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Abstract

Background: Recently much attention has been given to developing national-scale micro-simulation models for livestock
diseases that can be used to predict spread and assess the impact of control measures. The focus of these models has been
on directly transmitted infections with little attention given to vector-borne diseases such as bluetongue, a viral disease of
ruminants transmitted by Culicoides biting midges. Yet BT has emerged over the past decade as one of the most important
diseases of livestock.

Methodology/Principal Findings: We developed a stochastic, spatially-explicit, farm-level model to describe the spread of
bluetongue virus (BTV) within and between farms. Transmission between farms was modeled by a generic kernel, which
includes both animal and vector movements. Once a farm acquired infection, the within-farm dynamics were simulated
based on the number of cattle and sheep kept on the farm and on local temperatures. Parameter estimates were derived
from the published literature and using data from the outbreak of bluetongue in northern Europe in 2006. The model was
validated using data on the spread of BTV in Great Britain during 2007. The sensitivity of model predictions to the shape of
the transmission kernel was assessed.

Conclusions/Significance: The model is able to replicate the dynamics of BTV in Great Britain. Although uncertainty remains
over the precise shape of the transmission kernel and certain aspects of the vector, the modeling approach we develop
constitutes an ideal framework in which to incorporate these aspects as more and better data become available. Moreover,
the model provides a tool with which to examine scenarios for the spread and control of BTV in Great Britain.

Citation: Szmaragd C, Wilson AJ, Carpenter S, Wood JLN, Mellor PS, et al. (2009) A Modeling Framework to Describe the Transmission of Bluetongue Virus within
and between Farms in Great Britain. PLoS ONE 4(11): e7741. doi:10.1371/journal.pone.0007741

Editor: Stephen J. Cornell, University of Leeds, United Kingdom

Received May 8, 2009; Accepted October 15, 2009; Published November 5, 2009

Copyright: � 2009 Szmaragd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC; grant number BBS/B/00603) and the Department for
Environment, Food, and Rural Affairs (Defra; grant number SE4104) through the Combating Viral Diseases of Livestock (CVDL) initiative. SG also acknowledges
additional funding from BBSRC (grant number IAH1320). The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Camille.Szmaragd@bristol.ac.uk

¤ Current address: School of Clinical Veterinary Science, University of Bristol, Lower Langford, Bristol, United Kingdom

Introduction

The advent of increased computing power over the past decade

has facilitated the development of national-scale micro-simulation

models for the transmission of livestock diseases that can be used to

examine the potential spread of epidemics and assess the impact of

control measures. This type of approach came to particular

prominence during the 2001 foot-and-mouth disease (FMD)

epidemic in Great Britain (GB) [1–5]. Since then, large-scale

micro-simulation models have been developed for a range of

livestock diseases, species and countries: for example, avian

influenza in poultry in GB [6–8], scrapie in sheep in GB [9–11]

and classical swine fever in pigs in the Netherlands [12].

To date, however, little attention has been given to the

development of similar models for vector-borne diseases of

livestock, such as bluetongue. Bluetongue (BT) is a non-contagious,

infectious, insect-borne disease of ruminants caused by bluetongue

virus (BTV) and is transmitted between hosts by the bites of

Culicoides midges. Over the past decade BT has become one of the

most important diseases of livestock following a series of incur-

sions into Europe, largely under the influence of climate change

[13–15]. In particular, the first cases of BTV serotype 8 (BTV-8) in

northern Europe were reported near Maastricht in the Nether-

lands in August 2006, with subsequent cases reported in Belgium,

Germany, France and Luxembourg [16]. In May 2007, BTV-8 re-

emerged and caused major outbreaks across the previously-

affected countries, and spread into new areas, including to the

south-east of GB in the autumn of that year.

The aim of this paper is to present a modelling framework to

describe the transmission of BTV within and between farms in

GB, which can be used to predict patterns of spread following an

incursion of BTV in British livestock and to assess the impact of

PLoS ONE | www.plosone.org 1 November 2009 | Volume 4 | Issue 11 | e7741



different control measures, particularly vaccination. The model is

stochastic and spatially-explicit with two components: the first

describes the spread within a farm, and is parameterised using

published data including explicit temperature-dependence where

this has been quantified [17]; the second describes the spread

between farms using a transmission kernel, estimated using data

from the 2006 BTV epidemic in northern Europe. Once

parameterised, the model was validated using data on the spread

of BTV in GB during 2007. Finally, sensitivity analyses were

carried out, particularly with respect to the shape of the

transmission kernel.

