥ from the previous iteration. We routinely implemented this
modification as part of the basic algorithm; it is therefore included in Fig. 2.

Investigating the reason for the efficacy of this modification, we found that it was connected
with the incomplete knowledge of A(t) just mentioned. If the spikes were so dense that a spike
occurred in every time bin, making the complete A(t) available to the algorithm, then Eq. 7
operated analogously to Eq. 3 in Step 1 and the modification was not needed. When the spikes
were sparse, however, then Eq. 7 was fitting a waveform, S(t), that consisted predominantly
of the values linearly interpolated between the Sj's rather than the Sj's themselves, a waveform
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that therefore, in general, could never perfectly reflect the true summed H. Thus, even if a
perfect solution for H were hypothetically to be found in a particular iteration, that solution
would be degraded again in the next iteration. As a result, without the modification, the estimate
Ĥ ceased to improve in any systematic way after a small number of iterations. With the
modification, however, after the first iteration the residual Sj's were both positive and negative,
with many Sj's switching from positive to negative and vice versa in successive iterations; the
lines interpolated between the Sj's often passed through zero so that the interpolated values
were likewise positive and negative and smaller in absolute terms than the Sj's themselves; and
the amplitude of the whole waveform progressively decreased in successive iterations. Each
value of the estimate Ĥ was thus built up over the successive iterations as a converging sum
of positive and negative terms of progressively decreasing magnitude, allowing essentially any
arbitrary shape of Ĥ to emerge fully (provided that the spikes were not so sparse that the
interspike intervals exceeded the length of H: see Results).

Smoothing—For smoothing F̂ and F̂−1, we tested several filters and found that the success
of the decoding did not critically depend on the filter type. Most of the results presented in this
paper were obtained with a Gaussian kernel density estimation filter, analogous to that
sometimes used in Step 1, implemented as follows. With F̂ given by the discrete pairs ([Σi
Ĥ]j, Aj) as described above, the domain of the corresponding continuous smoothed function
F̂′(ΣH) was taken to extend from ΣH = minj ([Σi Ĥ]j) to ΣH = maxj ([Σi Ĥ]j), and F̂′(ΣH) was
computed using the equation (analogous to Eq. 6)

(8)

In early decodings, we set the standard deviation of the Gaussian kernel, σ, to some fixed
fraction of the width of the domain of F̂′, i.e., σ = (maxj([Σi Ĥ]j) − minj([Σi Ĥ]j))/k, where k
was typically 30 or 100. In most later decodings, however, we adaptively varied σ so that at
each ΣH the value of the denominator of Eq. 8 was always approximately equal to some fixed
fraction of the number of spikes, typically Ns/10, Ns/30, or Ns/100. To avoid oversmoothing
at the beginning and end of the domain of F̂′ where the discrete values of F̂ were sparse, we
sometimes set an upper limit on the value of σ. We found that, within these parameters, the
value of σ affected primarily the speed of convergence of the decoding algorithm, without
major effect on the final result. After obtaining F̂′ in each iteration, we inverted it and smoothed
it by a similar procedure to ensure that F̂′−1, too, was a function.

Two inputs
With two independent inputs 1 and 2 that sum but do not otherwise interact in producing the
response (see Results and Fig. 10), the model given by Eqs. 1 and 2 expands to

where
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and

where ti and tj are the spike times of the two inputs.

To decode this model, in Step 1 we duplicated within each iteration l ≥ 1 all of the steps for

finding K and A, first estimating  and  from {ti}, and , and then

estimating  and  from {tj} and . To initialize the algorithm, we used

 reconstructed from the estimates K̂ and Â that we obtained in an initial decoding of the
whole response Rexp with all of the spikes of both inputs combined—that is, from K̂ and Â

averaged over both inputs—or we simply set . Having found the best estimates of
K1, A1, K2, and A2 in Step 1, we then ran Step 2 twice, first to find H1 and F1 from {ti} and
A1, and then to find H2 and F2 from {tj} and A2.

Error evaluation
As a measure of the error between the “true” functions and their estimates, we computed
throughout this paper the mean-normalized percentage root mean square (RMS) error,
symbolized E. In all decodings we computed ER, the error between Rexp and R̂, given by the
equation

(9)

where Nt is the total number of time bins of Rexp. (Eq. 9 is essentially the normalized percentage
RMS form of Eq. 5.) With synthetic data where other true functions were known, errors in the
other functions that were defined over time bins—EK, EH, EA (the error in A over all time bins),
and EAi or EAj (the errors in A at the spike times only)—were computed analogously to ER.
EF was computed similarly between the true F and the smoothed estimate F̂′ over a fixed
number (typically 100) of equally spaced values of ΣH covering the domain of F̂′.

The use of RMS error made the errors reported in this paper numerically larger than they would
have been if we had computed, for instance, the percentage mean square (MS) error that is
often used in Wiener-kernel studies (e.g., Marmarelis and Naka, 1973; Krausz and Friesen,
1977; Sakai, 1992). With the standard normalization (Sakai, 1992), the percentage MS error
is approximately equal to E2/100. Thus E = 10% is equivalent to MS error of ∼ 1%, and E =
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30% to ∼ 9%. MS error below 10% is usually considered to be very satisfactory (see also
numerous examples in Marmarelis, 2004).

Experimental methods
The experiments in Figs. 11 and 12 used the controlled stimulus preparation of the heart of the
blue crab, Callinectes sapidus, as described by Fort et al. (2007a). Briefly, the heart was
removed from the crab, pinned ventral side up in the dish, and a small window was cut in the
ventral wall to expose the trunk of the cardiac ganglion. The ganglion trunk was severed at the
midpoint and the anterior portion of the ganglion was removed. The posterior trunk was drawn
into a polyethylene suction electrode for extracellular stimulation. Stimulus voltage pulses,
delivered from a Grass S88 stimulator, were adjusted (typically between 10-20 V and 1-3 ms)
so that each pulse reliably produced a single spike simultaneously in all of the motor neuron
axons in the posterolateral connectives. This was confirmed by the detection of a corresponding
compound excitatory junctional potential (EJP) in the muscle that did not grow larger when
the stimulus parameters were increased. The timing of the stimulus pulses was controlled by
a custom-built, computer-based timer capable of generating arbitrarily-timed spike trains. In
these experiments random, Poisson spike trains, each consisting of 200-300 spikes at a nominal
rate of 2-3 Hz, were repeated with intervening rest periods at least as long as the spike trains
themselves. EJPs were recorded with intracellular microelectrodes filled with 2 M KCl (10-30
MΩ) from a part of the muscle that did not move excessively during contractions. Contractions
were recorded with a Grass FT03 isometric force transducer connected to the anterior part of
the heart with a hook and nylon thread. The preparation was continuously perfused with
standard crab saline through its artery.

Results
Synthetic data

To investigate the performance of the decoding algorithm, we first worked with synthetic data,
where we knew not only the overall response Rexp but—unlike with real data—also the
underlying functions, Kexp, Hexp, and Fexp, from which Rexp had been constructed. We could
thus see how good was not just the overall reconstruction R̂ but also the underlying estimates
K̂, Ĥ, and F̂—a critical question since it would be those estimates that would then be used to
predict the response to any other spike train.

