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Abstract
A method to characterize shock wave lithotripters by examining the potential for cavitation associated
with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius
achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region
in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble
by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an
ellipsoidal reflector with an insert. The results show that the use of an insert reduced the −6 dB volume
(with respect to peak positive pressure) from 1.6 to 0.4 cm3, the −6 dB volume (with respect to peak
negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation
potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3.
Thus, the insert is an effective way to localize the potentially damaging effects of shock wave
lithotripsy, and suggests an approach to optimize the shape of the reflector.

I. INTRODUCTION
Shock wave lithotripsy (SWL)1 is a noninvasive procedure that uses high-energy lithotripter
shock waves (LSWs) to eliminate kidney stones. In a typical procedure, approximately 2000
LSWs, generated extracorporeally, are focused at the site of the stone. This pulverizes the stone
into grains that can be passed through the patient’s urinary system. Since its development in
1980, SWL has become a primary treatment modality for upper urinary stones. However, there
are growing concerns for SWL-induced renal injuries such as hemorrhaging2 and acute
impairment,3 especially in pediatric and elderly patients.
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There are several types of lithotripters in clinical use: electrohydraulic (EH), piezoelectric, and
electromagnetic.4 Each is based on concentrating acoustic waves at the focus of a conic section
using reflectors, spherical dishes, or an acoustic lens. The first lithotripter used in the United
States was the Dornier HM-3. It is a reflector-based EH lithotripter, and has become the
comparison standard for new lithotripter designs.

Reflector-based EH lithotripters are driven by an electrical discharge produced by a spark gap
located at the first focus of an ellipsoidal bowl (F1). Rapid expansion and/or vaporization of
the working medium—water for most cases—generates a spherical shock wave. There are two
distinct parts of the spherical shock wave. The first part does not intercept the reflector and
travels outward in the direction of the second focus of the ellipsoid (F2). This part is called the
direct wave. The second part is reflected by the lithotripter and redirected toward F2. This part
is the reflected wave. It is the primary wave and is what is referred to as the LSW. As the
reflected wave propagates through the patient’s body, it steepens through geometric focusing
and hyperbolic effects and causes damage to the kidney stone. The form of a LSW consists of
an initial (compressive) shock wave followed by a long rarefaction tail.4

Studies have shown that cavitation, caused by the high tensile stresses of the LSW tail, plays
a major role in tissue damage in SWL. It is shown that the rarefaction tail of a LSW causes
pre-existing cavitation nuclei to expand and collapse violently. The expansion of bubbles
ruptures small capillaries and the formation of strong jets during violent collapses may damage
larger vessels.5 Furthermore, studies of pressure-release lithotripters6 in which cavitation
intensity is inhibited show a minimal effect on kidney morphology.7

Cavitation also plays an important and favorable role in stone comminution. High-speed
photographs of kidney stones in vitro have shown that fissures created by the LSW8 are
nucleation sites for bubble clusters. The cavitation of these bubble clusters leads to pits on the
proximal end and cracks on the lateral faces of kidney stones.9 Therefore, efforts have been
made to control cavitation intensity in SWL in order to increase stone comminution. These
include use of a dual-pulse lithotripter,10 alignment of the kidney stone with the location of
greatest cavitation activity,11 and use of a piezoelectric annular array (PEAA) generator in
conjunction with an EH lithotripter to force cavitating bubbles into a stronger collapse.12

Because cavitation is needed for sufficient comminution of kidney stones but leads to vessel
rupture, several methods have been studied in order to address the issue of cavitation
localization. The use of deflector plates has been shown to make the focus tighter through the
elimination of paraxial sound rays.13 A wave superposition technique has been developed to
modify the form of the LSW so that intraluminal bubble expansion could be suppressed. This
was done by using an ellipsoidal insert14,15 and/or PEAA16 to generate a two-peaked LSW. A
two-peaked LSW was also generated through the use of a bifocal reflector created by joining
two ellipsoidal halves together.17

With many different lithotripter designs being developed, it is necessary to have a technique
to characterize different designs. Such a methodology exists for clinical diagnostic ultrasound
equipment. In 1980, Holland and Apfel showed that their mechanical index (MI),18 defined as

(1)

can be used to assess the likelihood of cavitation for pulsed ultrasound devices. Here, P*=P/
(1 MPa) is the normalized pressure, P is largest rarefaction pressure in megapascals, f* = f / (1
MHz) is the normalized frequency with f in MHz, and a≈2 for physiologically relevant host
fluids. However, the MI failed when used to characterize shock wave lithotripters19 because
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LSWs lie outside the regime where the MI is expected to be valid. That is, the time scale of
the expansion phase of a bubble forced by a LSW is much longer than the pulse length of the
LSW.

