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Abstract
Purpose Infertile men possess substantially more sperm
DNA damage than do fertile men, damage that may impact
negatively on reproductive outcomes. In this era of assisted
reproductive technologies there is mounting concern re-
garding the safety of utilizing DNA-damaged spermatozoa
in this setting. Therefore, it is important to identify strategies
that may reduce sperm DNA damage. The purpose of this
review is to discuss the rationale for antioxidant therapy in
men with sperm DNA damage and to evaluate the data on
the efficacy of dietary and in vitro antioxidant preparations
on sperm DNA damage.
Methods We reviewed the literature on antioxidants and
sperm DNA damage.
Results To date, the data suggest that dietary antioxidants
may be beneficial in reducing sperm DNA damage,
particularly, in men with high levels of DNA fragmentation.
However, the mechanism of action of dietary antioxidants
has not been established and most of the clinical studies are
small. A beneficial effect of in vitro antioxidant supple-
ments in protecting sperm DNA from exogenous oxidants
has been demonstrated, however, the effect of these

antioxidants in protecting sperm from endogenous ROS,
gentle sperm processing and cryopreservation has not been
established.
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Introduction

There is evidence to show that infertile men possess sub-
stantially more sperm DNA damage than do fertile men and
that this DNA damage may adversely affect reproductive
outcomes [1–4]. This is particularly relevant in an era where
advanced forms of assisted reproductive technologies (ARTs)
are commonly utilized (ARTs often bypass the barriers to
natural selection), as there is some uncertainty and mounting
concern regarding the safety of utilizing DNA-damaged
spermatozoa in this setting [5]. Therefore, it is important
to identify strategies that may reduce sperm DNA damage.
The proposed strategies include eliminating testicular gona-
dotoxins or hyperthermia, treatment of semen or genital
tract infections, correction of varicoceles and the use of
antioxidants [6–8]. The purpose of this review is to explore
the rationale for antioxidant therapy in men with sperm DNA
damage and to present data on the efficacy of dietary and in
vitro antioxidant preparations on sperm DNA damage.

Etiology of sperm DNA damage

The etiology of sperm DNA damage is multi-factorial and
may be due to primary testicular or secondary (e.g.
environmental) factors. Sperm DNA damage is believed
to be the result of aberrant protamine expression, excessive

Capsule Dietary and in vitro antioxidant preparations may help reduce
sperm DNA damage, however, larger, well-designed studies are
needed to firmly establish the utility of antioxidants in this setting.
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ROS (reactive oxygen species) generation and abortive
apoptosis during spermatogenesis [9–12].

Relationship between ROS (reactive oxygen species)
and sperm DNA damage

The association between sperm DNA damage and semen
ROS is the basis for the use of antioxidants in the treatment
of sperm DNA damage. High levels of ROS have been
detected in the semen of 25% of infertile men [13, 14]. The
levels of sperm-derived ROS (measured in sperm prepara-
tions having minimal leukocyte contamination) have been
associated with sperm DNA damage, although no ROS
threshold level above which sperm DNA damage is
detected has been established [15–17]. Moreover, the levels
of sperm DNA oxidation are higher in infertile compared to
fertile men [18, 19]. Semen ROS are generated by
spermatozoa (especially, defective or immature) and semen
leukocytes [16, 20–23]. While the controlled release of
low levels of ROS is necessary for normal sperm
function, high levels of ROS can cause sperm dysfunc-
tion [23]. The susceptibility of human spermatozoa to
oxidative stress stems primarily from the abundance of
unsaturated fatty acids in the sperm plasma membrane.
These unsaturated fatty acids provide fluidity that is
necessary for membrane fusion events (e.g. the acrosome
reaction and sperm-egg interaction) and for sperm
motility. However, the unsaturated nature of these
molecules predisposes them to free radical attack and
ongoing lipid peroxidation throughout the sperm plasma
membrane. Once this process has been initiated, accu-
mulation of lipid peroxides occurs on the sperm surface
and oxidative damage to DNA can ensue [6, 24, 25]. Studies
have demonstrated that exogenous and endogenous ROS can
induce sperm DNA damage in vitro, confirming that ROS
may play a role in the etiology of sperm DNA damage in
infertile men [25–27].