A typical decoding
Fig. 3A shows representative functions Kexp, Hexp, and Fexp, and Fig. 3B shows the response
Rexp (blue curve) constructed from them, by the operation of Eqs. 1 and 2 as in Fig. 1, for a
train of 100 random spikes (blue dots along the baseline) generated by a Poisson process
(Dayan and Abbott, 2001). We used such white-patterned spike trains because the structure of
the matrices in Eqs. 3, 4, and 7 suggests that the best decoding will be obtained if all interspike
intervals are equally represented. Given only the spike times {ti} and Rexp, the algorithm
produced an almost perfect reconstruction R̂, as shown in Fig. 3B by the red curve that exactly
overlies the blue curve of Rexp, and the straight-line plot of R̂ against Rexp in the inset. The
mean-normalized root mean square (RMS) error between R̂ and Rexp, ER, was 2.0%. At the
same time, each of the underlying estimates K̂, Ĥ, and F̂, shown by the red points superimposed
on the blue points of Kexp, Hexp, and Fexp in Fig. 3C, was excellent as well. (The RMS errors
are given in the legend. As discussed in the Methods, our use of RMS errors, as opposed to
mean square (MS) errors, made the error values appear relatively large, and the normalization
by the mean increased them further with certain function shapes, such as that of our
representative Hexp.)

Stern et al. Page 10

J Neurosci Methods. Author manuscript; available in PMC 2010 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Note, however, that the absolute scaling of the underlying functions does not in fact have a
unique solution: without some additional constraint, although the algorithm would have found
the correct shapes and the correct relative scaling of the underlying functions, it would not have
been able to recover the “true” absolute scaling of each individual function. This is inherent in
the structure of the model. In Eq. 1, for instance, K can be multiplied by a constant, k, if {Ai}
is multiplied by 1/k. Which k the algorithm settles on depends on the initialization of {Âi}. To
permit direct comparison of the shapes of the true and estimated synthetic functions in Fig. 3C
and other decodings, we constrained the integrals of Kexp and Hexp, and then of K̂ and Ĥ in
each iteration, to be 1. We found, furthermore, that imposing some such constraint on the
absolute sizes of K̂ and Ĥ in successive iterations significantly increased the stability and speed
of convergence of the algorithm.

Because the estimates K̂, Ĥ, and F̂ were excellent, they were very well able to predict the
response to a different spike train with the same nominal statistics (Fig. 3D) or indeed with
different statistics.

Performance characteristics of the algorithm
Number of iterations—The matrix implementation of the algorithm solves the entire system
of simultaneous equations for all of the values of K̂ (Eq. 3), {Âi} (Eq. 4), and Ĥ (Eq. 7) directly,
in one step, and F̂ is also found by a direct construction. No low-level iterative search is
necessary. However, each of these estimates is conditional on one (or, in the case of the other
models discussed below, more than one) of the other estimates. To improve each estimate in
turn, high-level iterations are still required. How many iterations were required to obtain a good
decoding? For a decoding like that in Fig. 3, a typical plot of RMS error against iteration number
can be seen in Fig. 4. We found that in Step 2 of the algorithm (see Methods) the estimates
Ĥ and F̂ converged to practically stable values with low errors after only a few (<10) iterations,
whereas in Step 1 the estimates K̂ and {Âi}, although sometimes they converged that rapidly
as well, sometimes could take many more iterations (30-100, or even more). In those cases,
however, it was often possible to accelerate the convergence, as described next.

Convergence in step 1—In Step 1, the overall error of the reconstruction, ER, always
decreased in successive iterations, as it was guaranteed to do until convergence (see Methods).
While ER decreased, though, the errors in the estimates of the underlying functions, EK and
especially EAi, could increase, as Fig. 4A shows. They often decreased again, as in Fig. 4A,
and K̂ and {Âi} did eventually converge. However, the speed of the convergence varied for
different spike trains, even with the same nominal statistics, and sometimes K̂ and {Âi} even
failed to converge before the maximal number of iterations that we allowed, usually 300, was
reached, so that for practical purposes the algorithm failed to solve the problem. Fig. 5A shows
such an example (cut off for the purposes of the figure at 80 iterations). Although—as with
essentially all decodings, even those that were quite unsatisfactory in other respects—the
algorithm achieved a reasonable overall reconstruction R̂, with only 8.5% RMS error (Fig. 5A,
right-hand box, bottom plot), the underlying estimates K̂ and {Âi} (right-hand box, top left and
top right plots, respectively) were completely incorrect (the RMS errors are plotted in Fig. 5A,
left, and given in the legend).

The primary problem lay in the estimation of {Âi}. We calculated the (2-norm) condition
numbers for the relevant matrices. Whereas the matrix  used to estimate K̂ (see Eq. 3 in
Methods) typically had relatively good condition numbers (in decodings like those in Figs.
3-5, of the order of 101 to 102), the matrix X used to estimate {Âi} (see Eq. 4) had poor condition
numbers (of the order of 103 to 106). This reflected the fact that whereas the matrix  collected
the information that yielded each value of K̂ from all parts of the dataset, many of which were
so far apart in time that they were essentially independent of each other, the matrix X collected
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the information that yielded each Âi only from the local environment of that particular spike.
(In Step 2, the matrix  used to estimate Ĥ in Eq. 7, since it operated like the matrix , likewise
had good condition numbers.) As a result—in another ambiguity of decomposition inherent
not merely in the model, but in the basic spike-response scenario itself—two spikes close to
each other formed a pair whose Âi's traded off against each other. In the limit, two spikes in
the same time bin were completely indistinguishable and their Âi's could assume any pair of
values, positive or negative, that simply averaged to the same value. A frequent symptom of
the problem, therefore, was that even when the true Âi's were all positive, the estimated Âi's
were, often rather symmetrically, both positive and negative (Fig. 5A, right-hand box, top left
plot). The problem was more severe to the extent that the estimate K̂, too, was poor, and thus
most severe in the early iterations of a decoding.

This understanding of the problem suggested at the same time a remedy. For two spikes in the
same time bin, the best estimate for both true Ai's is clearly the average of the pair of estimated
Âi's. Generalizing this idea, we smoothed the sequence of Âi's, more strongly to the extent that
the spikes were close together and most strongly at the beginning of the decoding, weakening
over successive iterations before ceasing entirely after 10-20 iterations (for details see
Methods). With this smoothing, the same dataset that in Fig. 5A could not be decoded by the
basic algorithm alone was decoded perfectly (Fig. 5B). A brief application of the smoothing
later in the decoding was equally effective (Fig. 5C). Altogether, we found that in many
decodings such smoothing allowed the algorithm to reach practical convergence on sufficiently
good values not only of R̂, but of the underlying K̂ and {Âi} as well, after only 10-30 iterations
of Step 1, not many more iterations than were required for Step 2.