In this paper, we present an alternative approach to characterizing lithotripters. The method is
based on calculating the maximum radius a bubble attains if placed within a lithotripter as a
representation of the cavitation potential for that region in the device. We use the maximum
radius a bubble attains to quantify cavitation potential because a larger bubble has a higher
potential to do damage than smaller bubble does upon collapse. Note that the cavitation
“potential” of a region is only an expectation of finding bubbles there because bubbles need
nuclei to form. Thus, there is only a potential for cavitation and realization of this potential
depends on exact circumstances. However, given the same environment, a lithotripter with a
higher cavitation potential will cause more damage than one with a lower potential, and thus
our cavitation potential is a good metric for the characterization of lithotripters.

The paper is organized as follows: First, the correlation between the maximum radius a bubble
attains and the work done on the bubble is shown in order to provide a simple way to determine
the cavitation potential of a lithotripter. Next, the procedure for calculating the work for a given
LSW is outlined. Next, the mathematical formulation to determine the pressure fields of various
lithotripters is presented, and its numerical implementation is given. Two lithotripters are then
characterized based on the cavitation potential. Finally, conclusions are presented.

II. WORK AS A GATEWAY TO CAVITATION POTENTIAL
In this section we show that the maximum radius a bubble attains correlates well with the work
done on the bubble by a LSW. Thus, calculating the work done on a bubble provides a way
for determining the cavitation potential of the region.

A. Work done on bubble
We motivate this by looking at a single spherical bubble that is forced with the rarefaction tail
of a LSW (see Fig. 1). We only consider the rarefaction tail of the LSW here (and throughout
the rest of the paper) because our tests showed that the short compressive part of the LSW does
not affect bubble dynamics appreciably. In these tests, it was found that increasing the
amplitude of the leading shock produced negligible changes in cavitation-related parameters
such as the maximum radius and peak collapse temperature. The bubble dynamics were,
however, strongly dependent on the nature of the rarefaction tail of the LSW. Similar results
were noted by Church.20 The tests were performed using a Rayleigh-Plesset (RP) solver that
incorporated gas diffusion, heat transfer, chemical reactions, surface tension, and viscous
effects. The code21 was developed by Storey, and the details can be found in the corresponding
reference. Hereinafter, the code will be referred to as BUBBLE.

Initially the bubble is regarded as having zero energy, i.e., KE+PE=0. The kinetic energy (KE)
is zero because the bubble is still and we set the potential energy (PE) to zero for reference.
After the LSW does work on the bubble, the bubble gains kinetic and potential energy, the sum
of which equals the work done: W=KE+PE. The bubble then grows inertially without input
from the LSW. At maximum volume, the bubble converts all of its kinetic energy into potential
energy. Thus, the work done on the bubble is equal to the potential energy22 of the bubble at
maximum radius:

(2)
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Here the bubble pressure is the sum of the vapor and gas pressures within the bubble
(pb=pv+pg) and the integral is taken along the path connecting the initial and maximum
volumes: V0 and Vmax, respectively. Because (2) requires knowledge of the exact volume
dynamics of the bubble, it cannot be integrated to give a general equation. However, we can
learn something about the system by making a few approximations. First, for bubbles subjected
to LSWs, pv≫pg, so pb can be replaced by pv in (2).21 Second, Vmax≫V0, so V0 can be replaced
by 0. Finally, the vapor pressure is almost constant during the expansion phase of the bubble.
Thus, (2) can be approximated by

where p̄v is some suitable mean value of the vapor pressure. Thus, we have motivated the notion
that the work done on a bubble is closely related to the maximum radius the bubble achieves.

We now turn our attention to determining a more exact relationship between rmax and W. For
this, we use BUBBLE to determine the dynamics of bubbles subjected to LSW pulses of the
form

(3)

where Pamp, α, and f are parameters of the LSW. As defined above, the LSW starts at the
rarefaction and does not include the leading shock wave. To add the leading shock wave to
(3), one only needs to change the phase shift of the cosine term from π/2 to π/3. The work done
on the bubble in changing its radius from r1 to r2 (from time t1 to t2) is calculated using

(4)

where F is the force applied on the bubble surface, A is the area of the bubble surface, r(t) is
the bubble radius, and a dot represents a time derivative so ṙ(t) is the bubble wall velocity.
Note that the external pressure, P(t), in (4) is given by (3) in the foregoing test. However, (4)
is a general equation and is valid for any P(t).

