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Abstract
In this study we describe a model predicting heart rate regulation during postural change from sitting
to standing and during head-up tilt in five healthy elderly adults. The model uses blood pressure as
an input to predict baroreflex firing-rate, which in turn is used to predict efferent parasympathetic
and sympathetic outflows. The model also includes the combined effects of vestibular and central
command stimulation of muscle sympathetic nerve activity, which is increased at the onset of postural
change. Concentrations of acetylcholine and noradrenaline, predicted as functions of sympathetic
and parasympathetic outflow, are then used to estimate the heart rate response. Dynamics of the heart
rate and the baroreflex firing rate are modeled using a system of coupled ordinary delay differential
equations with 17 parameters. We have derived sensitivity equations and ranked sensitivities of all
parameters with respect to all state variables in our model. Using this model we show that during
head-up tilt, the baseline firing-rate is larger than during sit-to-stand and that the combined effect of
vestibular and central command stimulation of muscle sympathetic nerve activity is less pronounced
during head-up tilt than during sit-to-stand.
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Introduction
Short-term cardiovascular regulation is often studied by imposing orthostatic stress challenges
such as head-up tilt or sit-to-stand tests. During both passive (head-up tilt) and active standing
(sit-to-stand) blood is pooled in the lower extremities due to gravitational forces. As a result,
venous return is reduced, which leads to a decrease in cardiac stroke volume, a decline in
arterial blood pressure, and an immediate decrease of blood flow to the brain. The reduction
in arterial blood pressure unloads the baroreceptors located in the carotid and aortic walls,
which leads to parasympathetic withdrawal and sympathetic activation through baroreflex-
mediated autonomic regulation. Parasympathetic withdrawal induces a fast (within 1–2 cardiac
cycles) increase in heart rate, while sympathetic activation yields a slow (within 6–8 cardiac
cycles) increase in vascular resistance, vascular tone, cardiac contractility, and a further
increase in heart rate (Smith and Kampine 1990; Guyton and Hall 1996). The main differences
between head-up tilt and sit-to-stand are: (i) Head-up tilt was carried out using a slow-tilt
procedure: it takes 5–10 s to tilt the subject from supine to standing, thus regulatory response
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is activated before the subject is fully tilted. In addition since the procedure is passive, it requires
limited muscle activity. Finally, due to the tilt-angle, gravitational forces act between the head
and the torso leading to a transient decrease of intracranial pressure and increased venous
draining from cerebral circulation to the heart. Simultaneously forces act between the torso
and the lower body, leading to increased venous pooling in to the lower body. With these two
mechanisms, venous return to the heart from cerebral circulation may transiently increase,
while venous return from the periphery to the heart is decreased. These processes in turn affect
beat-to-beat blood pressure and baroreflex firing-rate. (ii) The sit-to-stand occurs rapidly over
1–5 s and requires active muscle contraction and engagement of “central command” for
movement initiation, which leads to an immediate increase in heart rate as the subject contracts
his/her muscles to initiate standing (Olufsen et al. 2006). This increase in heart rate is observed
before the initial drop in blood pressure and is possibly activated by combined effects of
vestibular and central command stimulation of muscle sympathetic nerve activity.

Previous studies have demonstrated a strong vestibular stimulation of muscle sympathetic
nerve activity in response to postural change, primarily in response to headdown rotation (Ray
2000;Ray and Monahan 2002;Ray and Carter 2003). However, a recent study in conscious cats
show vestibular stimulation during head-up tilt (Wilson et al. 2006), and previous work by
Kaufmann et al. (2002) suggests that the vestibular sympathetic reflex, originating in the otolith
organs, may be one of the earliest mechanisms to be activated to sustain blood pressure upon
standing. Studies analyzing vestibular stimulation of muscle sympathetic nerve activity using
head-down rotation indicate that the vestibular system is activated independently of the
baroreflex response, and that the two responses may be additive (Ray 2000;Ray and Carter
2003). Typically these responses have been studied by analyzing systemic measurements of
blood pressure obtained using a Finapres device positioned at the level of the heart and heart
rate obtained from analysis of ECG signals (Low 1997;Robertson et al. 2005). The majority
of these experimental studies analyzed data using linear response models. For example,
baroreflex sensitivity (Robbe et al. 1987;Johnson et al. 2006) has been assessed using spectral
transfer functions relating changes in systolic blood pressure to interbeat intervals. This method
is limited to analysis of relationships between two signals. Another limitation is that these data
analysis methods lack the ability to predict how changes in neural responses interact to maintain
arterial blood pressure.