We emphasize, however, that in Step 1 the smoothing was an auxiliary measure, not an essential
part of the algorithm. Indeed, except for Fig. 5, B and C, and several cases in Fig. 7, all of the
decodings in this paper were achieved without any Step 1 smoothing. Furthermore, the
smoothing appeared merely to accelerate the convergence of the estimates where the
convergence was slow due to the ambiguity of nearby spikes just described. It did not alter the
final solution that was reached (see next), and where that solution had significant errors due to
other causes, these errors remained (we verified this with the decodings of dense spikes in Fig.
6, small numbers of spikes in Fig. 7, and the real data in Figs. 11 and 12).

Uniqueness of solutions—The behavior observed in Fig. 5 might be thought to provide
support for the possibility—which we cannot completely rule out theoretically—that the
decoding algorithm could admit multiple solutions, multiple minima to which the estimates
could converge (in addition to the multiplicity of values of the absolute scaling factor k already
mentioned). We believe, however, that in Fig. 5A the estimates were not converging to some
alternative (albeit high-error) solution, but rather were very slowly converging to the same
low-error solution that was reached rapidly in Fig. 5, B and C. (In practical terms, of course,
the result of convergence to an incorrect solution and very slow convergence toward the correct
solution is much the same: the dataset is not decoded satisfactorily within a reasonable time.)
Thus, although this is imperceptible on the scale used in Fig. 5A, left, the overall error ER
continued to decrease slowly even as EK and EAi increased, and when such a decoding was
allowed to continue sufficiently long EK and EAi began to decrease too and the decoding
eventually reached the low-error solution, behaving as in Fig. 4 but over a much larger number
of iterations.

More generally, investigations with a variety of datasets, while necessarily incomplete,
suggested that when the estimates in Step 1 did converge, they always converged to the same
solution (with the constraint on K̂ already described). For example, the same solution was
reached from different random initializations of {Âi} (or K̂). And, at least over some range of
dataset parameters, that solution was a global minimum since it had essentially zero error (see
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further below). Finally, the smoothing was instructive in this regard because it perturbed, not
the initial conditions from which the decoding started, but rather the subsequent trajectory of
the estimates R̂, K̂, and {Âi}. Following different trajectories, the estimates nevertheless
reached the same final solution. This was particularly striking with the real data in Figs. 11 and
12, where the final solution had significant errors, allowing lower-error solutions to be reached
if they existed. Nevertheless, not only different initializations of {Âi} or K̂, but multiple
trajectories caused by somewhat different smoothing functions all converged to essentially
identical final values of R̂, K̂, and {Âi}.

Speed of the algorithm—In MATLAB on a 2.3 GHz Apple MacBook Pro or an equivalent
PC, without any special optimization of the code for speed, 300 iterations of a decoding like
that in Fig. 3 took several minutes. Thus a sufficiently good decoding, requiring only a small
number of iterations, could often be achieved in seconds.

Forms of K, H, and F—For convenience, the functions in Fig. 3A were generated using
analytic functions—an α-function (Dayan and Abbott, 2001) for Kexp, an exponential for
Hexp—but the functions were actually defined as the vectors of their numerical values, the dots
in Fig. 3A. Quite arbitrary functions could therefore be used to construct Rexp (see, e.g., Fig.
10 below). Since the algorithm treats each function value as an independent degree of freedom,
and the initialization of the function estimates is arbitrary, the algorithm was able to decode
such functions just as successfully as those in Fig. 3. We verified this with a wide range of
functions. If Kexp had multiple peaks, for example, the algorithm successfully decoded the
corresponding complex K̂, distinguishing those peaks of Rexp that were inherent to Kexp from
those that arose by the summation of the Kexp's of different spikes (see Fig. 10).

Spike density—While the algorithm successfully decoded datasets like those in Fig. 3, its
success varied with several parameters of the dataset. Chief of these was the spike density. For
the decoding problem, spike density is significant not in absolute terms, but relative to the
characteristic time scales of the response, here those of Kexp and Hexp. By varying the mean
rate r (expressed in spikes per time bin) of the spike train relative to the fixed time scales of
Kexp and Hexp, we generated sparse spike trains with overall responses Rexp in which the
individual kernels Kexp hardly overlapped at all (Fig. 6A, left), or, on the other hand, dense
spike trains where the individual Kexp's fused almost completely into a summated, plateau-like
Rexp (Fig. 6A, right).

Fig. 6B-D then plots the RMS errors E in various estimates produced by the algorithm, after
300 iterations, against log r. The errors too are plotted on a log scale; the horizontal line in
each panel, at log E = 0, marks 1% error, a very satisfactory decoding. Panel B shows the errors
in K, {At}, and R in Step 1. Panel C shows the errors in H, F, {Aj}, and the entire A(t) in Step
2 when Step 2 was run alone, that is, when it was given as input the true {Aj,exp} produced by
Hexp and Fexp. Finally, panel D shows the errors in K, H, F, and R when both Steps 1 and 2
were run in combination—as they were in a complete decoding like that in Fig. 3—in which
case Step 2 had available to it only the estimate {Âj} from Step 1 and so inherited any error of
Step 1. We can see in these plots three regions of qualitatively different performance of the
algorithm.

(1) With very dense spikes, to the right toward r = 1, the algorithm reconstructed the overall
input, Rexp in Step 1 and {Aj} in Step 2, very well, often with errors ≪1%. But it did this with
poor estimates of the underlying functions, which would therefore have been unsuccessful in
predicting the responses to other (sparser) spike trains.

(2) With very sparse spikes, to the left toward r = 0.01, the decoding in Step 1 was (with this
noise-free data) essentially perfect. The algorithm dealt perfectly with a single spike, when
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Kexp and Ai were evident simply by inspection, and with several spikes with nonoverlapping
responses, when it simply averaged the responses. The decoding in Step 2, however, was much
poorer, for a fundamental reason. Information about the underlying functions Hexp and Fexp is
sampled, in the form of {Aj}, only at the spike times. If the spikes are so sparse that each spike
comes only after Hexp of the previous spike has completely decayed, then {Aj} contains no
information at all about Hexp and Fexp, and they cannot be recovered.

(3) Between the sparse and dense regions there was an “optimal” region, around r = 0.1 with
the time scales of Kexp and Hexp used here, where the range of interspike intervals was such
that the overall response Rexp contained a variety of shapes and sampled a broad range of
amplitudes (Fig. 6A, middle). (The datasets in Fig. 3 had r = 0.1.) In this region, the errors in
all estimates were satisfactory: ≪1% in Step 1, close to 1% in Step 2 alone, and often not much
higher in the complete decoding. In this region, on average, every 10th time bin contained a
spike. Thus, only 10% of A(t) was sampled by {Aj}. Nevertheless, the algorithm reconstructed
the entire continuous A(t) within 1% error, as it had to do to be able to predict the response to
a spike that would be fired, in a future spike train, at any arbitrary time.

Number of spikes—The decodings in Figs. 3-6 were performed with 100 spikes. How many
spikes were actually required for a good decoding? We performed similar decodings while
varying the number of spikes, generated at the “optimal” r = 0.1, from 10 to 1000. The RMS
errors up to 200 spikes can be seen in Fig. 7. With very few spikes, the decoding was poor,
particularly in Step 2. However, errors not much higher than those in Fig. 3 were achieved
already with 40 or 50 spikes. The errors then continued to decrease slowly as the number of
spikes was increased further.