The test simulated argon bubbles in water using the following properties: initial ambient
pressure p0=1.01 × 105 Pa, initial gas pressure pg0=p0, water density ρl =996.6 kg/m3, argon
molecular weight M=39.95 g/mol, water sound speed cl=1481 m/ s, water surface tension σl
=72.8 dyn/cm, argon surface tension σg=3.418 dyn/cm, argon polytropic index κ=1.4, and
water dynamic viscosity µl =1.00 cP. Note that argon bubbles were used for simplicity because
the maximum radius a bubble attains when subjected to a LSW does not depend on the gas
inside; water vapor dominates the interior contents so diffusion and compressible effects of
the gas in the interior is of no conesquence. The test scanned a range of the parameter space
{Pamp, f , α} that covered realistic pressure traces for typical lithotripters. In all the tests, the
initial radius r0=4.5 µm was used because rmax does not depend on r0 for the parameters tested.
20 Figure 2 shows the results of the test. A fit was done and the following relationship was
found:

(5)
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where W is in millijoules and rmax is in millimeters.

Before we move on, we show that the same work versus maximum radius analysis works for
bubbles in elastic media. In this analysis, a different model for bubble dynamics is used instead
of the RP equation. A good example of the governing equation for bubbles in elastic media is
a modified Keller-Miksis equation23 given by Yang and Church.24 In that equation, extra terms
account for the elasticity of the surrounding soft tissue through the shear modulus G. The results
of the test are shown in Fig. 3.

The test was done using the parameters given by Yang and Church for air bubbles in blood
and soft tissue: initial ambient pressure p0=1.01×105 Pa, initial gas pressure pg0 =p0, tissue
density ρt=1060 kg/m3, tissue sound speed ct =1540 m/ s, blood surface tension σb=5.6 dyn/
cm, air poly-tropic index κ=1.4, tissue dynamic viscosity µ t =15 cP, and initial bubble radius
r0=4.5 µm. The results show that there is a power law dependence between W and rmax (again
with n=1/3) for bubbles in elastic media. However, the relation- ship departs slightly at higher
shear moduli (i.e., G >1.5 MPa). This is due to the fact that bubbles undergo forced collapses,
similar to those in diagnostic ultrasound, when the constraining stresses exerted by the elastic
medium are large enough. A curve fit was done to determine the dependence of rmax on G, and
the following was found:

where W is in millijoules, rmax is in millimeters, and G is in megapascals.

B. Applicability of our single-bubble formulation
We have thus established that the work done on a single spherical bubble by a LSW correlates
well with the maxi-mum radius an isolated single bubble attains. Now we argue that our single
bubble formulation is applicable to describing real bubbles and their maximum radii in SWL.

There have been numerous in vitro studies25 that show the formation of large dense bubble
fields and/or bubble clusters. Here we define a dense bubble field as one in which bubbles are
closely packed but remain spherical during their lifetime. We define a bubble cluster as one in
which bubbles deviate from spherical due to strong bubble-bubble interaction. In both cases
the dynamics of bubbles vary remarkably from that of a single isolated bubble. For example,
the collapse time as measured with a passive cavitation detector for a bubble cluster can be an
order of magnitude larger than that for a single bubble. Thus, an argument can then be made
that a single bubble formulation is not appropriate and a dense bubble field (or bubble cluster)
must be considered instead. However, our own in vitro experiments (see Fig. 16) show that the
bubble fields near F2 are not always as dense as the fields photographed in other studies.9 One
explanation might be that the gas content, and consequently the number of cavitation nuclei,
was lower in our experiment. Another explanation may be the existence of small cavitation
nuclei (undetectable by the naked eye, but readily seen with B-mode ultrasound), created by
the passage of prior LSWs, in the other experiments.26,27

The most convincing reason dense bubble fields need not be the only kind considered derives
from recent in vivo experiments by Bailey et al.26 Using B-mode ultrasound, they showed that
the initial cavitation field in the urine-space of a pig kidney can be described as a “sparse field”
in which bubble-bubble interactions are low and bubbles collapses are spherical. They showed
that the sparse field persists for approximately 150–250 shots before evolving into a “pulsating
field” and finally a “static field.” Both the pulsating and static fields are characterized by bubble
cluster dynamics and phenomena such as shielding occurs. However, the authors note that the
urine-space field relaxes from a static to a sparse field after several minutes of no shots. Thus,
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we are confident that our single bubble formulation provides an accurate description of the
onset of cavitation activity in vivo. Furthermore, if treatment is administered in 200-shot doses
to allow for field relaxation, our formulation is perfectly valid for SWL.

Another concern is that the pressure (or rarefaction energy) measured near F2 may not be the
true pressure (or rarefaction energy) of the LSW because some of the energy might have been
lost due to cavitation inception as the LSW propagated toward F2.27 Thus, the work calculated
with (4) using experimentally measured pressure data might be an underestimate of the work
the LSW can actually do. As a consequence, the rmax field predicted by the work will be
underestimated, not good if we are to use the cavitation potential as a safety index for
lithotripters. However, Pishchalnikov et al.28 recently showed that the rarefaction tail of a LSW
is not attenuated if a slow pulse frequency rate (PRF) is used and the bubble clouds are sparse.
Moreover, stones break better as a consequence. Thus, it is becoming increaseingly clear that
SWL should be performed at a slow PRF. Under such conditions, we are confident that our
single-bubble formulation is valid.