In a previous study (Olufsen et al. 2006), we showed that a model for sit-to-stand clearly
distinguishes between the baroreflex and vestibular/central command stimulation, we also
showed significant differences between three groups of healthy young, healthy elderly and
hypertensive elderly subjects. In addition, we were able to identify all 17 model-parameters
using an inverse least-squares formulation. To solve the least squares problem we used the
Nelder-Mead method, which is based on the simplex algorithm. However, we did not analyze
the model in further detail or compared it to the response observed during head-up tilt.
Furthermore, we lacked measures indicating how good our parameter estimates were. Also,
we did not investigate which parameters were sensitive and which were not. In this study we
derive sensitivity equations, which enable us to better understand the importance of each
element in the model. We also compare computations from sit-to-stand where the vestibular
system is believed to be an important contributor to the heart rate regulation with computations
from head-up tilt, where the vestibular system appears to be engaged to a lesser degree. Another
important issue is the methodologies for parameter estimation. The model proposed in (Olufsen
et al. 2006) and studied further here has 17 parameters, and we have limited information about
these parameters. Therefore, in a second part of this study we will analyze a number of
optimization techniques used to identify model parameters.
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Methods
Experimental Design

We analyzed data from five healthy elderly subjects (two woman and three men) aged 55–75
years (mean 60 ± 7 years), which participated in both sit-to-stand and headup tilt protocols.
The subjects had no medical history of and were not treated for any systemic diseases, they
did not take any cardiovascular active medications, had no history of head or brain injury, and
had no history of more than one episode of syncope. Each subject was instrumented with a
three-lead ECG to obtain heart rate. A photoplethysmographic device on the middle finger of
the non-dominant hand was used to obtain noninvasive beat-to-beat blood pressure (Finapres
device, Ohmeda Monitoring Systems, Englewood, Colorado). To eliminate effects of gravity,
the hand was held at the level of the right atrium and supported by a sling. All physiological
signals were digitized at 500 Hz using Labview NIDAQ software (National Instruments,
Austin, TX) and stored for offline analysis. Times indicating the start of every cardiac cycle
were extracted from the ECGs sampled at 500 Hz and validated off line. Blood pressure data
were down-sampled to 50 Hz before being used as input to the mathematical model. Sit-to-
stand protocol: After instrumentation, subjects sat in a straightbacked chair with their legs
elevated at 90° in front of them. After 5 min of stable recordings, the subjects were asked to
stand-up. Standing was defined as the moment both feet touched the floor, recorded by a force
platform. Head-up tilt protocol: The subjects rested in supine position on the table for 10 min.
Then, the table was tilted to 70° for 10 min. All subjects provided informed consent approved
by the Institutional Review Board at Beth Israel Deaconess Medical Center, Boston, MA.

Modeling
In the analysis here we used the model put forward in (Olufsen et al. 2006). This model
predicted heart rate using a chain of responses as illustrated in Fig. 1. Note that the model is
sequential, i.e., all elements are linked in a chain. This allows for simpler implementation of
the system of delay differential equations. Input to the model is the weighted mean blood
pressure, which can be computed as

1

The parameter α is the weight. A large value of α gives rise to a small weight of the past time
(short memory), while a small value of α gives a larger weight (long memory). The weighted
mean pressure  is a function of time, which oscillates with the same frequency as the
instantaneous pressure p, but with a smaller amplitude, see Fig. 2.

As shown in Fig. 1, the mean blood pressure is used as an input to predict baroreflex firing-
rate. Similar to previous work (Ottesen 1997;Olufsen et al. 2006) firing-rate is determined
using a nonlinear differential equations of the form

2

where ni [1/s] denotes the firing-rate with i = S, I, L accounting for short, intermediate, and
long thresholds for the different receptors,  [mmHg] denotes the weighted mean blood
pressure. This equation has a total of eight parameters: ki [1/mmHg] are gain constants, M =
120 [1/s] is the maximal firing-rate, N [1/s] denotes the baseline firing-rate, and τi [s] are
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characteristic times related to resetting. The baseline firing-rate N cannot exceed the maximum
firing-rate and we assume that N > M/2. To enforce these bounds we have parameterized N
using a sigmoid function of the form

3

where η is an unknown parameter. The baroreceptor firingrate model in (2) exhibits nonlinear
characteristics: it increases with increased carotid pressure and the response exhibits,
hysteresis, threshold, and saturation. We use the term hysteresis to describe the nonlinear
phenomenon between two quantities, the change in pressure  and the change in firing-
rate (dni/dt) described by Eq. 2. If  then the two terms in the equation work in opposite
direction yielding a smaller net derivative of dni/dt. However if  then the two terms
work in the same direction yielding a larger net derivative of dni/dt. This dynamic response
agree with experimental studies, which suggest that a sufficiently fast decrease in pressure
causes a step change in firing-rate followed by a resetting (adaptation) phenomenon and that
the response to a decrease in pressure is faster than the response to an increase in pressure
(Poitras et al. 1966;Spickler and Kedzi 1967;Franz 1969;Srinivasen and Nudelman
1972;Cecchini et al. 1982;Taher et al. 1988).