At the same time, of course, the increasing number of spikes, and the corresponding increase
in the number of time bins of Rexp, increased the computational burden. At the core of the
algorithm, Eqs. 3, 4, and 7 involve the construction and manipulation of numerical arrays whose
size increases with the number of spikes Ns and the number of time bins Nt ≈ Ns/r of Rexp (as
well as the lengths of K̂ and Ĥ). With 1000 spikes, a decoding allowed to run for the full 300
iterations could take several hours.

Noise—All of the results so far were obtained with noise-free datasets. The quality of the
decoding might be expected to degrade with noise. We examined this in three ways. We added
random noise to the value of the overall response Rexp in each time bin; we added random noise
to each value of the underlying functions Kexp, Hexp, and Fexp; and we added random noise to
parameters of the analytic functions that (for this purpose only) were used to generate the
underlying functions at each spike time, for example to the time constant of Kexp, so that the
whole shape of Kexp fluctuated from spike to spike. The results were similar in all three cases.
For the addition of noise to Rexp, for example, a typical decoding can be seen in Fig. 8, and a
plot of the RMS errors in the decoded estimates against the RMS amplitude of the noise can
be seen in Fig. 9. The quality of K̂ and R̂ degraded quite gently with increasing noise; that of
Ĥ and F̂, presumably because of the smoothing of F̂, did not degrade at all. Even with substantial
noise, the algorithm was able to estimate roughly correct forms of K̂, Ĥ, and F̂ and to reconstruct
an overall R̂ that approximated not so much the noisy Rexp that the algorithm was given to
decode, but the underlying noise-free Rexp (see Fig. 8). Thus, the algorithm is robust against
these kinds of noise. This reflects its strongly averaging nature. Inspection of Eqs. 3, 4, and 7,
for example, reveals how they combine information from many spikes and values of Rexp to
construct each estimated value and thus filter out random perturbations.

Other models—By combining building-block functions like K, H, and F in different ways,
many other models can be built. We tested the decoding algorithm, with appropriate

Stern et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2010 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modifications, on several classes of such models, including the following models in which Eq.
1 was replaced by one of the Eqs. 10-12, then combined with one or two instances of Eq. 2:

(10)

(11)

where G is another nonlinear, invertible, and “smooth” function, and

(12)

where ti and tj are the spike times of two different inputs with different functions K and A.

With essentially all models tested, the algorithm found some set of estimates of the underlying
functions that reconstructed the overall Rexp well. With some of the model classes, however,
the underlying estimates were clearly not unique and therefore, in general, not correct. Models
containing Eqs. 10 and 11 were in this category. As with the trade-off between K and A in Eq.
1, the lack of uniqueness was inherent already in the structure of the equations.

In contrast, with the additional information provided by the two distinct spike trains in Eq. 12,
models of this class were completely decodable. This can be seen in Fig. 10. Here the overall
Rexp (blue curve in panel B) was constructed as the summed response to two simultaneous
random spike trains from two independent inputs (empty and filled blue circles along the
baseline), each acting through its own set of functions Kexp, Hexp, and Fexp (panel A).
Nevertheless, given just Rexp and the two sets of spike times {ti} and {tj}, the algorithm
reconstructed Rexp essentially perfectly (red curve in panel B) and in the process correctly
extracted all six of the underlying functions (panel C).

Likewise completely decodable, in principle, were cascade models of the form

Real data
We now describe the decoding of two kinds of real neurophysiological data. Both sets of data
were recorded in a standard invertebrate preparation, the crustacean heart (Cooke, 2002), here
that of the blue crab, Callinectes sapidus (Fort et al., 2004, 2007a,b). In the neurogenic
crustacean heart, trains of motor neuron spikes drive synaptic depolarizations and contractions
of the heart muscle. Endogenously, the spikes occur in bursts. In both datasets, however, we
stimulated the motor neurons to produce instead white-patterned spike trains as in the synthetic
data. As the response, in one dataset we recorded the synaptic potentials—more correctly, the
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excitatory junctional potentials (EJPs)—that the spikes elicited in the heart muscle, and in the
other dataset the subsequent muscle contractions. In both cases, we used the model given by
Eqs. 1 and 2 for the decoding.

Synaptic potentials
Fig. 11A, top, shows the entire decoded dataset, consisting of 273 random motor neuron spikes
(blue circles along the baseline) and the resulting Rexp of muscle EJPs (blue curve). A
representative segment is expanded below, overlaid with the estimate R̂ after both Steps 1 and
2 of the complete decoding (red curve). Over the entire dataset, the RMS error ER was 35.6%.
Most of this error originated in Step 1, where ER was 27.2%, whereas the error in the decoding
of {Aj} in Step 2 was only 15.5%. At first glance, these errors seemed high. In part, however,
they appeared high because they were RMS, as opposed to MS, errors. Allowing for this, a
decoding with these errors was in fact quite satisfactory when compared to those obtained by
other methods (cf., e.g., Marmarelis and Naka, 1973;Krausz and Friesen, 1977;Sakai,
1992;Marmarelis, 2004;Song et al., 2009b). Nevertheless, we computed some benchmark
values. By recording the response to the same spike train several times, we found that the
intrinsic RMS variability of the recording and preparation, which ER cannot be expected to
improve upon, was 33.0%. At the other end of the scale, if we had no model at all and
“predicted” Rexp simply by its own mean, ER, equivalent in this case to the coefficient of
variation of Rexp, was 127.2%. Thus, the ER of the decoding was in fact close to the low end
of the possible range.

The decoded estimates K̂, Ĥ, and F̂ are shown in Fig. 11B. K̂ is overlaid on, to show that it
closely resembles, one representative EJP cut from Rexp. Ĥ has a complex, biphasic shape. If
H is interpreted as reflecting processes of presynaptic plasticity at the neuromuscular junction
(Magleby and Zengel, 1975,1982;Krausz and Friesen, 1977;Zengel and Magleby, 1982;Sen et
al., 1996;Hunter and Milton, 2001;Zucker and Regehr, 2002) that determine the amount of
transmitter released, A, then the early negative phase of Ĥ can be interpreted as a brief
depression of potential transmitter release after each spike, perhaps due to temporary depletion
of the immediately releasable pool of transmitter (Hunter and Milton, 2001;Zucker and Regehr,
2002). The later positive phase of Ĥ then reflects facilitation of the transmitter release. With
the fast, largely nonsummating EJPs, the depression could indeed be observed in pairs of EJPs
simply in the raw recording (e.g., in Fig. 11A), and both depression and facilitation have been
observed at this neuromuscular junction with regular spike patterns incorporating different
interspike intervals such as are conventionally used to study synaptic plasticity (Fort et al.,
2005,2007a).

The estimates K̂, Ĥ, and F̂ were equally well able to predict the response to a new train of
spikes. Over the entire new dataset in Fig. 11C, top, ER was 39.0%, not much higher than over
the original dataset.