Although we have argued that the work is expected to correlate well with rmax for an isolated
bubble during cavitation onset and especially at slower PRF, one may still like to consider the
case of a bubble in a denser field. This is because the presence of other growing bubbles creates
a back-ground pressure field that is higher than that of the free-field. This higher pressure
restricts the growth of bubbles, and the rmax field predicted by the work on an isolated bubble
is likely a slight overestimation of the maximum radii of bubbles a denser field. However, such
an upper bound is exactly what we need if we are to use the cavitation potential for safety
reasons.

That having been said, we still expect the calculation of the work input to be valid. After all,
the interaction between a bubble nucleus and the rarefaction occurs when the bubble is very
small—without much influence from neighbors. Hence, the work input from the rarefaction is
properly formulated. What would change in a denser field would be the link between the work
input and rmax. This is a useful area for future work.

We conclude this section by giving another view of our analysis. We have shown that the
maximum size of a bubble correlates well with the work done on the bubble by the LSW.
Furthermore, the work done on the bubble is equal to the energy lost to the bubble. Thus, you
can think of our analysis as measuring the energy of the LSW lost to bubble growth, and looking
at such a field provides a valid way of estimating the potential for damage.

III. BUBBLE DYNAMICS
Now we turn our attention to the procedure for determining the work done on a bubble by a
LSW. From (4), we see that the radial dynamics of a bubble is needed to get an expression for
the work. If we assume that the bubble is in an incompressible (or only mildly compressible)
fluid, we can use the RP equation to find the bubble radius.

A. Simplified Rayleigh-Plesset equation
Hilgenfeldt et al.29 define a useful form of the RP equation as

(6)
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where ρl is the liquid density, pg is the internal gas pressure, Pf(t) is the acoustic forcing, p0 is
the ambient pressure, cl is the liquid sound speed, µl is the liquid viscosity, and σis the surface
tension. Equation (6) can be solved numerically for any Pf(t).

However, we wish to find a simpler model for r(t). This can be done by following the analysis
of Hilgenfeldt et al.29 In their paper, the authors defined distinct phases for the RP equation in
response to a spatially homogeneous, standing wave, and derived analytic expressions for the
bubble dynamics and subsequent analytical laws for parameter dependencies. The phases were:
Rayleigh collapse, turnaround and delayed re-expansion, afterbounces (a parametric
resonance), and expansion. In our work we are interested in the RP approximation for the
bubble expansion phase.

In the expansion phase of the bubble dynamics, the dynamical pressures
 roughly balance the external pressure P(t)=Pf(t)+p0. Thus, we

only need to solve the simplified RP equation

(7)

to calculate the bubble dynamics during the time span of the LSW.

The validity of (7) was tested against (6) using BUBBLE. We tested five different driving
pressures: three LSWs of the form given by (3) and the pressures at F2 for the original and
upgraded reflectors we consider in Sec. V. The three LSWs were a theoretical shock wave as
defined by Matula et al.21 (Pamp=33 MPa, α=0.35 MHz, f =50 kHz), a strong short-lived shock
wave (Pamp=80.16 MPa, α=1.6 MHz, f =200 kHz), and a weak long-lived shock wave (Pamp
=17 831.7 MPa, α=0.35 MHz, f =5 kHz).

Figure 4 shows the results. As can be seen, (7) is an excellent approximation to (6), at least for
the initial period of the bubble dynamics (i.e., while the work is being done from 0 µs≤t≤15
µs). After that period, the approximation breaks down because the other terms in (6) become
comparable in magnitude to the dynamical pressures. However, (4) only needs the bubble
dynamics from the initial period because the driving pressures of interest only last that long.
Thus, the simplified RP works extremely well and saves computing costs in finding the work
done on a bubble.

B. Analytic expression for the work: New index
Before we continue with the results, we now develop an analytical expression for the work
done on a bubble by an external pressure field P(t). To do so, we first simplify (7) further to

(8)

where j=3/4 if velocity is dominant (early stages of bubble growth) and j=1/2 if acceleration
is dominant (near maxi-mum radius). In our analysis, we put j=3/4 in (8) and integrate twice
to get

(9)
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Here, the initial conditions used were r(t=0)=r0 and ṙ(t=0)=0. The velocity is found by
differentiating (9)

(10)

Substitution of (9) and (10) into (4) gives the work:

(11)

Thus, the work can be considered a functional: W = W[P(t) , ρ,r0]. However, we can eliminate
the dependence on r0 if

(12)

Furthermore, if the external pressure is parametrized by only an amplitude Pamp and frequency
f, the work scales like

(13)

The constant of proportionality in (13) may be determined—at least approximately—for wave
fields of certain forms. For example, the work done on a bubble driven by a LSW of the form
of (3) for 0≤t≤1/(2f) and 0 for t >1/(2f) is approximated by

where x ≡ α/ f. This work index is not directly practical for use to characterize shock wave
lithotripters. Instead, it gives one an idea of how the work input varies with different parameters.