Semen antioxidants and sperm DNA damage

Seminal fluid is an important source of antioxidants (ROS
scavengers) and is key in protecting spermatozoa from
oxidative injury [14, 28, 29]. This is particularly important
because spermatozoa have little cytoplasmic fluid (antiox-
idant enzymes are generally intracellular), virtually no
capacity for protein synthesis and little antioxidant capacity
[14]. The endogenous free radical scavenging enzymes in
the male reproductive tract include superoxide dismutase
(SOD), catalase, and glutathione peroxidase (GPX) [14,
30–33]. These same antioxidant enzymes (SOD, catalase
and GPX) are found in semen [34]. Moreover, several non-

enzymatic antioxidants (e.g. vitamins C and E, hypotaurine,
taurine, L-carnitine, lycopene) are also found in semen and
this non-enzymatic component accounts for much of the
total seminal antioxidant activity [14, 35].

Several clinical studies have evaluated the relationship
between semen antioxidant levels and sperm DNA damage
and have reported conflicting results. Some studies have
shown that a deficiency in semen antioxidants is associated
with sperm DNA damage, whereas, other studies have not
observed such a relationship [6, 36–39]. Similarly, some
studies have found that seminal antioxidant activity is
reduced in infertile men with high levels of seminal ROS
(relative to those with normal levels of ROS) whereas
others have not shown this [14, 40–42]. To date, there are
no studies to indicate a relationship between systemic
antioxidant or vitamin deficiency and male infertility. Silver
et al, 2005 evaluated a cohort of fertile men and did not
identify any relationships between dietary antioxidant
intake (vitamins C, E or ß-carotene) and sperm DNA
damage [43]. Nonetheless, it is possible that a subset of
infertile men may be at risk for antioxidant deficiency,
particularly, vitamin C deficiency [44]. Moreover, infertile
men with specific lifestyles may also be at risk for
antioxidant or vitamin deficiency (e.g. smoking, increased
alcohol intake, dieting)[45, 46].

Dietary antioxidant supplements and sperm DNA
damage

In order to be active, a dietary antioxidant should be
effectively absorbed and concentrated in reproductive tract
organs. The antioxidant should also replete a deficiency (in
the testis, epididymis or semen) and play a role in
reproductive function. The antioxidant must either improve
spermatogenesis and/or epididymal function, ultimately,
resulting in improved sperm function and chromatin
compaction and integrity. Alternatively, the antioxidant
should enhance semen antioxidant capacity in order to
reduce oxidative DNA damage.

There are a small number of reports on the effects of
dietary antioxidant supplementation on sperm DNA integrity.
In general, these are small studies that do not evaluate the
mechanism of action of antioxidants: the only endpoint that
is measured is the integrity of the sperm DNA or pregnancy
rate. Moreover, most studies evaluate the effects of a short
treatment course (with no long-term follow-up), are not
randomized and fail to include a placebo-control group. Most
of these clinical studies have evaluated men with high levels
of sperm DNA damage. In these men, treatment with
antioxidant supplements is generally associated with reduced
levels of sperm DNA integrity and/or improved fertility
potential (Table 1) [19, 47–52].
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In 1991, Fraga et al. demonstrated that dietary vitamin C
increases semen vitamin C levels and improves sperm DNA
integrity (lowers DNA oxidation levels) in men with a
vitamin C deficiency (on a vitamin C depleted diet). More
recent studies of infertile men with high levels of sperm
DNA damage (2 randomized controlled and 3 uncontrolled
trials) have shown that antioxidant therapy is effective in
improving sperm DNA integrity or pregnancy rates
(Table 1). In men with unselected infertility, the effect of
dietary antioxidants on sperm DNA integrity is equivocal
with one of two controlled trials showing a benefit of
antioxidants on sperm DNA integrity (Table 1).