Muscle contractions
Because of the overlap and summation of the much slower muscle contractions, we expected
that they would present a much more challenging decoding problem. Fig. 12A, top, shows the
entire decoded dataset, consisting of 295 random motor neuron spikes (blue circles along the
baseline) and the resulting Rexp of heart muscle contraction amplitude (blue curve). A
representative segment is expanded below, overlaid with the estimate R̂ after Step 1 only (green
curve) and after both Steps 1 and 2 of the complete decoding (red curve). Over the entire dataset,
the RMS error ER was only 7.1% after Step 1 and 28.9% after both Steps 1 and 2. As with the
sparse synthetic datasets (Fig. 6), the error was significantly higher in Step 2 than in Step 1,
and so also in the complete decoding, presumably because of the incomplete sampling of A
(t) in Eq. 2 by the sparse spikes, but also, perhaps, because Eq. 2 may not be the optimal model
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for this part of the real transform. The intrinsic variability of the preparation was 8.0% and the
coefficient of variation of Rexp was 69.3%.

The decoded estimates K̂, Ĥ, and F̂ are shown in Fig. 12B. K̂ is overlaid on, and closely
resembles, three segments of Rexp in which the shape of Kexp could be identified (see legend).
Ĥ, remarkably, has the same complex, biphasic shape as that decoded from the EJP data in Fig.
11B. Thus, the history kernel H of the overall neuromuscular transform has a synaptic, and
probably presynaptic, origin. However, where the F̂ in Fig. 11B never produces EJPs of zero
amplitude, the F̂ in Fig. 12B does produce zero-amplitude contractions, suggesting most likely
a threshold nonlinearity in the final step of the transform from EJPs to contractions. The
complex shape of Ĥ has interesting implications for the case of the endogenous spike pattern,
where the spikes are generated in bursts with ∼ 7 spikes per burst, ∼ 40 ms between the spikes
in the burst, and ∼ 2.5 s between bursts (Fort et al., 2004). Each spike inhibits the response to
the subsequent spikes in the same burst, and the entire burst would produce little contraction
response were it not preceded, by an interval well matched to the positive phase of Ĥ, by the
previous burst. Thus at the natural frequency of the cardiac rhythm each burst not only produces
a contraction, but sets up the conditions that allow a contraction to be produced by the next
burst.

The estimates K̂, Ĥ, and F̂ were equally well able to predict the contraction response to a new
train of spikes. Over the entire new dataset in Fig. 12C, top, ER was 30.0%, and over the last
100 spikes of the dataset (reflecting a noticeable nonstationarity in each of these datasets) it
was just 21.2%.

Discussion
The decoding method: its advantages and limitations

We have described here a method for nonlinear system identification of the transform from a
discrete spike train to a continuous neurophysiological response. Based on the “synaptic
decoding” approach of Sen et al. (1996) and Hunter and Milton (2001), our method combines
elements of traditional model-based methods and model-free methods such as the Volterra or
Wiener kernel approach. Like the latter methods, our method begins by finding the first-order,
linear kernel of the system (K). Instead of computing higher-order kernels, however, our
method then combines the first-order kernel with a small number of additional linear kernels
and nonlinear functions (in our illustrative model, H and F) to characterize the system's
nonlinearities. Like traditional model-based methods, our method thus fits to the data a model
with a certain structure. Mathematical analysis of the model is used to find an efficient fitting
algorithm that can be optimally implemented with linear-algebra techniques. Like most other
methods, the method assumes stationarity of the system over the duration of the decoded dataset
(the method finds averages over that duration), finite memory (finite length of K and H), and
causality (K and H only operate after each spike).

The method's combination of model-based and model-free elements, and the analytical and
linear-algebra techniques of solution, have a number of advantages but also some limitations.

Like the model-free Volterra or Wiener kernel approach, the method can take advantage of the
benefits of white-patterned spike input (see Sakai, 1992; Marmarelis, 2004), yet such input is
not strictly required. For example, we have been able to decode the crab heart neuromuscular
transform even with the endogenous bursting spike patterns (Stern et al., 2007a).

The basic structure of the model must be chosen in advance. Since any chosen structure, unless
it is completely general, will fit only a subset of systems, the need for a model means that the
method cannot a priori guarantee a completely general description of any arbitrary system.
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The manner in which our illustrative model, in particular, departs from the completely general
model that is implicit in the Volterra or Wiener kernel approach is discussed further below. It
is furthermore possible (as we saw in the Results) to choose a model that is more complex than
is justified by the information available in the single overall response Rexp. The model is then
underconstrained by the data: multiple solutions are possible and, without additional
information, cannot be distinguished. This difficulty is, however, common to all methods that
involve a model.

It is in its relative freedom from a priori assumptions and efficient techniques of solution where
the method compares most advantageously with traditional model-based methods as well as
the previous decoding methods of Sen et al. and Hunter and Milton. In contrast to traditional
model-based methods, once the basic model is chosen, apart from the assumption that its static
nonlinearities such as F are invertible and smooth, no specific assumptions need to be made
about the forms of its kernels and functions. The forms emerge automatically from the
computation. Each numerical function value is treated as an independent degree of freedom
and is initially set arbitrarily. All of the values of each function are found in one step by solving
a matrix equation or by direct construction, and for that step the solution can, in many cases,
be proved to be globally optimal. High-level iterations are still required because the solution
for each function is conditional on estimates of the others. However, extensive low-level
iterations to find the individual function values are not required. For many practical
applications, this is likely to be a decisive advantage. One limitation, however, is that some
models may not be readily amenable to the mathematical analysis required to separate the
functions into the individual linear matrix equations. For example, models in which the single-
spike response kernel K does not have a fixed shape, but changes shape in some manner that
is more complex than the simple scaling in Eq. 1, may be difficult to solve.

To make this discussion more concrete, it is worth comparing our method to the previous
methods of Sen et al. and Hunter and Milton in more detail. Since both Sen et al. and Hunter
and Milton used models similar to our illustrative model, we will discuss their methods in terms
of our functions K, H, F, A, and R. Both Sen et al. and Hunter and Milton obtained the kernel
K simply by taking the shape of an isolated response to a single spike. Deconvolving K from
Rexp then gave the Ai's, solving our Step 1 essentially by inspection. Hunter and Milton note
that extracting the Ai's rather than working with the entire continuous R “reduce[d] the
computation time by two to three orders of magnitude for a 30 sec spike train.” We did not
wish to take this shortcut because of its lack of generality: although it would have been possible
to do it with the EJPs in Fig. 11, it would have been difficult with the contractions in Fig. 12
and impossible with any denser response waveform. From the Ai's, Sen et al. and Hunter and
Milton then found H and F by a gradient descent optimization coupled with the earliest possible
assumption, guided where possible also by prior knowledge of the specific synaptic system
under investigation, of likely simple forms for these functions, for example exponential for
H and low-order polynomial for F, whose few parameters were then found in the optimization.
Taking the less automated procedure of Sen et al. as an example, this involved a nesting of the
low-level iterations of the gradient descent optimization itself within a series of high-level
iterations. First, Sen et al. divided H in a piecewise manner—essentially as we did here—and
used gradient descent to find an initial approximation of each piece. Then, substituting a simple
function that appeared best to describe the emerging H, they used gradient descent again to
optimize the parameters of that function, then of F, which was constructed much like our F
and then described by a simple function, and finally of both H and F together. With our method,
in contrast, we find the best current estimates of the full shapes of K, H, and F in one step in
each high-level iteration, without any simplification of these shapes or dependence on any
initial guess. On the other hand, essentially any model that can be postulated, even if it is in
fact more complex than is justified by the data and has multiple solutions, can be solved by
gradient descent optimization, in the sense that some solution, which with simple function
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forms will furthermore appear to be plausible, will emerge. Under the same circumstances, our
method may not be able to solve the matrix equations for numerical reasons, or, if a solution
does emerge, the many degrees of freedom allowed by the many individual values of the
functions K, H, and F will produce what is clearly an implausible solution (as in Fig. 5A, for
example). This may be valuable, however, as an explicit warning of a problem in the
relationship of the model to the data.