Using the baroreflex firing-rate n we predict the sympathetic and the parasympathetic outflows.
The parasympathetic outflow Tpar is proportional to the firingrate whereas sympathetic outflow
Tsym is inversely related to the firing-rate (Danielsen and Ottensen 1997; Ottesen 1997). The
sympathetic response is delayed 6–8 cardiac cycles; furthermore, an increased parasympathetic
response dampens the sympathetic response (Levy and Zieske 1969). Finally, we accounted
for additional activation u(t) mediated by muscle sympathetic nerves and by central command.
Combining all effects discussed above gives the following models for parasympathetic and
sympathetic outflows

4

Parameters in these expressions include τd [s], the delay of the sympathetic response, and β,
which is the parasympathetic dampening factor. The activation function u(t) is represented by
a quadratic impulse function of the form

5

This equation has three parameters, u0 the amplitude of the response, tstart, and tper the start
time and duration of the response. A detailed description of the impulse function can be found
in (Olufsen et al. 2006).

Using the sympathetic and parasympathetic outflows, nondimensionalized concentrations of
acetylcholine Cach and noradrenaline Cnor were computed from the first order equation
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6

where the parameters τnor, τach [s] denote characteristic time scales for noradrenaline and
acetylcholine. It should be noted that when i = sym then j = nor and when i = par then j =
ach. In this equation we have lumped the long chain of bio-chemical reactions into one first
order reaction equation and taken the accumulated release time to be equal to the average
clearance and consumption time for the respective substances. The heart rate potential was
computed using an integrate and fire model of the form

7

When ø = 1 the heart beats and the interbeat interval (R–R interval, see Fig. 3) is taken as the
time from ø = 0 to ø = 1. Then heart rate is found as the inverse of the interbeat interval. The
parameter H0 denotes intrinsic heart rate. Several studies have shown that intrinsic heart rate
vary with age. Following ideas proposed in studies by Jose and Opthof et al. (Jose and
Collison 1970; Opthof 2000) we let H0 = 1.97 − 9.50· 10−3 × age [bps]. These studies assessed
intrinsic heart rate under simultaneous presence of propranolol and atropine in 432 subjects
and used linear regression to relate heart rate and age. This relation was also confirmed in a
nonpharmacological study in cardiac transplant recipients (Strobel et al. 1999). The remaining
parameters MS and MP represent the strength of the response to changes in the concentrations.
To bound heart rate within physiological values, we constrained MS and MP in the interval
[0,1]. This was done by introducing the parameters ξS and ξP so that

8

In summary, the heart rate model proposed for this study can be written as a system of nonlinear
delay differential equations of the form

9

In the above system of equations  contains the seven state variables and θ contains the 17
model-parameters to be identified. Note that the model contains one more parameter (the
maximum firing-rate M = 120 [1/s]), however, in this study we do not attempt to identify M.
Initial values for the state variables and model parameters were estimated from physiological
conditions. Table 4 lists all states and parameteres.

To validate this model against data we used Kelley's implementation of the Nelder–Mead
optimization method (Kelley 1999) that minimizes the least-squared error J between computed
HRc(ti) and measured HRd(ti) values of heart rate. We defined the least squares cost J by
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10

In this equation Nd denotes the number of measurements of heart rate.

Initial iterates for all parameter values were determined using results from previous work
(Olufsen et al. 2006). Thus, the initial iterate for the weighting parameter was set to α = 1 [1/
s], the firing-rate scaling parameters were set to kS = kL = 2, and kI = 1.5 [1/mmHg s], and the
timescales were set to τS = 1, τI = 5, and τL = 250 [s]. Initial iterates for the parasympathetic
and sympathetic time scales and the sympathetic delay were given by τnor = τach = 1, τd = 7
[s] and the parasympathetic damping of sympathetic outflow was set to β = 1. The initial iterates
for the impulse function were amplitude, u0 = 1, and the duration, tper = 5 [s]. The start times
tstart [s] were obtained from the experimental data. This parameter value indicates the time of
initiation of standing and tilting, respectively.