IV. PRESSURE FIELD
To compare lithotripter designs via our cavitation potential, we need a way to determine the
pressure fields of the reflectors. In the past, this has been accomplished numerically by several
authors. Christopher30 used an acoustic beam model to determine the propagation of a LSW
from a Dornier HM-3 for water and tissue. However, his scheme used an arbitrary tensile
strength limit to produce “reasonable looking” waveforms. Averkiou and Cleveland31 modeled
an EH lithotripter using geometrical acoustics and the Khokhlov-Zabolotskaya-Kuznetsov
(KZK) equation. Their results showed good comparison with experimental measurements, but
the accuracy was limited due to the parabolic approximation of the diffraction. Tanguay32

developed a model of shock wave propagation in a bubbly liquid mixture using an ensemble-
averaged, two-phase flow scheme. His results also compared well with experiments, but he
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used a wall boundary condition for the reflector. Zhou and Zhong33 developed an equivalent
reflector model coupled with the KZK equation to solve for the pressure field of their original
and upgraded reflectors (see Sec. V B and Sec. V C, respectively).

In this section, we develop a new model of SWL that can be used to determine the pressure
fields of different reflector designs. It is similar to the model developed by Tanguay,32 but
treats the reflection problem differently. We chose to develop our own code for convenience
and flexibility, and to allow for comparisons of different designs using the same code. The
model described below is very simple (yet powerful) and easily implemented by many
numerical solvers to provide qualitatively accurate pressure fields that can be tested by
determining the cavitation potential of the field.

A. Model formulation
In our simplified model, we consider the shock propagation process to be isentropic and the
flow field to be homogeneous. The domain is taken to be axisymmetric to reduce the number
of space dimensions to two. With these approximations, the flow field is governed by the
axisymmetric Euler equations

(14)

where the variables vector q, flux vectors F(q) and G(q), and the geometric source vector S
(q) are defined as

(15)

Here, ρ(r,z,t) is the fluid density, u(r,z,t) is the axial velocity, v(r,z,t) is the radial velocity, and
p(r,z,t) is the pressure.

The fourth component of (14) is the balance of mechanical energy per unit volume (hereinafter
it will be simply referred to as the energy equation). It is found by taking the scalar product
between the velocity vector and the balance of linear momentum. However, this energy balance
lends no new information (i.e., the system is still open). It only introduces the total mechanical
energy per unit mass (e), defined as the sum of the kinetic energy per unit mass

 and the “strain” energy per unit mass: 

The system of equations (14) is closed by specifying the Tait equation of state (EOS). The Tait
EOS is the isentropic (p, ρ)-relationship for water, and if rearranged as

(16)
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it has the same form as the equation of state for an ideal gas; i.e., p/ργ=const. Here, γ≡cp/cv is
the specific heat ratio, and cp and cv are the specific heats at constant pressure and volume,
respectively. Thus, if p in (15) is replaced by pTait, our governing equations look formally like
those of an ideal gas, because (14) is invariant to pressure translations. Note that although the
energy equation is not invariant to pressure translations by itself, it is a direct consequence of
the momentum equation, so invariance is already assumed in its derivation. In (16), B and n
are experimentally determined constants and ρ0 is the density at atmospheric pressure. The
Tait EOS is valid for pressures up to 105 atm with B = 3000 atm and n= 7.34 With p=pTait,
ε=p/ [ρ(n−1)].

It is critical to note that the isentropic assumption breaks down when shocks are present due
to irreversible processes within the shock. However, the normalized entropy jump for a weak
shock is proportional to the cube of the normalized pressure jump, [p] / (ρc2), where c is the
sound speed. For water, ρc2=2200 MPa and in SWL, [p]<100 MPa. Thus, the isentropic
assumption is a good approximation.

B. Numerical implementation
The system of equations in (14) along with (16) is solved numerically using CLAWPACK

(Conservation LAWs PACKage).35 CLAWPACK is a collection of FORTRAN subroutines that solves
time-dependent hyperbolic systems based on the method of characteristics. The package is
capable of solving nonlinear, nonconservative systems with source terms. The source code
solves the Reimann problem between adjacent nodes in a finite volume mesh using a first-
order Godunov scheme with second-order corrections. This determines the waves that
propagate through the domain. Limiter functions are used to modify the second-order
corrections to these waves. The code is stable for Courant-Friedrichs-Lewy numbers CFL≡max
{cΔt /Δx}<1, where c is the wave speed, Δt is the time step, Δx is the grid size, and the max is
taken over all coordinate directions.