Methods

Transmission of BTV within farms
The transmission dynamics of bluetongue virus (BTV) within a

holding are described using a stochastic compartmental model that

includes two ruminant host species (cattle and sheep) and the

Culicoides vector (Figure 1; Table 1), and was developed from an

earlier deterministic formulation of the model [17]. The cattle and

sheep populations are assumed to be constant (Hi), except for

disease-associated mortality, and are subdivided into the number

of susceptible (i.e. uninfected), infected and recovered animals,

denoted by X(i), Y(i) and Z(i), respectively, where the superscript i

indicates cattle (C) or sheep (S). To allow for a more general

distribution for the duration of viraemia, the infected host

population, Y(i), is subdivided into a number of stages, with newly

infected hosts entering the first stage and then passing through

each successive stage. If the mean time spent in each stage is 1/nr,

the total length of time spent in the n stages follows a Gamma

distribution, with mean 1/r and variance 1/nr2. The vector

population (N) is subdivided into the number of adult female

midges that are susceptible (i.e. uninfected), latent (i.e. infected, but

not infectious) and infectious, denoted by S, L and I, respectively.

To allow for a more general distribution for the extrinsic

incubation (i.e. latent) period (EIP), the latent class is subdivided

into a number of stages in a similar approach to that described

above for the duration of host viraemia. Once infectious, midges

remain so for life. Adult males and immature (larval and pupal)

stages are not considered as they do not blood-feed and, hence, do

not transmit BTV.

The force of infection for each host species, li, is given by,

li~bai
N

Hi

I

N
, ð1Þ

which is the product of the probability of transmission from an

infected midge to a host (b), the biting rate on the species (ai), the

ratio of vectors to hosts (mi = N/Hi) and the proportion of bites

which are from infectious midges (I/N). The biting rate on species i

can be decomposed such that ai = awi, where a is the reciprocal of

the time interval between blood meals and wi is the proportion of

bites on the species. The proportion of bites on cattle (wC) is given

by,

wC~
HC

HCzsHS

, ð2Þ

while that on sheep is wS = 1-wC. The parameter s is a measure

of vector preference for cattle compared to sheep: if s,1,

vectors feed preferentially on cattle, while if s.1, they feed

preferentially on sheep. The force of infection for vectors, lV, is

given by,

Figure 1. Schematic diagram of the model for the transmission dynamics of BTV within a farm. The populations of infected hosts and
vectors are subdivided into a number of stages to allow for more general distributions for the duration of viraemia and the extrinsic incubation
period, respectively. A solid line indicates a flow from one compartment to another; a dotted line indicates that a compartment has an influence on a
rate of transfer. Lines shown in red indicate a temperature-dependent rate.
doi:10.1371/journal.pone.0007741.g001
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lV ~ba wC

1

HC

XnC

j~1

Y
Cð Þ

j zwS

1

HS

XnS

j~1

Y
Sð Þ

j

 !
, ð3Þ

which is the product of the probability of transmission from an

infected host to a midge (b), the biting rate on hosts of each species,

and the proportion of hosts that are infected.

Bluetongue was assumed to be detected on a farm if an animal

died due to disease or if overt clinical signs were observed in at

least one animal. This occurred in species i with daily probability

given by,

pi tð Þ~1{ 1{qið Þ
Pni

j~1

Y
(i)
j

(t)

, ð4Þ

where qi is the probability of detecting overt clinical signs in an

infected animal of species i, and Y
ið Þ

j is the number of animals of

species i in infection stage j at time t.

Population sizes in the model X ið Þ, Y
ið Þ

j , Z ið Þ, S, Lj , I
� �

all take

integer values and transitions (for example, infection, completion

of an infection stage or death; Figure 1) are stochastic processes as

summarised in Table 1. The number of transitions of each type

which occurs during a small time interval dt was drawn from a

binomial distribution B(n,q) where n is the population size and q is

the transition probability (the appropriate per capita rate multiplied

by dt; Table 1). However, binomial random variables are

computationally expensive to simulate and an approximating

distribution was used wherever possible. When one of the

following conditions was satisfied, (i) nq(1-q).25, (ii) nq(1-q).5

and 0.1,q,0.9, or (iii) nq.10 and n(1-q).10, an approximating

normal variate with mean nq and variance nq(1-q) was used, while

if q,0.1 and nq,10, an approximating Poisson variate with mean

nq was used [18]. Those probabilities which include temperature-

dependent parameters (see Table 2) were computed using hourly

temperature data for the farm.