Initial iterates for the parameters ξS and ξP used to determine MS and MP were calculated such
that complete parasympathetic withdrawal (Cach = 0) and maximal sympathetic stimulation
(Cnor = 1) resulted in maximal heart rate Hmax = 3.62 − 1.42· 10−2× age [bps], while complete
sympathetic inhibition (Cnor = 0) and maximal parasympathetic stimulation (Cach = 1) resulted
in “minimal” heart rate Hmin = 0.75 [bps]. These considerations gave

11

It should be noted that in previous work (Olufsen et al. 2006) we did not account for the age-
dependence when calculating maximal and intrinsic heart rates. The final initial iterate is for
the parameter η, which is used to estimate the baseline firing-rate N. To estimate this value,
we let the potential dø/dt = Hr, where Hr is the resting heart rate found by averaging the first
five cardiac cycles. Then we solved for N, and used (4) to determine η as

12

It should be emphasized that the considerations discussed above give rise to a set of initial
iterates for the model parameters, which are within physiological range for each subject studied.
To obtain individual patient specific parameter values that accurately predict dynamics
observed for a given subject we performed non-linear optimization, identifying a set of
parameters that minimize the least squares error between the computed and measured values
of heart rate.

Numerical Considerations
The equations discussed above were solved using Matlab's built in differential equations solver
ode15s. This solver is designed to solve stiff-differential equations using a variable order
multistep method based on numerical differentiation formulas (Shampine and Reichelt 1997;
Shampine et al. 1999).
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The system of Eqs. 1–8 includes a delay variable (τd) used when calculating sympathetic
outflow Tsym (n(t –τd)). Thus, the differential equations cannot explicitly be solved using
ode15s. Matlab does have a delay differential equations solver dde23 based on a 2–3'rd order
Runge–Kutta method. However, this method cannot handle stiff equations, thus we could not
use it for the model discussed here. Now, it is possible to avoid implementing a stiffdelay
solver, by taking advantage of the sequential structure of the model (see Fig. 1). To do so we
first solve and store numerical values for  and n and then use the stored values for both n(t)
and n(t – τd) to compute parasympathetic and sympathetic outputs as described in Eqs. 4–8.
Initial conditions used for this study are similar to previous work (Olufsen et al. 2006), i.e., we
let ni(0) = 0, (0) = mean (  i = 1,…,5) dCi/dt = 0 which gives that

13

Finally, the initial value for the heart rate potential ø (0) = 0.

Subject specific parameter values were, as discussed earlier, obtained using Kelley's
implementation of the Nelder-Mead method (Kelley 1999). This method is one of many
nonlinear optimization methods that can be used to identify model parameters. In part II of this
article, we have compared the Nelder-Mead method to implicit filtering and a genetic
algorithm.

Sensitivity Analysis
To determine the sensitivity of the states with respect to each of the model parameters we used
local sensitivity analysis as described in (Carmichel et al. 1997; Ellwein et al. 2007). Using
this analysis we determine how the model states  (defined in Eq. 9) change with respect to
each of the parameters θ as a function of time, i.e., the goal is to calculate . These
sensitivities can be found by solving a system of differential equations obtained by implicitly
differentiating the state equations in (9) with respect to each of the model parameters in θ, i.e.,

14

The switch in order of differentiation is valid if all concerned derivatives are continuous
(Kaplan 1991). Given that  has seven elements and that θ has 17
elements we get (7 × 17) differential equations (sensitivity equations), which should be be
solved simultaneously with the seven differential equations in (9) that describe the dynamics
of the system. Consequently, we need to solve a total of (7 + 7 × 17 = 136) coupled differential
equations. When solving these equations, we assume that , i.e., initially (at time
t = t0) we assume that the model does not depend on the parameters. The structure of the
sensitivity equations is described in Appendix A.

Data to be analyzed in this study predict heart rate as a function of time, however, we do not
have an explicit differential equation predicting heart rate. Heart rate is predicted using an
integrate-and-fire model as described above. Furthermore, we do not solve the delay
differential equations explicitly, but take advantage of the sequential structure of the model,
and first solve for { , nS, nI, nL} and then use both ni (t) and ni (t – τd) to compute {Cnor,
Cach, ø}. Thus we cannot use the implicit differentiation approach described above to compute
the sensitivity to the time-delay τd and to the heart rate.
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One way to compute sensitivities of all parameters with respect to heart rate and of the delay
time with respect to {Cnor, Cach, ø} is to use finite differences. We do so using a central finite
difference scheme in which we calculate