In this work we use the message-passing interface (MPI) version of the two-dimensional (2D)
Euler package with a source term for the cylindrical geometry. It solves the conservation of
mass, momentum, and mechanical energy for an ideal gas using the MPI parallelization
scheme. The source terms are handled with a Godunov (fractional-step) splitting technique in
which the homogeneous problem is solved first and the inhomogeneous next. A “monotonized
centered” limiter is used to resolve the shock waves. This scheme has been shown to be able
to resolve the interaction of four shock waves and a shock wave hitting a bubble exceptionally
well.35

The computational domain in our work is a rectangular grid in the axisymmetric domain; for
an example, see Fig. 5. The left, top, and right boundaries are ordinary outflow boundaries,
while the bottom boundary is a reflective boundary because it serves as the axis of symmetry
for the cylindrical domain. To ensure that the boundaries of the computation domain do not
affect the numerical solution, the computational domain is taken to be large enough such that
it contains the LSW at all times.

C. Initiation of the direct wave
The direct wave is generated by a source-like boundary condition at F1. The source is
established by specifying the total mechanical energy per unit volume (ρe) of a ball of grid
points surrounding F1. The idea arose by recognizing that our mechanical energy equation is
equivalent to a thermodynamic energy equation for an ideal gas. To see this we define the total
thermodynamic energy per unit mass (eth) as the sum of the internal energy per unit mass
(eint) and kinetic energy per unit mass. For an isentropic process, eint is governed by deint=
−p dv, and for an ideal gas this yields eint = p/[ρ(n−1)]. Therefore, eth is equivalent to e, and
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specifying the mechanical energy is equivalent to specifying the thermodynamic energy. Thus,
our source creates the direct wave by introducing the heat energy produced by the spark
discharge at F1.

By using different source functions, we are able to create LSWs of varying magnitudes and
thicknesses in order to match experimental results for different spark discharges. Such
estimation is necessary because modeling the spark discharge directly is outside the scope of
this work. Furthermore, waves generated from different spark discharges can vary dramatically
from shot to shot. A typical initial pulse, similar to the triangular waves used in previous SWL
studies,30–32 is shown in Fig. 6 along with the experimental measurements made with a fiber
optic hydrophone. The experimental procedure is described in Sec. V C.

D. Reflector
Unlike other SWL simulations32 in which a reflector is modeled as a rigid boundary aligned
with a computational grid, in this work the reflector and any “insert” is approximated as an
interface between two different regions within the computational domain (see Fig. 5). The
interface is defined by a surface such that grid cells lying within the surface are in the reflector
domain while cells outside are in the fluid domain. Grid cells cut by the surface are given
properties of both domains, weighted by the volume of each domain contained by the grid cell.
We note that a quadrilateral grid can be used instead of a rectangular mesh to place the reflector
along a grid line. However, this approach is not taken because a rectangular mesh is accurate
enough to show how the cavitation potential can be used to characterize lithotripters.

To simplify the problem, we model the solid reflector domain as a liquid with the same EOS
(but different properties) as the fluid domain (see Fig. 7). By doing so, the entire computational
domain is governed by the same set of equations and eliminates the need of coupling regions
together where different equations (e.g., the Euler equations coupled with the nonlinear
elastodynamics equations) are solved. The reflection problem is then treated by setting the
properties of the reflector domain such that the reflection coefficient between the liquid-liquid
computational interface matches analytical results for the reflection coefficient of an actual
reflector (liquid-solid interface).

We argue that it is not necessary to solve physically accurate equations of motion within the
reflector because only the reflected wave is of interest; the waves in the reflector do not directly
affect the solution in the liquid. Of course, if the waves in the reflector are subsequently re-
reflected from a back side and retransmitted into the liquid domain, there is an effect on the
solution. However, this is accompanied by a time delay of sufficient length so as to render the
alteration of the pressure field unimportant for the present purposes.

In the analysis that follows, we first consider the liquid-solid reflection problem to determine
the reflection coefficient of the lithotripter reflector, on the liquid side. We then consider the
liquid-liquid reflection within the computational domain to determine the properties of the
reflector domain to achieve this same reflection coefficient. In both sections, only the main
results are shown; interested readers should consult Refs. 37 and 38 for details.