Transmission of BTV between farms
To describe the spread of BTV between farms, a stochastic,

spatially-explicit model with a daily time-step was used. The unit

of population was the farm, with farms divided into four classes:

susceptible (no hosts or vectors infected with BTV); exposed (has

acquired infection); infectious (has acquired infection and the first

newly infected vectors on the farm have completed their extrinsic

incubation period); and recovered (no longer any hosts or vectors

infected with BTV).

Transmission between farms was described by a generic

mechanism, which implicitly includes transmission via the

movement of both vectors and host animals. The probability that

an unaffected farm j acquires infection on day t is given by,

yj tð Þ~p
Að Þ

j tð Þ 1{ P
k[I(t{1)

1{p
Tð Þ

k tð Þk xjk

� �� �� �
, ð5Þ

where I(t) is a list of infectious farms on day t, p
ið Þ

j tð Þis the

probability of acquisition (A) or transmission (T) for farm j on day t,

respectively, and k(xjk) is the transmission kernel, with xjk the

(Euclidean) distance between farms j and k. The probabilities of

acquisition and transmission were parameterised as,

log
p

ið Þ
j tð Þ

1{p
ið Þ

j tð Þ

 !
~c

ið Þ
0 z

X
k

c
ið Þ

k Xkj tð Þ, ð6Þ

Table 1. Transitions, probabilities, and population sizes in the model for the transmission of BTV within farms{.

description transition probability population size

host population

infection X ið Þ?X ið Þ{1

Y
ið Þ

1 ?Y
ið Þ

1 z1

�
lidt (see equation (1)) X ið Þ

completion of infection stage j (j = 1,…,ni-1) Y
ið Þ

j ?Y
ið Þ

j {1

Y
ið Þ

jz1?Y
ið Þ

jz1z1

(
niridt Y

ið Þ
j

disease-associated mortality (j = 1,…,ni) Y
ið Þ

j ?Y
ið Þ

j {1 didt Y
ið Þ

j

recovery Y
ið Þ

ni ?Y
ið Þ

ni {1
Z ið Þ?Z ið Þz1

�
niridt Y

ið Þ
ni

vector population

Recruitment S?Sz1 see Table 2 –

Infection S?S{1
L1?L1z1

�
lVdt (see equation (3)) S

completion of EIP stage j (j = 1,…,k-1) Lj?Lj{1

Ljz1?Ljz1z1

�
Kndt Lj

vector mortality (j = 1,…,k) Lj?Lj{1 mdt Lj

completion of EIP Lk?Lk{1

I?Iz1

�
Kndt Lk

vector mortality I?I{1 mdt I

{Parameters are defined in equations (1)–(3) and Table 2.
doi:10.1371/journal.pone.0007741.t001
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where Xkj(t) is the value of risk factor k for farm j on day t (for

example, presence of cattle or sheep, temperature) and c
ið Þ

k is the

parameter associated with factor k.

Once a farm acquired infection, the within-farm dynamics were

simulated as described above, based on the number of cattle and

sheep kept on the farm and local temperatures. This was used to

determine the time to infectiousness (defined as the time until the

appearance of the first newly infectious vectors on the farm), the

time to appearance of clinical signs (assumed to occur if an animal

died due to disease or if overt clinical signs were observed in at

least one animal), and the duration of the outbreak (defined as the

time after which there are no more infected hosts or vectors on the

farm).

Parameter estimation: within-farm dynamics
Parameter estimates for the within-farm model (Table 1;

Figure 1) have been previously derived from the published

literature as part of uncertainty and sensitivity analyses of the

basic reproduction number for BTV [17] and these estimates were

used in the transmission model (Table 2). Temperature-dependent

functions were used for the reciprocal of the time interval between

blood meals (a), the vector mortality rate (m) and the extrinsic

incubation period (1/n). Point estimates for parameters relating to

the duration of host viraemia (ri and ni) were obtained by fitting

Gamma distributions to published data. Finally, plausible ranges

were determined for the remaining parameters to reflect

uncertainty in their values; these parameters were set for each

within-farm outbreak by sampling uniformly from these ranges.