In the full Volterra or Wiener kernel approach, the higher-order kernels are abstract descriptions
of the structure of the dataset (Sakai, 1992; Marmarelis, 2004) that can typically be interpreted
mechanistically only if a traditional, specific model of the system is also postulated (e.g., Song
et al., 2009a,b). In contrast, a model with a basic internal structure such as is decoded by our
method can itself be immediately interpreted in terms of the underlying physiological
mechanisms. Interpreting our illustrative model in neuromuscular terms, as we have done here,
H can plausibly be identified with the presynaptic processes of facilitation and depression of
transmitter release, A with the amount of transmitter actually released at each spike, and K with
the postsynaptic electrical response (when the EJPs are taken as the response) and the Ca2+

elevation and contractile processes in the muscle (when the muscle contractions are taken as
the response). F reflects the static nonlinearities of the entire pathway. Such interpretations can
then be pursued experimentally. Better models can be identified by their better fit to data that
emphasize different aspects of the physiological mechanism. The forms of the model functions
can be compared across different synapses or muscles (Sen et al., 1996) or after modification
by neuromodulators (Stern et al., 2007a). In the crab cardiac system, we have already extended
our analysis in some of these ways and developed the basic decodings presented in this paper
into a more definitive characterization of the crab cardiac neuromuscular transform (Stern et
al., 2007a,b, 2008; manuscript in preparation).

Relationship to LNL and other cascade structures
Although our method can solve various models, in this paper we have worked mainly with the
illustrative model given by Eqs. 1 and 2. This model is of a similar degree of generality to, and
indeed in structure closely resembles, the various block-structured cascades of dynamic linear
and static nonlinear elements that have been studied extensively as general models of nonlinear
biological systems and previously solved by various methods, notably methods based on
information about these structures that is contained in the kernels of the Volterra or Wiener
expansion (Korenberg et al., 1988;Korenberg, 1991;Sakai, 1992;Westwick and Kearney,
2003;Marmarelis, 2004).

Superficially, our illustrative model appears identical to the LNL (also called “sandwich” or
Korenberg) cascade, a serial structure of a dynamic linear element, a static nonlinearity, and
then another dynamic linear element (Korenberg and Hunter, 1986; Westwick and Kearney,
2003; Marmarelis, 2004). In our model, these elements are H, F, and K, respectively. However,
our model is not a purely serial cascade. The input spike train enters the model in two places,
not only at the beginning of the cascade, at Eq. 2 where each spike elicits an instance of H, but
also later at Eq. 1 where each spike elicits an instance of K. This creates an additional, parallel
branch in the structure (as can be seen, for example, in the schema on the left-hand side of Fig.
1B). Furthermore, where the two branches join at Eq. 1, they do not join additively as is
typically modeled in parallel cascades (Korenberg, 1991; Westwick and Kearney, 2003), but
rather multiplicatively. This can be seen if, for better comparison with the time-continuous
cascade models, we likewise generalize our model to the continuous case. In that case, the
spike train becomes a continuous waveform, T, given by a sum of delta functions at the spike
times (or, in discretized time, a sequence of integers denoting the number of spikes in each
time bin). Over all time points t, t′, Eq. 1 then generalizes to the equation
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(13)

that is, a convolution of K with the product AT. (Eq. 2 generalizes similarly.) The spikes thus
multiplicatively gate the flow of A to produce R, and conversely, when decoding R, their
absence hides the processes that produced A from view, giving rise to some of the decoding
problems that we encountered in the Results. All of these features make our model significantly
different from the pure LNL cascade (it becomes a pure LNL cascade only in trivial cases, such
as when T(t) = 1) and make difficult its solution by the previous methods used with such
cascades.

Although our decoding method was developed for the case of discrete, relatively sparse spikes,
and realizes considerable computational benefits by focusing only on the times when spikes
occur, it can also solve the continuous case, such as given by Eq. 13, the continuous
generalization of Eq. 2, or Eq. 14 below. Therefore, our method can solve the general LNL
cascade. Interestingly, in achieving the solution in two separable steps, first Step 1 to find K
and the intermediate function A, and then Step 2 to find H and F, our method would appear to
be significantly simpler than the method of Korenberg and Hunter (1986), for example, that
iteratively improves the estimates of all three functions in turn.

Our Eq. 2 (especially in the continuous case) is fully equivalent to a subset of the LNL cascade,
the LN (also called Wiener) cascade that consists just of a dynamic linear element followed
by a static nonlinearity (Sakai, 1992;Westwick and Kearney, 2003;Marmarelis, 2004). Our
method of solving Eq. 2 in Step 2 is essentially equivalent to that used by Hunter and Korenberg
(1986) to solve LN cascades, except that we have substituted smoothing for their fitting of a
high-order polynomial.

As this discussion implies, neither a single LNL cascade nor our illustrative model is
completely general in the sense of being sufficient to represent the dynamics of any nonlinear
dynamical system. That requires a structure of multiple parallel LNL cascades, LN cascades,
or L elements all feeding into a multi-input nonlinearity (the last structure being called the
Wiener-Bose model). A sufficient number of these elements can represent any system to any
arbitrary degree of accuracy, and has an associated Volterra or Wiener kernel representation,
which thus can provide a completely general description of the system (Palm, 1979; Korenberg,
1991; Westwick and Kearney, 2003; Marmarelis, 2004; Song et al. 2009a).

Further applications
Although in this paper we have used data from a neuromuscular synapse, there is nothing
inherently synaptic or neuromuscular about our decoding method. We anticipate that it may
be useful wherever trains of spikes elicit continuous responses of any kind that can be regarded
as being built up of discrete, relatively invariant single spike responses. This includes, for
example, responses of intracellular signals such as cAMP and Ca2+, which can be recorded
with the requisite temporal resolution (see, e.g., Kreitzer et al., 2000; Augustine et al., 2003;
Nikolaev and Lohse, 2006). The method can also be used to decode, from a spike train and a
continuous firing rate function constructed from the very same spike train, functions like H
and F that characterize how past spikes influence the generation of future spikes in an
autonomously active, for example a regularly bursting, neuron (Brezina et al., 2008).