The reflection coefficient for a plane wave incident from a liquid hitting a liquid-solid interface
is given in Chap. 1.4 of Brekhovskikh37 and is outlined here for convenience. In general, the
velocity at any point in a solid can be expressed through a scalar and a vector potential. In
planar problems, this is reduced to two scalar potentials, ϕ and ψ, for the longitudinal and
transverse waves, respectively. These potentials satisfy separate wave equations with different
wave speeds given in terms of the density of the material and the Lamé constants λ and µ. For
liquids, we take ψ and µ to be zero because liquids can only support longitudinal waves. The
interface conditions are that the normal stress and displacement must be continuous and the
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tangential stress must vanish because liquids cannot support shear. To solve the system of
equations, harmonic wave solutions are assumed for the potentials, and the amplitudes and
wave numbers are determined.

Figure 8 shows the reflection coefficient for a brass-water interface.We see that unlike the case
for a liquid-liquid interface in which the modulus is a monotonically decreasing function of
θi [see (17) below], the modulus for a liquid-solid interface has interesting features due to the
wave dynamics in the solid. For θ i <0.37 both longitudinal and transverse waves are excited
in the solid, and for 0.37< θi <0.78 only the transverse wave is excited while the longitudinal
wave “glides” along the surface. For θi >0.78 perfect internal reflection occurs. Note that our
scheme does not determine the dynamics of these waves, but captures their effects through
changes in the reflection coefficient.

Now that we have the reflection coefficient for the actual solid/liquid interface, we move to
the analysis of the reflection/transmission for a wave at oblique incidence hitting a liquid/liquid
interface in the computational domain. This is given in Chap. 5.B.1 of Blackstock,38 so we just
cite the result. The reflection coefficient (Eq. B-9a of Blackstock38) is given by

(17)

where p− and p+ are the strengths of the incident and reflected waves, respectively, Zj= ρjcj is
the impedance of the jth medium, θi is the angle of incidence, and θ t is the angle of transmission.

The sound speed  and the angles of incidence and transmission are related by
Snell’s law (c1 sin θt =c2 sin θi). Here, and throughout the rest of the paper, “1” refers to the
working medium and “2” to the reflector.

From (17) we see that the reflection coefficient is only a function of the pressure ratio p2/p1,
the density ratio ρ2/ρ1, and the angle of incidence θi. Thus, we are free to vary any or all of
these parameters to change the reflection coefficient in our computational domain. In our
scheme, we choose to vary only the density ratio because a pressure jump induces motion and
the angle of incidence is fixed by the geometry of the lithotripter. Thus, the reflector is simply
modeled as a density jump across a prescribed boundary. The density ratio ρ2/ρ1 is calculated
using (17) for a given interface and geometry. We note that this scheme is similar to the
impedance mismatch method36 developed to study acoustic scattering.

The initial density of the reflector is set as follows: The reflection coefficient for the materials
of interest is calculated as in Fig. 8. The density ratio in (17) that gives the same reflection
coefficient pointwise is assigned to the interface (reflector). The interior grid points are given
the same density ratio as the grid point along the surface with the same axial position. If the
density ratio is almost infinite (i.e., R ≈ 1), a cutoff reflection coefficient is applied such that
the code is stable with regard to the density ratio changing as a function of time due to numerical
dissipation.

Note that we only set the initial density of the reflector and allow it to evolve according to the
equations of motion. Thus, the density jump, and consequently the reflection coefficient, of
the reflector changes with time. However, we now show that the change is negligible. From
Fig. 6, the LSW has a peak pressure of about 7 MPa at 1 cm away from F1. Therefore, the peak
pressure of the LSW at the reflector is at most 7 MPa. This is a change of 0.2% in the pressure.
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By (16), the density changes 0.029%. We now determine how these changes affect the accuracy
of our reflection coefficient. This is done by defining a modified reflection coefficient R̄and
comparing it to the original reflection coefficient. To maximize the error, we define R̄ by setting
p1 =0.998p1, p2=1.002p2, ρ1=0.999 71 ρ1, and ρ2=1.000 29 ρ2 in (17). Comparing the reflection
coefficients, we find that (R̄−R)/R ≤ 0.08% for the range of reflection coefficients in Fig. 8.

V. PRESSURE FIELD RESULTS
In this section, we show the results of the pressure fields calculated with our model. We first
present tests to validate our reflector-density scheme. We then compare the pressure fields
obtained with our model with previous numerical and experimental results for two lithotripter
designs to validate our model. The designs we consider are an ellipsoidal reflector and
ellipsoidal reflector with an insert.

A. Code validation
The principal validation for the numerical scheme is the following. Beginning with a numerical
waveform that closely approximates experimental measurements near F1, the scheme is able
to propagate forward the solution to yield a numerical waveform that closely approximates
experimental measurements near F2. However, we first examine the reflection technique in
some detail.