Parameter estimation: between-farm dynamics
Parameters in the model for the transmission of BTV between

farms, including the form for the transmission kernel, were

estimated from data on BTV-8 outbreak in northern Europe

during 2006 [16,19]. The data were obtained from the European

Commission Animal Disease Notification System (ADNS) data-

base, and included farm locations, farm type (cattle only, sheep

only or mixed cattle and sheep) and the date of first clinical

suspicion. Parameter estimation was performed using a dataset

including all farms for which the date of first clinical suspicion was

reported to be between 5 July 2006 and 1 November 2006

(inclusive). For simplicity, farms were assumed to become infected

Table 2. Parameters in the model for the within-farm transmission of BTV.

description symbol estimate or range comments references

probability of transmission from vector to host b 0.8–1.0 – [39]

probability of transmission from host to vector b 0.001–0.15 – [40,41,42,43]

biting rate on species i ai – can be decomposed so that ai = awi –

reciprocal of the time interval between blood
meals

a 0–0.5 depends on temperature h:
a(h) = max(0,0.0002h(h23.7)(41.92h)1/2.7) [44]

[44,45,36]

vector preference for cattle compared to sheep s 0–1 vectors feed preferentially on cattle based on data for C. imicola [46,47]

number of cattle on holding HC – obtained from the 2006 June agricultural survey for each holding –

number of sheep on holding HS – obtained from the 2006 June agricultural survey for each holding –

duration of viraemia (cattle) - mean 1/rC 20.6 duration of viraemia based on natural infection and virus
isolation in embryonated chicken eggs;

[48]

duration of viraemia (cattle) - no. stages nC 5 parameters estimated by fitting a gamma distribution to data
presented in paper cited in right-hand column

[48]

disease-induced mortality rate (cattle) dC 0–0.0001 cattle seldom succumb to severe disease; upper limit derived
from the BT outbreak in northern Europe in 2006 and 2007
where mortalities of up to 0.2% were observed

[16,48,49,50]

probability of overt clinical signs (cattle) qC 0.0078–0.067 – [51,50]

duration of viraemia (sheep) - mean 1/rS 16.4 duration of viraemia based on experimental infection
and virus isolation in embryonated chicken eggs;

[52,53]

duration of viraemia (sheep) - no. stages nS 14 parameters estimated by fitting a gamma distribution to
data presented in papers cited in right-hand column

[52,53]

disease-induced mortality rate (sheep) dS 0.001–0.01 derived from observed mortality in sheep ranging from 3.9% to 14.4% [16,54,50]

probability of overt clinical signs (sheep) qS 0.027–0.080 – [51,50]

vector recruitment rate r – for simplicity assumed to be equal to the vector mortality rate –

vector population size N see comments based on a maximum host biting rate (aiN/Hi) of 2500 bites
per host per day and, hence, a vector to host ratio (mi = N/Hi)
of 0–5000; the ratio of vectors to cattle (or sheep if there were
no cattle on the farm) was sampled from this range and the
vector population size was computed such that N = miHi

[40,36]

extrinsic incubation period (EIP) - mean 1/n – depends on temperature h:
n(h) = max(0,0.0003h(h210.4)) [44]

[44,55,56]

extrinsic incubation period (EIP) - no. stages k 1–100 – [44, 55, 56

vector mortality rate m – depends on temperature: m(h) = 0.009exp(0.16h) [55]; this is
comparable with estimates of the mortality rate for C.
obsoletus and C. pulicaris group midges derived using
unpublished light-trap data from Pirbright, UK

[57,55,56]

doi:10.1371/journal.pone.0007741.t002
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on the date of first clinical suspicion and infectious on the date

after the first clinical suspicion. Once infectious, farms were

assumed to remain so until at least the last day in the data-set.

Because data were available only for affected farms in the

northern European outbreak, parameter estimation was done by

maximising the log-likelihood conditional on a farm becoming

infected at some point during the outbreak [20], which is given

by,

l a,c
ið Þ

k

� �
~
X

t

X
j[Y tð Þ

log
yj tð Þ P

t{1

t~0
1{yj tð Þ
� �

Ptend

s~1

yj sð Þ P
s{1

t~0
1{yj tð Þ
� �

0
BBB@

1
CCCA, ð7Þ

where yj(t) is the probability that farm j acquires infection on day t

(defined by equation (5)), Y(t) is a list of farms which acquire

infection on day t, and tend is the last day in the data-set.