15

which has error O(h2). This finite difference formula requires two function evaluations or two
solves of the state equations: for  (θ − h) and for  (θ + h). We use this methodology to
calculate ∂HR/∂θi, i = 1,…,17 and  i = Cnor, Cach,. The main drawback of this method
is the difficulty of analyzing the accuracy of the sensitivity estimates due to the finite-precision
arithmetic on a computer. If h is too small in relation to θj we loose most of the significant

digits when calculating the difference between two almost equal numbers  and

. On the other hand, if h is so large that  the finite difference
approximation of the derivative becomes inaccurate. A simple rule (Dennis and Schnable
1983) for the case where  can be computed accurately to machine precision is to choose h ≈
(macheps)1/3, macheps denotes machine epsilon; the smallest positive number ε for, which 1
+ ε >1 on the given computer. In our model,  the solution to the differential equations in (9)
is computed using Matlab's differential equations solver ode15s with both absolute and relative
error tolerances set to 10−6; thus our “macheps = 10−6”. Therefore, in our calculation of the
normalized sensitivity functions using central finite difference formula we used h = 10−2 to
provide a balance between the finiteprecision arithmetic and function evaluation errors.

To rank the sensitivities of the various states and parameters we define a global time-invariant
normalized sensitivity using a weighted 2-norm of the form (Sorteleder 1998)

16

If the matrix Z = (zij) has a row whose elements are all near zero, then the corresponding state
variable is not dependent on any of the model parameters. That is, measurements of the
corresponding state variable will not contribute to more reliable estimates of the parameters.
On the other hand, if the column of the matrix Z is zero, then the corresponding model parameter
will have no influence on the model responses and can therefore not be estimated.

It should be noted that the total firing-rate is given by n = nS + nI + nL + N; hence, ∂n/∂θj =
∂nS/∂θj + ∂nI/∂θj + ∂nL/∂θj. Therefore, we normalize the sensitivity functions of n with respect
to model parameters as (θj/n – N(∂n/∂θj). For the other sensitivity variables, we normalize them
as described in Eq. 16.

Results
Simulations were carried out for five healthy elderly subjects undergoing two orthostatic stress
tests: sit-to-stand and head-up tilt. Demographic and physiologic characteristics are shown in
Table 1. Table 2 shows parameter values obtained for each of the five subjects. For each
experiment we have included 15–25 s of baseline data followed by either active standing or
passive tilt.
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We were able to identify model parameters for all subjects and for both tests, but it should be
noted that the standard deviation for each of the model parameters is large. Thus making
quantitative conclusions based on the small dataset included in this study difficult. For example
during sit-to-stand, for subjects II–V we got kS = 1.70 ± 0.27. However, when including all
five subjects we obtained kS = 3.50 ± 4.0. This result is a consequence of the fact that for subject
I kS = 10.725. It may be that subject I is an outlier, it may be that the optimized parameter value
represents a local minimum outside the desired parameter range, or it may be that this parameter
depend on other model parameters. Two parameters were detected as being significantly
different between the two experiments: The parameter η was higher during head-up tilt
indicating that the base line firing rate is higher during head-up tilt than during sit-to-stand and
the parameter u0 was lower during head-up tilt indicating that the activation of muscle
sympathetic outflow was less pronounced than during sit-to-stand marked with bold in Table
2. In addition, even though parameters varied significantly, the dynamics of the state variables
were similar for all five subjects. Figure 4 shows the dynamics for subject I (a healthy female
60 years old) for each of the two experiments, sit-to-stand (left column) and head-up tilt (right
column). During sit-to-stand a rapid decline in the blood pressure (a) is accompanied by a
decline in the firing-rate (b) and parasympathetic tone (c). In addition it should be noted that
sympathetic outflow increase stimulated by vestibular and central command stimulation of
muscle sympathetic activity precedes the drop in blood pressure. Consequently, the hysteresis
loop (d) shows a fairly rapid decrease followed by a slower recovery. The loop is not closed
because blood pressure increases further during standing. Similar to previous work (Olufsen
et al. 2006) it should be noted that the hysteresis loop is fairly narrow. Finally, it should be
noted that predicted and calculated values of heart rate (e) are closely correlated (the correlation
coefficient R = 0.96, see Table 2). During head-up tilt (right column) supine blood pressure
(a) is lower compared to sitting baseline by 15 mmHg (see Table 1). Line indicates the time
when the tilt was completed, but the actual motion of the table begun about 10 s earlier. Blood
pressure declines more gradually over approximately 10 s and  is significantly smaller (4.78
versus 19.77 [mmHg]). Consequently, there is a smaller decline in baroreflex firingrate (b).
Furthermore, the model shows that parasympathetic outflow declines more gradually or
perhaps there is even an initial increase in the response to the increase of sympathetic tone (c).
Similar to sit-to-stand, the hysteresis loop (d) is very narrow (and almost linear), but it is shifted
toward lower blood pressure values (e). These findings are important because they demonstrate
dynamics of the baroreflex activity can be different in response to passive or active postural
stimulus. We also show that linear responses is typical for smaller blood pressure change at
lower mean values during head-up tilt and an open loop-hysteresis response is more typical
for higher blood pressure values and larger involvement of muscle sympathetic activity during
active standing. The heart rate response (e) is less pronounced (0.18 versus 0.33 [bps]). Also
note the initial drop in heart rate observed at the beginning of the tilt (during the upward motion,
marked by an arrow). To our knowledge this last observation has not been well described in
previous studies. This effect is not accounted for in our model and thus the correlation between
predicted and actual heart rate is less (the correlation coefficient R = 0.83 versus R = 0.94, see
Table 2) during head-up tilt.