In vitro antioxidants and sperm DNA damage

Several studies have examined the role of in vitro antioxidant
supplementation in protecting the sperm DNA from oxidative
damage. This is clinically relevant as sperm washing is
routinely performed prior to ARTs (e.g. intrauterine insemi-
nation and in vitro fertilization) and the process may result in
injury to the spermDNA, particularly, as spermatozoa are now
vulnerable to oxidative stress because seminal plasma (rich in
antioxidants) has been removed in the process [53]. However,
it is important to note that subpopulations of spermatozoa
will exhibit variable susceptibility to oxidative stress: the

Table 1 Effect of dietary antioxidant supplements on sperm DNA integrity

Study Patients/test Treatment(s) n Results

Infertile men with high sperm DNA fragmentation levels

Greco (47) 1 failed ICSI vits C 1 g, E 1 g 38 Rx (2 months): ↓DD in 76%, 48% ICSI pregnancy

TUNEL>15% No control group.

Greco (48) Infertility vits C 1 g, E 1 g 32 Rx (2 months):↓ DD(22%→9%)

TUNEL>15% 32 Placebo group: no effect on DD (22%→22%)

Menezo (49) 2 failed ICSI vits C, E (400 mg) 57 Rx (90 days):↓ sperm %DFI (32→26%: by 19%)

DFI>15% Zinc, Se, but ↑ sperm %HDS (17.5→25.5%: by 23%)

Decond>15% ß-carotene No control group.

Tremellen (50) Male Infert Menevit (lycopene,vits C, E,
Zinc, Se, folate, garlic)

36 Rx (3 months): 39% ICSI pregnancy rate,

TUNEL>25% But no ↑ in embryo quality, no post-Rx DD

16 Placebo group: 16% ICSI pregnancy rate

Gil Villa (51) Pregn. loss vits C, E 9 Rx (3 months): 6 (of 9) couples got pregnancy

↑LPO or DFI zinc, ß-carotene No control group.

Infertile men (not selected on basis of DNA fragmentation)

Piomboni (52) Asthenosp. vits C, E, ß-glucan 36 Rx (90 days): ↑motility & morph but not DD

AO stain papaya, lactoferrin 15 Control group: no effect

Kodama (19) Male infert Vit C, E (200 mg) 14 Rx (2 months):↓ in 8-OHdG (1.5→1.1/105 dG)

8-OHdG glutathione (400 mg) 7 Control group: no change in 8-OHdG levels

8-OHdG 8-hydroxy-2-deoxyguanosine; AO acridine orange; DD DNA damage; Decond decondensation; DFI DNA fragmentation index; LPO
lipid peroxidation; Rx Treatment; Se selenium; TUNEL terminal nucleotidyl transferase dUTP nick end labeling; vit vitamin

Table 2 Role of in vitro antioxidant supplements in protecting sperm DNA from exogenous ROS

Study Assay Exogenous ROS Antioxidant supplement and results

Lopes (55) TUNEL X+XO GSH+hypotaurine protect spz from X+XO-induced DD

Catalase and n-acetylcysteine individually protect spz from X+XO induced DD

Potts (56) TUNEL H2O2+Fe+ADP S. plasma (>60%v/v) lowers oxidative spz damage (↓DD, LPO)

Sierens (57) COMET H2O2 Isoflavones, vit C & E protect spz from H2O2-induced DD

(Isoflavones: genistein, equol). Dose effect noted.

Russo (58) COMET (1) H2O2, Propolis lowers oxidative spz damage (↓LPO, DD, LDH)

(2) Benzopyrene, (Propolis – a natural resinous hive product)

(3) H2O2+Fe+ADP

ADP adenosine diphosphate; COMET single cell gel electrophoresis; DD DNA damage; DFI DNA fragmentation index; Fe iron; GSH
glutathione; LDH lactate dehydrogenase; LPO lipid peroxidation; S. plasma seminal plasma; Spz sperm; TUNEL terminal nucleotidyl transferase
dUTP nick end labeling; X xanthine; XO xanthine oxidase
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DNA of normal spermatozoa is reportedly less susceptible to
gentle processing techniques than is the DNA of abnormal or
immature spermatozoa [21, 54].