A number of transmission models, (5), were fitted to the data

using the conditional log-likelihood, (7). Three forms for the

transmission kernel were considered, namely, exponential (E),

Gaussian (G) and fat-tailed (F) forms, which are given by,

kE xð Þ~aexp {axð Þ,

kG xð Þ~ affiffiffi
p
p exp {a2x2

� �
,

kF xð Þ~a

4
exp {a1=2x1=2
� �

,

ð8Þ

respectively, where a is the kernel parameter. Probabilities of

acquisition and transmission (see equation (6)) including or

excluding the presence of cattle and the presence of sheep

(Table 3) and daily mean temperature (as linear and quadratic

terms) were considered. The models were compared using the

Akaike information criterion (AIC), with a difference in AIC of

two assumed to indicate a significant difference between models.

Simulating the dynamics of BTV-8 in GB
The location and the number of sheep and cattle on each

holding were obtained from June agricultural survey data for

2006. Hourly temperature records for 2007 were extracted from

the BADC/MIDAS database [21] for 19 meteorological stations

throughout GB (see Figure S1 and Figure S2).

The model was initialised with a single infected farm (Baylham

Farm, near Ipswich) on 4 August 2007. This has been identified as

the most likely day of introduction of infected midges from the

near continent [22]. Six additional farms became infected later

(two in Cambridgeshire, three in Kent and one in Sussex), with no

demonstrable epidemiological link to the main East Anglian focus.

It has been suggested that these additional cases may have been a

result of new introduction events. They were therefore included as

additional seeds in the simulations, based on their location and

date of reporting.

Restrictions on animal movements are imposed in response to

an outbreak of bluetongue, with movements not allowed out of a

designated protection zone (PZ) except under certain circum-

stances. The impact of these movement restrictions was assessed

by simulating the model with either no restrictions on transmission

between farms or by allowing transmission only between farms in

the 2007 PZ declared by Defra [23]. This is the simplest means of

incorporating the effect of movement restrictions in the model

and, moreover, assumes that most long-distance transmission is the

result of animal movements rather than vector dispersal, which is

likely to be the case.

For each scenario the model was run so that 50 outbreaks

(defined as any increase in the number of affected holdings beyond

those seeded in the simulations; see above) were generated.

Replicates were simulated until the required number of outbreaks

(50) had been generated, so that the number of replicates was not

specified in advance, but follows a negative binomial distribution.

The number of outbreaks was chosen to provide robust results

without being prohibitively expensive in terms of computation

time.

Results

Parameter estimation: between-farm dynamics
Three kernels (see equation (8)) and 14 demographic models

(Table 3) (i.e. a total of 42 models) were fitted to data on the BTV-

8 outbreak in northern Europe in 2006. Comparison of the

transmission kernels indicates that a Gaussian kernel yields the

best fit for a given demographic model, followed by an exponential

kernel, with a fat-tailed kernel yielding the poorest fit (Figure 2A).

Moreover, the fat-tailed kernel always yielded a significantly

poorer fit than either a Gaussian or exponential kernel (Figure 2A).

The best-fit kernels are shown in Figure 2B (see also Table 4)

together with the kernel estimated from the 2001 outbreak of foot-

and-mouth disease (FMD) in the GB [24,25]. The key difference

between the kernels is the thickness of the tails (i.e. the probability

of transmission at longer distances), which are much higher for the

fat-tailed and FMD kernels than for the Gaussian or exponential

ones (Figure 2B).

The ranking of the demographic models by the AIC is similar

for each of the kernels, with a model including the presence of

sheep as a factor in both the probability of acquisition and

transmission (model 7; Table 3) providing the best fit to the data

(Figure 2A). Furthermore, the parameter estimates in the

demographic models for the different kernels are comparable,

Table 3. Summary of demographic factors included in
models for the probability of transmission of BTV between
farms.

model probability of acquisition probability of transmission

presence of
cattle

presence of
sheep

presence of
cattle

presence of
sheep

1 YES YES YES YES

2 YES YES YES No

3 YES YES no YES

4 YES no YES YES

5 no YES YES YES

6 YES no YES no

7 no YES no YES

8 YES no no YES

9 no YES YES no

10 YES no no no

11 no YES no no

12 no no YES no

13 no no no YES

14 no no no no

doi:10.1371/journal.pone.0007741.t003
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especially for the effect of the presence of sheep on the probability

of transmission (Table 4).

In addition to the effects of farm demography on the probability

of transmission between farms, we also explored the impact of

temperature on both the probabilities of acquisition and

transmission, (6), by including it as linear and quadratic terms.

However, no significant improvements in model fit were identified

for any of the models including temperature. Moreover, there

were also problems with identifying robust estimates for any of the

temperature-related parameters. Accordingly, temperature was

not included as a factor in the probability of transmission between

farms. Rather the influence of temperature was incorporated via

its effects on the dynamics of BTV within a holding.