Furthermore, as was pointed out for their method by Sen et al. (1996), the method may also be
applicable to the inverse sensory problem, which seeks to understand how continuous sensory
stimuli are encoded in discrete spike trains and how, from those spike trains, the central nervous
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system then decodes or reconstructs the sensory stimuli again (Rieke et al., 1997; Simoncelli
et al., 2004). Linear filters such as K are the basis of reverse-correlation (Ringach and Shapley,
2004) and stimulus-reconstruction (Rieke et al., 1997) techniques, and more elaborate models
of sensory encoding (Simoncelli et al., 2004; Pillow et al., 2005) add nonlinearity using
building blocks like those of Eqs. 1 and 2. As we have already noted, our method generalizes
to cases where both stimulus and response are continuous, such as the equation

(14)

where S(t) is, say, a sensory stimulus and R(t) the response to it, such as the spike rate of a
responding neuron. Knowing S and K, we can predict R (sensory encoding); knowing S and
R, we can, in one step using a generalized Eq. 3, find K (the problem usually addressed by
reverse correlation); and knowing K and R, we can, in one step using a generalized Eq. 4,
reconstruct the stimulus S.

The inverse problem arises, indeed, even with the spike-response transforms that we have
considered here in the forward direction. Here, having characterized a transform, we predicted
the response to a given spike train. However, we may well wish to reconstruct, conversely, the
spike train that has produced a given response. And, by virtue of the global matrix formulation
of the equations of the transform, this inverse computation, too, can be readily accomplished.
In preliminary work, we have used the discrete Eq. 4 or its continuous version, as applicable,
to reconstruct spike trains from synthetic response waveforms as well as the EJP and
contraction response waveforms recorded in the real crab heart (Brezina et al., 2009;
manuscript in preparation).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The problem dealt with in this paper: the complex spike-response transform and its decoding,
illustrated with the model used in most of this paper and representative synthetic function
forms. A: The forms assumed here for the three functions K, H, and F that, according to the
model, build up the spike-response transform. B: The building up of the transform from the
functions in panel A by the operation of the model, applying, from bottom to top, first Eq. 2
and then Eq. 1 in Methods. First, each spike of the spike train {ti} (blue dots along the bottom)
elicits an instance of the dynamic kernel H that sums with previous instances (as indicated by
the thin black curves of the bottom set of waveforms) to give the overall waveform Σi H (thick
black curve). Σi H is then transformed by the static nonlinear function F to give the waveform
A (dark blue curve). Each spike also elicits an instance of the dynamic kernel K (the elementary
single-spike response kernel), which is scaled in amplitude by Ai, the value of A at that spike
time (dark blue dots on A and arrows up to the top set of waveforms) and summed with previous
instances (as indicated by the thin black curves of the top set of waveforms) to give the overall
response R to the spike train (blue curve). Note how, due to the slow speed of K relative to the
typical interspike interval, the instances of K summate and fuse, so that the shape of K cannot
be discerned in R by simple inspection. Neither can K be seen in isolation simply by making
the interspike intervals longer, because after an interspike interval that is longer than H, there
is (with F(0) = 0) no response at all (e.g., at the two downward arrows). C: The goal of the
decoding method is, given only {ti} and R, to extract functions K̂, Ĥ, and F̂ that are good
estimates of the true functions K, H, and F.
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Fig. 2.
Flowchart of the decoding algorithm. For details see Methods and Supplements 1 and 2.
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Fig. 3.
Decoding of synthetic data. A: The three functions Kexp, Hexp, and Fexp that were used to
construct the overall response Rexp. B: A representative Rexp (blue curve) constructed, by the
operation of Eqs. 1 and 2 as in Fig. 1, for a train of 100 random spikes with mean spike rate
r = 0.1 (blue dots along the baseline), then overlaid with its decoded estimate R̂ (red curve).
The inset plots R̂ against Rexp. The normalized percentage RMS error between R̂ and Rexp,
ER (see Methods), was 2.0%. C: The functions Kexp, Hexp, and Fexp from panel A (blue)
overlaid with their decoded estimates K̂, Ĥ, and F̂ (red). The respective RMS errors were EK
= 0.008%, EH = 15.0%, and EF = 2.7%. D: Validation data. For a different train of 100 random
spikes (blue dots along the baseline), Rexp (blue curve) was again constructed from the
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functions Kexp, Hexp, and Fexp in panel A, but its estimate R̂ (red curve) was constructed from
the functions K̂, Ĥ, and F̂ that were decoded from the first Rexp in panels B, C. ER was 4.8%.
Time is in time bins of duration Δt and amplitude is in arbitrary units.

Stern et al. Page 27

J Neurosci Methods. Author manuscript; available in PMC 2010 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Magnitudes of the RMS errors E in successive iterations of a decoding like that in Fig. 3, with
100 spikes at r = 0.1 and the same functions Kexp, Hexp, and Fexp as in Fig. 3A. A: The errors
EK (green), EAi (red), and ER (black) in Step 1. B: The errors EH (dark blue), EF (light blue),
EAj (red), and EA (pink) in Step 2 alone, i.e., when it was given as input the true {Aj,exp}
produced by Hexp and Fexp. C: The errors EK (green), EH (dark blue), EF (light blue), and ER
(black) in Steps 1 and 2 combined, when Step 2 was given as input the estimate {Âj} from Step
1. EAi, EAj, and EA are the errors between Aexp and Â at the spike times {ti} or {tj} or over all
time bins, respectively.
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Fig. 5.
Acceleration of convergence in Step 1 by smoothing of {Âi}. For a train of 100 spikes at r =
0.1, Rexp was constructed from the functions Kexp, Hexp, and Fexp as in Fig. 3A. This same
dataset was decoded in all three panels A-C. A: With this dataset, the basic decoding algorithm
alone failed to achieve a satisfactory decoding within 80 iterations. Left, the magnitudes of the
RMS errors EK (green), EAi (red), and ER (black) in successive iterations, plotted as in Fig. 4.
Right, the estimates K̂ and R̂ at 80 iterations (red) superimposed on Kexp and Rexp (blue), plotted
as in Fig. 3, B and C, and the estimate {Âi} plotted against {Ai,exp} (top right; the diagonal line
is the line of identity). EK was 91.7%, EAi 270.1%, and ER 8.5%. B: With smoothing of {Âi}
over the first 15 iterations (gray rectangle) as described in Methods, the same dataset was
decoded essentially perfectly. EK was 0.004%, EAi 0.01%, and ER 0.006%. C: A perfect
decoding was also achieved when the smoothing was applied later, between iterations 15 and
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25. EK was 0.02%, EAi 0.07%, and ER 0.003%. Time is in time bins of duration Δt and amplitude
is in arbitrary units.
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Fig. 6.
Effects of spike density on the decoding. Synthetic datasets were constructed as in Fig. 3, each
with 100 spikes and Rexp constructed from the functions Kexp, Hexp, and Fexp in Fig. 3A, but
with different spike densities produced by different spike rates r. A: Typical overall responses
Rexp to sparse (r = 0.01), “optimal” (r = 0.1), and dense (r = 1) spike trains. Note the very
different absolute time scales and amplitudes in the three cases. Time is in time bins of duration
Δt, r is in spikes/Δt, and amplitude is in arbitrary units. B-D: Magnitudes of the RMS errors
E in the various decoding estimates, after 300 iterations, as a function of r. Both r and E are
plotted on log scales. The horizontal line in each panel, at log E = 0, marks 1% error. Each
point plotted is the mean of three runs of the algorithm with three different datasets at that
particular r. The errors plotted and their colors are as in Fig. 4. B: The errors EK (green), EAi
(red), and ER (black) in Step 1. C: The errors EH (dark blue), EF (light blue), EAj (red), and
EA (pink) in Step 2 alone. D: The errors EK (green), EH (dark blue), EF (light blue), and ER