The studies on in vitro antioxidant supplementation have
looked at the role of antioxidants in protecting sperm from
exogenous and endogenous ROS, and, from the effects of
semen processing and cryopreservation. Antioxidants (e.g.
vitamins C and E, catalase, glutathione) have been shown
quite clearly to protect sperm DNA from the effects of
exogenous ROS (see Table 2) [55–58]. This is of clinical
relevance as many of the semen samples contain leukocytes
and these cells have the potential to generate exogenous
ROS. In contrast, antioxidants appear to be of limited value
in protecting the DNA of normal spermatozoa from
endogenous ROS production (e.g. NADPH-induced or
centrifugation-induced) (see Table 3) [25, 59–61]. In
samples with poor morphology and poor sperm chromatin
compaction, antioxidants may protect the sperm DNA from
endogenous ROS production, as these samples are more
vulnerable to oxidative stress [21, 54]. In general, antiox-

idants appear to be of limited value in protecting sperm
DNA from gentle semen processing (e.g. incubation or
density-gradient centrifugation) (see Table 4) [62–65]. In
some cases, antioxidants supplementation in vitro (e.g.
combination of vitamins C and E) may cause sperm DNA
damage [63, 64]. The one study evaluating the effects of
sperm cryopreservation suggests that antioxidants (vitamin E)
do not protect sperm DNA in this setting [66].

In summary, the data suggest that ROS appear to play an
important role in the generation of sperm DNA damage.
Although in vitro studies have demonstrated a beneficial
effect of antioxidant supplements in protecting sperm DNA
from exogenous oxidants, the effect of these antioxidants in
protecting sperm from endogenous ROS, gentle sperm
processing and cryopreservation has not been established.
The data suggest that dietary antioxidants may be beneficial
in reducing sperm DNA damage, particularly, in men with
high levels of DNA fragmentation. However, the mecha-
nism of action of dietary antioxidants has not been
established and most of the clinical studies are small.

Table 3 Role of in vitro antioxidant supplements in protecting sperm DNA from stimulated endogenous reactive oxygen species (ROS)
generation

Study Assay ROS stimulant Antioxidant supplement and results

Twigg (25) IS NTL NADPH Vit E, SOD, catalase, hypotaurine, albumin all ineffective
in protecting spz DNA from endogenous ROS

Cemeli (59) COMET Estrogens Flavonoid (Kaempferol) protects sperm from estrogen-induced
oxidative DD. (Flavonoids: only)(1 hr 37C)

Dobrzynska (60) COMET DES, T3,T4, NA Flavonoids & catalase protect spz from stimulant-induced
oxidative DD. (Flavonoids: Kaempferol, Quercetin).(1 hr 37C)

Anderson (61) COMET Estrogens Catalase protects spz from estrogen-induced oxidative DD
SOD and vit C less effective.

(Estrogens: equol, daidzein, genistein, DES, E2)

COMET alkaline single cell gel electrophoresis; DD DNA damage; ISNTL in situ nick translation assay; LPO lipid peroxidation; NA
noraqdrenaline; ROS reactive oxygen species; SOD superoxide dismutase; Spz sperm; T3 triiodothyronine; T4 thyroxine; vit vitamin

Table 4 Role of in vitro antioxidant supplements in protecting sperm DNA from semen processing

Study Assay Semen processing Antioxidant supplement and results

Chi (62) COMET Centrifugation EDTA or catalase lower centrifugation-induced sperm ROS

(1000 rpm x2) EDTA or catalase lower centrifugation-induced sperm DD

+ 1 hr incubation EDTA or datalase have no protective effect on LPO

Donnelly (63) COMET Percoll DGC Vit C or E do not lower baseline sperm ROS & DD

Hughes (64) COMET Percoll DGC Vitamins C, E or urate lower sperm DD after DGC

Vitamins C+E or AC increase sperm DD after DGC

Donnelly (65) COMET Percoll DGC GSH, hypotaurine or both do not alter baseline sperm DD

± H2O2

AC Acetyl cysteine; COMET alkaline single cell gel electrophoresis; DD DNA damage; DGC density gradient centrifugation; GSH glutathione;
LPO lipid peroxidation; ROS reactive oxygen species; vit vitamin
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