Figures 5 and 6 as well as Table 3 show results of our sensitivity analysis, the figures show the
normalized sensitivities. Table 3 shows the overall ranking (including all states and all
parameters) of sensitivities calculated using Eq. 16. In Fig. 5 we have plotted the ranked
sensitivities from the most to the least sensitive. Figure 5a shows the result of the overall ranking
while Fig. 5b shows ranking of parameters with respect to heart rate. Notice that this ranking
differs from the overall ranking. In this study, we only validate the model against heart rate
data, thus the ranking in (b) should be used to guide the parameter estimation process. The
most sensitive parameters include {ξP, η, tstart, α}. Figure 6 shows examples of the time
dependent sensitivities for the parameters ranked with respect to heart rate. The figure shows
scaled versions of the most (ξP), an intermediate (kS), and the least (τI) sensitive parameters.
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Panel (a) shows time dependent sensitivities for all three parameters calculated using the
optimized parameter values and panels (b–d) show these parameters effect on heart rate. In
these panels, the black lines are computed using the optimized parameter values and the grey
line represents a 10% increase of the parameter in question. Note that a 10% change in ξP gives
rise to a significant decrease in HR, while a 10% increase in kS or in has almost no effect on
heart rate.

Discussion
Results show that it is possible to use our previously developed model (Olufsen et al. 2006) to
predict heart rate changes during sit-to-stand and head-up tilt. The main contributions from
this study were: (i). We were able to predict heart rate for all five subjects and dynamics of the
intermediate responses looked similar for all subjects, thus we are able to (at least qualitatively)
discuss impact of the model. (ii). We were able to calculate and rank sensitivities. Results of
this ranking can be used to estimate how many parameters that can be uniquely identified. (iii).
The most important observation is that different dynamics were observed between head-up tilt
and sit-to-stand. During sit-to-stand heart rate increased immediately upon preparation to
standing, while during head-up tilt heart rate decreased before it started to increase. (iv). This
study showed that inclusion of age dependence in initial iterates for parameters used to predict
baseline firing-rate and intrinsic heart rate gave rise to better prediction of the overall firing-
rate n. Below, we will discuss advantages and limitations for each of these observations.

(i–ii): Similar to previous work, we found that our model has potential to be analyzed in more
detail, and results from this study have enabled us to identify several important features. First,
we noticed that parameters varied significantly between subjects while the dynamics
(illustrated in Fig. 4) follow similar trends. There are several reasons for the discrepancies
observed in the parameter values. The parameter estimation methods are local, thus, there is
no guarantee that the parameters identified represent the absolute minimal cost, and even if a
minimal cost has been obtained the optimization may have identified a parameter outside the
physiological range. Second, we used the Nelder–Mead optimization method (a simplex
method), which do not allow us to constrain parameters. Furthermore, we try to identify a large
number (17) of parameters, which may not all be identifiable. In fact, results of our sensitivity
analysis showed that at least three parameters are unidentifiable. Finally, model parameters
may depend on each other. To understand our results better, we have analyzed several
optimization methods. Results of this study are discussed in part II of this manuscript.

(iii): Probably the most important observation gained from this study is that while the model
displays excellent fits to the sit-to-stand data, four out of five subjects showed a decrease in
heart rate during head-up tilt. These changes most likely reflect reductions of intracranial
pressure and increases in central venous pressure in the right atrium, which, in turn, lead to
increases in cardiac output and the observed decrease in heart rate. These results may stem
from the hydrostatic pressure changes opposed during headup tilt, which are different than the
ones observed during sit-to-stand. During head-up tilt, the head is slowly moved to a location
above the heart, while during sit-to-stand no hydrostatic pressure changes are enforced between
the head and the heart. Notice that during standing (or during sitting) the hydrostatic pressure
in the head is approximately 10 mmHg less than in the heart (Guyton and Hall 1996).