Dynamics of BTV-8 in Great Britain during 2007
Simulating the dynamics of BTV-8 in GB following an

incursion into East Anglia suggested that only a small proportion

of incursions resulted in outbreaks (2.8%; 95% confidence interval

(CI): 2.6–3.1%). This proportion did not differ significantly

amongst kernels with or without movement restrictions

(x2 = 6.15, df = 7, P = 0.52).

Comparing the observed and expected time-course for farms

reporting clinical disease in 2007 shows that the model captures

the dynamics of the outbreak, including the delay of five to six

weeks between the initial introduction of BTV and the first

reported cases, followed by the rise and fall in the number of farms

reporting cases over subsequent weeks (Figure 3A). Although the

median number of farms reporting cases captured well the

observed dynamics, there were a number of outbreaks for which

the predicted number of clinically-affected holdings in 2007 was

substantially higher than observed. This is primarily a conse-

quence of the uncertainty in the model parameters, notably

relating to vector abundance (Table 2), as well as the inherent

stochasticity of infection dynamics. The median for the cumulative

number of affected holdings (Figure 3B) underestimated the

observed number (125) of affected holdings in 2007 (i.e. those

detected by any surveillance method: reported cases, serosurveil-

Figure 2. Models for the probability of transmission between farms. (A) Comparison of model fit for different transmission kernels and
demographic models (defined in Table 3) based on the Akaike information criterion (AIC). The cyan line indicates a difference of two in AIC between a
model and that with the lowest AIC (i.e. Gaussian kernel and demographic model presented in Table 4), taken to represent a significant difference in
model fit. (B) Transmission kernels, (8), using the maximum-likelihood estimates obtained by fitting the models to outbreak data from northern
Europe in 2006 (Table 4). The FMD kernel is that estimated by Chis Ster and Ferguson [24] from the outbreak of foot-and-mouth disease (FMD) in the
UK during 2001.
doi:10.1371/journal.pone.0007741.g002

Table 4. Maximum-likelihood estimates for the probability of
transmission between farms when fitted to data on the
spread of BTV in northern Europe during 2006.

parameter kernel

Gaussian exponential fat-tailed

transmission kernel 0.034 0.056 0.161

probability of acquiring infection

intercept 0.562 20.516 1.268

presence of sheep on farm 21.330 20.958 21.755

probability of transmitting infection

intercept 22.149 22.031 21.499

presence of sheep on farm 30.095 30.24 31.126

Akaike information criterion (AIC) 743.11 744.00 745.73

doi:10.1371/journal.pone.0007741.t004
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lance or pre-movement testing; [26]). However, the observed

number of affected holdings is consistent with model predictions

(Figure 3B).

The predicted spatial distribution of clinically-affected holdings

(Figure 4A and 4B) broadly corresponds to the observed

distribution of reported cases, with the areas of highest risk in

East Anglia matching the location of known affected holdings.

Furthermore, the area at risk also broadly corresponds to the PZ

put in place by Defra [23].

Sensitivity analysis
The sensitivity of the model predictions to the shape of the

kernel was assessed by simulating outbreaks of BTV-8 in GB using

four kernels: Gaussian, exponential, fat-tailed and FMD

(Figure 2B; see also Table 4). Comparison of the model predictions

for the different kernels shows that the Gaussian and exponential

kernels result in similar time-courses and spatial dynamics

(Figure 4A–4D and Figure 5). By contrast both the fat-tailed and

FMD kernels predict consistently higher numbers of clinical and

affected holdings (Figure 5) and a considerably greater extent of

spatial spread, especially so for the fat-tailed kernel (Figure 4E and

4G).

Incorporating the effect of movement restrictions on transmis-

sion between farms had little effect on the model predictions using

a Gaussian kernel (Figure 4A and 4B and Figure 5) and only a

small effect on those using an exponential kernel (Figure 4C and

4D and Figure 5). By contrast, there was a marked effect on the

predictions using a fat-tailed or the FMD kernel. In the case of a

fat-tailed kernel, the model still predicted higher numbers of

clinical and affected holdings than were observed, though to a

lesser extent than without restrictions (Figure 4E and 4G and

Figure 5), while in the case of the FMD kernel, the model

predictions more closely matched those with either the Gaussian

or exponential kernels (Figure 4G and 4H and Figure 5).