Stern et al. Page 31

J Neurosci Methods. Author manuscript; available in PMC 2010 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(black) in Steps 1 and 2 combined. In panels B and D, the errors are cut off when they decrease
below 10−5%.
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Fig. 7.
Magnitudes of errors with different numbers of spikes. Synthetic datasets were constructed as
in Fig. 3, with r = 0.1 and Rexp constructed from the functions Kexp, Hexp, and Fexp in Fig. 3A,
but with different numbers of spikes. Each dataset was decoded for 300 iterations. The errors
plotted and their colors are as in Fig. 4. The errors are cut off above 100%. Each point plotted
is the median of three runs of the algorithm with three different datasets with that particular
number of spikes. With 90 and 190 spikes, essentially arbitrarily in this set of runs, the decoding
failed to converge within 300 iterations two out of the three times; for those spike numbers,
the algorithm was therefore rerun with the Step 1 smoothing (see Methods and above in Results)
and those results are plotted; all other points were obtained without the smoothing. More
systematic investigation showed that the Step 1 smoothing also permitted essentially perfect
Step 1 decodings to be obtained within 300 iterations already with 20 spikes rather than the
30-40 spikes shown here without the smoothing. However, the basic problem of decoding a
dataset with a very small number of spikes remained. A: RMS errors EK (green), EAi (red), and
ER (black) in Step 1. B: RMS errors EH (dark blue), EF (light blue), EAj (red), and EA (pink)
in Step 2 alone. C: RMS errors EK (green), EH (dark blue), EF (light blue), and ER (black) in
Steps 1 and 2 combined.
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Fig. 8.
Decoding of noisy synthetic data. As in Fig. 3, but with random noise added to the overall
response Rexp before decoding. A noise-free Rexp, for 200 spikes at r = 0.1 in these datasets,
was first constructed from the functions Kexp, Hexp, and Fexp in panel A, identical to those in
Fig. 3A. In each time bin, a different random number drawn from a Gaussian distribution with
zero mean and a given standard deviation was then added to the noise-free Rexp to construct a
noisy Rexp (blue curve in panel B). The RMS amplitude of the noise, that is, the RMS difference
between the noise-free and noisy Rexp, was computed analogously to the RMS error ER using
the equivalent of Eq. 9. In panel B, the amplitude of the noise was 22.1%. The algorithm then
decoded the noisy Rexp to estimate R̂ (red curve in panel B). The inset in panel B plots R̂ against
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the noisy Rexp (black dots) as well as against the underlying noise-free Rexp (red dots). The
error ER of R̂ relative to the noisy Rexp was 25.2%, but relative to the noise-free Rexp only
12.4%. In panel C, EK was 31.6%, EH 9.8%, and EF 1.7%. For the validation data in panel D,
the noise amplitude was 24.1%, ER relative to the noisy Rexp 24.9%, and ER relative to the
noise-free Rexp 11.9%. Time is in time bins of duration Δt and amplitude is in arbitrary units.
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Fig. 9.
Magnitudes of errors with different amplitudes of noise. Synthetic datasets were constructed
as in Fig. 8, with 200 spikes at r = 0.1 and the noise-free Rexp constructed from the functions
Kexp, Hexp, and Fexp in Fig. 8A, but with different RMS amplitudes of noise added to construct
the noisy Rexp. Each dataset was decoded for 300 iterations. Plotted are the RMS errors EK
(green), EH (dark blue), EF (light blue), and ER relative to the noise-free Rexp (black) in Steps
1 and 2 combined. For each nominal noise amplitude, the algorithm was run three times; the
point plotted is that with the lowest ER.
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Fig. 10.
Decoding of two inputs. As in Fig. 3, but with two spike trains, each with its own set of functions
Kexp, Hexp, and Fexp, shown in panel A. B: A representative Rexp (blue curve), constructed
from the functions in panel A for 200 random spikes with mean rate r = 0.05 from each of the
two inputs (empty and filled blue circles along the baseline), then overlaid with the decoded
estimate R̂ (red curve). The inset plots R̂ against Rexp. ER was 1.6%. C: The two sets of functions
Kexp, Hexp, and Fexp from panel A (blue) overlaid with their decoded estimates K̂, Ĥ, and F̂
(red). EK was 0.13%, EH 14.4%, and EF 3.2% for input 1, and EK 0.25%, EH 7.0%, and EF
1.2% for input 2. Time is in time bins of duration Δt and amplitude is in arbitrary units.
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Fig. 11.
Decoding of real synaptic potentials. A: Top, the decoded dataset, a representative recording
of EJP amplitude (intracellularly recorded muscle membrane voltage) in the heart muscle of
Callinectes sapidus (blue curve) in response to a train of 273 random motor neuron spikes (blue
circles along the baseline) generated by a Poisson process with a nominal rate of 3 Hz. The
boxed segment is expanded below. The red curve is the estimate R̂ after both Steps 1 and 2 of
the complete decoding. For errors see text. The decoding in Step 1, the reconstruction of R̂,
and the computation of ER was performed with a time bin duration Δt = 1 ms, only over the
union of the time bins over which K̂ extended after each spike. The decoding in Step 2 was
performed with Δt = 10 ms, over all time bins of the dataset. B: The estimates K̂, Ĥ, and F̂
decoded from the dataset in panel A. K̂ is superimposed on a representative scaled single EJP
(blue). C: Validation data. The estimates K̂, Ĥ, and F̂ in panel B were used to predict R̂ for a
second dataset like that in panel A.
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Fig. 12.
Decoding of real muscle contractions. A: Top, the decoded dataset, a representative recording
of contraction amplitude (muscle tension) of the heart muscle of Callinectes sapidus (blue
curve) in response to a train of 295 random motor neuron spikes (blue circles along the baseline)
generated by a Poisson process with a nominal rate of 2 Hz. The boxed segment is expanded
below. The green curve shows the estimate R̂ after Step 1 only, the red curve after both Steps
1 and 2. For errors see text. The time bin duration Δt was 10 ms throughout. B: The estimates
K̂, Ĥ, and F̂ decoded from the dataset in panel A. K̂ is superimposed on three scaled segments
of Rexp (one indicated by the arrow in panel A) where, after an interspike interval just slightly
longer than K̂, Rexp had, according to the model, the exact shape of Kexp. C: Validation data.
The estimates K̂, Ĥ, and F̂ in panel B were used to predict R̂ for a second dataset like that in
panel A.
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