(iv): Another difference between our previous study and this study is that we adjusted intrinsic
and maximum heart rates to age. These adjustments are physiological, it is well known that
adaptation to orthostatic stress, mainly parasympathetic withdrawal, declines with age. This
relative minor change had a fairly significant effect on the dynamics, in particular, for the
dynamics of the overall firing-rate n, as well as on parasympathetic and sympathetic outflows,
which are proportionally and inverse proportionally related to the firing-rate. This is a
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significant improvement over our previous study (Olufsen et al. 2006), where for most subjects,
the steady-state baroreflex firing-rate was close to the maximal firing-rate.

A limitation of this study is that our model only included an empirical description of the
combined effect of vestibular and central command stimulation of muscle sympathetic nerve
activity, which may likely be activated differently during tilt than during sit-to-stand. It is
interesting though, that sympathetic activation occurs approximately at the same time in both
conditions and with a similar amplitude. One way to address this further would be to develop
a biophysical model for this response. Also, it should be noted that the tilt study was done on
an automatic tilt-table, which uses an electrical engine to tilt the table to 70°. While this
automated tilt-table allows for a more accurate tilt angle, it has the disadvantage that the tilting
process is fairly slow, it takes about 5 s to tilt the subject to upright position. This relatively
slow tilt time has an effect on the immediate drop in blood pressure, since, in particular,
parasmpathetic response acts within this time-frame and thus already is activated before the
subject is fully tilted, thus preventing a more drastic blood pressure drop.
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Appendix A

Sensitivity Equations
The model presented in (1–8) includes five state equations with a total of 17 model parameters.
To derive sensitivity equations we differentiate each of the states with respect to each of the
parameters, except for the delay parameter τd for which sensitivities will be computed using
central finite differences as described in (15). Because the system is coupled in the forward
direction, parameter dependence carries through the model. The five state equations depend
on the 17 parameters as follows:

A1

Mean Pressure
The mean pressure was modeled using the differential equation in (1), which depends on one
parameter α.
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A2

Thus, only one sensitivity equation can be formed, namely

A3

Baroreflex Firing Rate
The baroreflex firing rate is combined of three firing rates ni as described in Eqs. 2-3. These
equations were given by

A4

These three differential equations depend on eight parameters α, ki, τi, η, for i = S, I, L. Thus
we get 3 × 8 = 24 sensitivity equations.

1. For the parameter α:

A5

2. For i = j, i є {S, I, L}:

A6

3. For i ≠ j, j ε {S, I, L}, y = {kj, sj}:

A7

Acetylcholine Concentration
The concentration of acetylcholine was modeled using a first order set-point equation as
described in (6).
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A8

This equation depends on nine parameters α, ki, τi, η, ηach, for i = S, I, L. Thus we formulate 1
× 9 = 9 sensitivity equations. For γ = {α, ki, τi, η}, i = S, I, L the sensitivity equations have the
form:

A9

The sensitivity equation for τach is given by

A10

Noradrenaline Concentration
The noradrenaline concentration was also modeled using the first-order set-point equation
described in (6). Accounting for vestibular stimulation of muscle sympathetic activation and
central command this equation was given by

A11

In the above equation u denote an impulse function accounting for vestibular feedback. This
function was given by

A12

This one differential equation has 14 parameters. Thus we get additional 14 sensitivity
equations. For γ = {α, ki, τi, η}, i = S, I, L we get sensitivity equations of the form:

A13

The remaining six sensitivity equations are given by
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Heart Rate Potential
The heart rate potential ø in (7) was modeled using the differential equation

A14

A15

This equation depends on all 17 model parameters. It should be noted that H0 is not a parameter
but is determined directly as a function of age as described above. Thus, this differential
equation gives rise to the following 17 sensitivity equations. Only the parameters ξs and ξp
appear directly in the equation. Parameters γ = {α, ki, τi, η }, i ε{S, I, L} appear in both Cnor
and Cach thus sensitivities with respect to these parameter have the form

A16

Cach also depend on τach, which gives rise to the sensitivity equation

A17

Furthermore, Cnor depends on parameters λ = {τnor,τd, u0, tstart, tper, β}, which gives sensitivity
equations on the form