Discussion

This paper presents a modelling framework for the transmission

of BTV within and between farms in GB, which can be used to

predict patterns of spread and, in particular, assess the impact of

different control strategies, especially those involving vaccination.

The model was constructed using available data from published

literature and from the outbreak of BTV-8 in northern Europe

during 2006 and was then validated using data on the spread of

BTV-8 in GB during 2007.

For simplicity and because of the limited outbreak data

available with which to parameterise the model, the spread of

BTV between farms was described using a generic transmission

kernel, (5), which implicitly includes all modes of transmission

between farms and, in particular, the movement of animals and

dispersal of vectors. This is a common approach in epidemiolog-

ical modelling and has been widely used for other animal diseases,

notably FMD [1,24] and avian influenza [6]. Importantly, the

choice of kernel and, in particular, the thickness of the tails (i.e. the

probability of long-range transmission events) will have an impact

on the predictions for spread [27,28].

Previous analyses of directly-transmitted viruses and, in

particular, those of FMD virus in GB have suggested that a

Figure 3. Temporal dynamics of BTV-8 in GB during 2007. (A) Observed and expected number of farms reporting clinical disease each week.
The figure shows the observed number of newly-identified holdings with confirmed clinical cases (bars) and the median (symbols) and 10th and 90th
percentiles (error bars) for the simulated outbreaks. (B) Expected cumulative number of affected holdings over time. The figure shows the median
(solid red line), 25th and 75th percentiles (red dashed lines), and 10th and 90th percentiles (dashed blue lines). Each figure shows the results for the
simulated epidemics assuming a Gaussian transmission kernel and demographic model presented in Table 4 (i.e. the best-fit model to the northern
European data), based on the results of 50 simulated outbreaks which took off (see Methods).
doi:10.1371/journal.pone.0007741.g003
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power-law kernel (i.e. a fat-tailed kernel) is most appropriate to

describe the spread of these viruses [24,25]. In our analyses of

BTV, a vector-borne infection, we explored a number of possible

shapes for the kernel (exponential, Gaussian and fat-tailed), of

which a Gaussian form yielded the best fit of the model to data on

the spread of BTV-8 in northern Europe during 2006 (Figure 2A ;

Table 4). Moreover, a Gaussian kernel captured the observed

spread of BTV-8 in GB during 2007 (Figure 3A and Figure 4A), as

did an exponential kernel (Figure 4B and Figure 5B), while a fat-

tailed kernel or that derived for FMD did not (Figure 4E and 4G

and Figure 5). If, however, the effect of movement restrictions was

incorporated in the model, the predictions using the FMD kernel

did match the observed dynamics of BTV in 2007 more closely

(Figure 4H and Figure 5).

This raises two important issues. First, it is likely to be difficult to

identify the shape of the kernel when transmission is impacted by

control measures. At first glance, there are clear differences in the

ability of the models with different kernels to capture the observed

dynamics of BTV. However, once the effect of movement

restrictions are included, the differences become less clear.

Consequently, it is essential to consider the sensitivity of model

predictions for spread or the impact of control measures to the

shape of the transmission kernel. Second, any assessment of the

efficacy of movement restrictions at preventing the spread of BTV

will depend critically on the shape of the transmission kernel (see

also [29]). In particular, our results for a Gaussian kernel would

suggest they have little impact on spread and are not necessary,

while those using the FMD kernel would suggest movement

restrictions are effective at reducing spread.

Two other studies have considered the spread of BTV-8 in

northern Europe using either random walk [30] or wind density

[31] models. The conclusion when describing spread as a random

walk was that the data were adequately described by a Gaussian

model [30], as was the case with our analysis (Figure 2A ; Table 4).

The wind density model indicated that transmission over short

distances (,5 km) was symmetric, but identified asymmetries for

spread over medium (5–31 km) or long distances (.31 km) [31].

Although the wind density approach is potentially useful for

retrospective analyses, it focuses on a single mechanism of spread

(i.e. vector dispersal by wind). Furthermore, any asymmetries will

be a consequence of a range of location-specific factors (for

example, topography in the case of wind). Incorporating this level

of detail would increase substantially the model’s complexity

without greatly adding to its utility for exploring the spread and

control of BTV in GB or, indeed, elsewhere.

There is likely to have been under-ascertainment of affected

holdings in the northern European data for 2006, partly through

under-reporting, but also because clinical signs of disease could be

missed or, indeed, not present. The impact of under-ascertainment

was assessed by simulating outbreak data using the model, (5),

selecting a percentage (10–100%) of affected farms at random and

then using this sampled, simulated data-set to estimate parameters

as described in the Methods. Reasonable estimates (i.e. the true

values lies within in the 95% confidence limits) for the transmission

kernel parameter were obtained provided at least 50% of affected

holdings were identified. However, the overall effect of under-

ascertainment is to lead to an under-estimation of the spatial and

temporal spread, that is, an epidemic would be thought to spread

less and more slowly than it actually does.

Parameters in the model were estimated using data from a

range of sources: those for transmission between farms were

estimated from data for northern Europe in 2006, while those for

transmission within farms were obtained from the published

literature (Table 2; see also [17]). Wherever possible the estimates

were derived for UK Culicoides spp. or for the BTV-8 epidemic in

northern Europe, but some estimates were only available for other

species or outbreak areas (see references in Table 2).

Data from the BTV outbreak in GB during autumn 2007 were

not used to parameterise the model. Despite this, the model yields

an adequate fit to the observed outbreak in GB, both in terms of

the incidence of reported cases (Figure 3A) and the spatial extent

of spread (Figure 4A). More refined estimates for certain

parameters might be obtained by exploring epidemiological data

available for GB, especially in relation to disentangling movement-

based transmission from that due to vector dispersal in the spread

of BTV between farms. However, it is worth noting that this is a

relatively small data set (125 affected holdings). Of these 125

holdings, 42 were detected through clinical surveillance, but others

were identified through serological surveillance (23) or pre-

movement testing (60), which increases uncertainty on their likely

date of infection.

A second area of uncertainty in the model relates to the biting

rate of Culicoides vectors on ruminant hosts and how this changes

over space and time. In our modelling approach, we set a

maximum biting rate for each (affected) farm by sampling from a

plausible range for this parameter and then allowed the biting rate

to vary over time in response to changes in temperature (equation

(1); Table 2) (cf. [32]). However, this approach does not allow for

Figure 4. Spatial dynamics of BTV-8 in GB during 2007.
Predicted spatial distribution of affected farms as of 31 December
2007 assuming: (A,B) a Gaussian kernel; (C,D) an exponential kernel; (E,F)
a fat-tailed kernel; or (G,H) the FMD kernel. Transmission between farms
is either (A,C,E,G) unrestricted or (B,D,F,H) restricted to the 2007 PZ.
Each map shows the cumulative risk (see colour bars) expressed as the
proportion of simulated outbreaks (out of 50 which took off; see
Methods) for which at least one farm was affected by BTV within each
5 km grid square.
doi:10.1371/journal.pone.0007741.g004
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potentially systematic variation in the biting rate in response, for

example, to climatic differences or husbandry practices.

Spatial and temporal variation in vector abundance (one

component of the biting rate; cf. equation (1)) can be predicted by

combining data from trap catches with satellite imagery [32–34].

However, there are problems interpreting trap catch data and their

relationship with biting rates on host species. Although it is possible

to relate trap catches to biting rates for certain Culicoides spp. (for

example, carbon dioxide-baited suction traps for C. sonorensis, the

principal North American vector of BTV [35]), there is evidence

that this is not the case for European vector species and trapping

methods [36,37]. Finally, there are potential species-level differenc-

es amongst Culicoides vectors in terms of their distribution and

competence (see [38] for a review), which could impact on the

transmission dynamics of BTV, but which are not sufficiently well

understood to be included in the model.

In the longer term, more complex and realistic models of

transmission of BTV are needed, which include separate transmis-

sion routes and seasonal vector dynamics, as well as multiple vector

species and virus strains. The epidemiological model presented here

constitutes an ideal framework, which is highly flexible and can

incorporate these aspects. However, basic but fundamental

information to parameterise these additional components is missing

and collecting these data should be made a priority.

Supporting Information

Figure S1 Location of 19 meteorological stations in Great Britain.

Hourly temperature records for 2007 were extracted for each station

and used as inputs in a model for the transmission of bluetongue virus

within and between farms in Great Britain. Each farm used

temperature records from its nearest meteorological station.

Found at: doi:10.1371/journal.pone.0007741.s001 (0.29 MB TIF)

Figure S2 Hourly temperature records for 2007 for 19

meteorological stations. Records are shown for each meteorolog-

ical station shown in Figure S1 in order from the southernmost to

the northernmost station.

Found at: doi:10.1371/journal.pone.0007741.s002 (1.24 MB TIF)
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