A18

Only two additional sensitivity equations needs to be derived, namely for ξs and ξp. These are
given by
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A19

Again, it should be noted that the final sensitivities with respect to heart rate and to the delay
parameter τd are computed using finite differences as described in (15).
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Fig. 1.
Model diagram. The model uses blood pressure as an input to predict baroreflex firing rate.
From this we predict sympathetic and parasympathetic outflows, accounting for vestibular
stimulation of muscle sympathetic and central command systems. These outflows give rise to
changes in concentrations of noradrenaline (nor) and acetylcholine (ach), which in turn gives
rise to heart rate changes
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Fig. 2.
Actual (black line) and mean (grey line) blood pressure [mmHg]. The actual blood pressure is
obtained directly from data (down-sampled to 50 Hz). The mean blood pressure is calculated
using (1) as an average running mean that is continuous in time
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Fig. 3.
The heart rate potential ø. We use an “integrate and fire” model to predict the heart rate potential
ø, when the potential reaches one it is reset to 0 and the heart rate (1/RR interval) is computed
as the time elapsed since the potential was last reset to 0
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Fig. 4.
Model results for a typical subject, the left column shows response to sit-to-stand while the
right column shows the response to head-up tilt. The first row shows the input blood pressure
(black line) and the computed average mean blood pressure (grey line). The second row shows
the baroreflex firing rate. The bottom three lines shows each of the three components (nS, nI,
nL) and the top line shows the combined response n = nS + nI + nL + N including the baseline
response N. The third row shows the parasympathetic (top line) and sympathetic (bottom line)
response. The fourth row shows the mean firing rate as a function of mean blood pressure.
Finally, the last row shows computed (line with triangles) and measured (black line with stars)
values of heart rate as a function of time
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Fig. 5.
This figure shows relative sensitivities for the parameters θi = ξP, kS, τI, where ξP is the most
sensitive parameter, kS is an intermediate sensitivity parameter, and τI is the least sensitive
parameter (see Fig. 6)
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Fig. 6.
Panel (a) shows ranked sensitivities with respect to heart rate for parameters ξP, kS, τP. Panels
(b–d) show heart rate dynamics computed with optimized parameters (dark lines) and with a
10% increase (grey lines) for each of the three parameters
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Table 3

Maximum sensitivities for each state with respect to each parameter
Bold entries indicate the most sensitive state for that given parameter

p̄ nS nI nL n Cach Cnor ø HR Max

tstart 0.766 0.016 0.234 0.766
kI 0.002 0.610 0.004 0.018 0.007 0.011 0.002 0.003 0.610
τd 0.457 0.014 0.105 0.457
ξp 0.266 0.403 0.403
kL 0.037 0.042 0.386 0.312 0.128 0.187 0.043 0.098 0.386
α 0.039 0.322 0.215 0.374 0.353 0.130 0.182 0.053 0.110 0.374
kS 0.363 0.068 0.234 0.236 0.092 0.127 0.036 0.077 0.363
tper 0.321 0.024 0.097 0.321
β 0.290 0.054 0.091 0.290
η 0.158 0.141 0.179 0.169 0.064 0.086 0.015 0.235 0.235
u0 0.203 0.023 0.063 0.203
τI 0.002 0.192 0.001 0.005 0.002 0.003 0.000 0.001 0.192
τS 0.182 0.009 0.006 0.052 0.021 0.025 0.001 0.031 0.182
τnor 0.099 0.003 0.030 0.099
τL 0.022 0.011 0.018 0.008 0.003 0.005 0.001 0.032 0.032
τach 0.028 0.001 0.012 0.028
ξs 0.002 0.004 0.004
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Table 4

A list and explanation of all state variables and model parameters

States Description Parameters Description

p̄ Weighted mean pressure α Weight parameter (for mean pressure)
nS Short term baroreceptor firing rate kS Gain constant for short term firing rate
nI Intermediate baroreceptor firing rate kI Gain constant for intermediate firing rate
nL Long term baroreceptor firing rate kL Gain constant for long term firing rate
Cach Acetylcholine concentration τS Time constant for short term firing rate
Cnor Noradrenaline concentration τI Time constant for intermediate firing rate
Ø Heart rate potential τL Time constant for long term firing rate

η Scaling factor for baseline firing rate
β Parasympathetic dampening factor
u0 Amplitude of impulse function
tstart Start time of impulse function
tper Duration of impulse function
τd Time delay constant for sympathetic tone
τnor Noradrenaline time scale
τach Acetylcholine time scale
ξs Scaling factor for sympathetic response
ξp Scaling factor for parasympathetic response
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