To assess the accuracy of our reflector scheme, we first present tests of shock reflection from
a planar interface at different angles of incidence. However, instead of the using the
axisymmetric Euler equations, we use the 2D Euler equations. This was done because planar
shock waves (as opposed to conic shock waves) eliminate the symmetry axis and the reflections
caused by it for a cleaner test. The 2D Euler equations have the same form as (14), but with S
(q) =0. In these tests, we compared the reflection from our “pseudo-solid” domain with the
standard rigid-boundary boundary condition from CLAWPACK.

The tests were initiated by placing a 20 MPa shock in front of a wall or reflection boundary.
The flow conditions ahead of and behind the shock were determined from the Rankine-
Hugoniot relations. The density of the pseudo-solid domain was calculated using (17) with
R=0.993.40 The computational grid had a mesh size dx=20 µm and a time step dt=10 ns was
used. The results of the test are shown in Fig. 9.

We regard this as a favorable test of the validity of the approach for the following reason. The
pseudo-solid interface conditions were developed based on linear theory, but the test is carried
out using nonlinear partial differential equations and including shocks. However, as we
mentioned, the most important validation is the correct propagation from F1 to F2, which we
describe below.

B. Original reflector
Next we simulated an ellipsoidal reflector with dimensions similar to that of a clinical Dornier
HM-3; for the setup geometry, see Fig. 5 of the present work or Fig. 1 from Zhou and Zhong.
15 The figures show the ellipsoidal reflector with an axisymmetric insert placed within the
bowl. Throughout the rest of the paper, we will refer to the ellipsoidal reflector without an
insert as the “original reflector” and the reflector with an insert as the “upgraded reflector.” In
this subsection we consider the original reflector. In addition, the nomenclature for reflector
parameters will follow the nomenclature used by Zhou and Zhong.15

The original reflector we simulated had a semimajor axis a=13.8 cm, semiminor axis b=7.75
cm, and exit plane distance d=12.4 cm. Here, the exit plane distance is defined as the distance
(along the semimajor axis) from the bottom of the reflector to the point where the reflector is
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truncated (the ellipse is not a complete hemi-ellipsoid). The working fluid (here and in all the
other tests) was water and had an initial density of ρ1=1000 kg/m3. The brass reflector had an
initial density calculated from the reflection coefficient given in Fig. 8. The analysis used the
following parameters: density of brass ρ2=8600 kg/m3, longitudinal wave speed in brass
c2=4073 m/s, transverse wave speed in brass b2 =2114 m/ s, and sound speed in water c1=1482
m/ s. As in Sec. V A, R≤0.993 was used for stability. The source function that produced the
direct wave in Fig. 6 was used to initiate the simulation.

The computational grid had a mesh size dx=39 µm and time step dt=10 ns was used. This
corresponded to a maximum Courant number CFLmax=0.4066 at t=196 µs. The simulation, as
well as the one for the upgraded reflector, were run on DataStar, the largest IBM terascale
machine at the San Diego Supercomputer Center (SDSC).41

To show that our scheme captures the correct propagation, we now turn to the pressure field
of the original reflector and compare it with numerical and experimental mea-surements. We
first start with a comparison with numerical results. In Fig. 10 we compare the pressure at
various points along the symmetry axis as calculated with the present model and the KZK
equation.31 As readily seen, the rarefaction tail calculated by our model and that calculated by
the KZK equation have approximately the same duration and peak pressure. This agreement
is exactly what we need in order to make objective conclusions based on the results of the
calculated rmax fields. However, the compression wave does not focus as sharply as when
modeled with the KZK equation. This can be attributed to the coarseness of the computational
domain. In order to resolve such fine structures, the grid would have had to be made finer.
However, that would have increased the computational time by a factor of 3, an increase not
warranted by our goals.

We note that perfect geometric focusing is not realized due to nonlinear wave interactions and
edge wave effects. The edge wave is a diffraction wave that emanates from the edge of the
lithotripter aperture. As time (or Δz2 in Fig. 10) increases the edge wave catches up to the LSW
and affects the LSW through the steepening and expansion of the lead-ing shock wave and the
rarefaction tail, respectively.

We now turn to a comparison with experimental data obtained by Cleveland et al.39 We first
show how well the present model simulates the propagation from F1 to F2 by comparing focal
waveform parameters that are commonly used and defined in literature. For completeness, the
definitions are outlined here: P±≡peak positive/negative pressure; tr≡rise time of the shock
front, measured from 10% to 90% of the peak positive pressure; t±≡positive/negative pulse
duration, measured by the zero crossing duration of the first positive/negative cycle of the
shock wave. Note that the source wave and lithotripter geometries in Cleveland et al.39 are not
known in detail. In the following comparison, typical experimental results (Anat-IU in Ref.
39) are listed in paren-theses. The peak pressures were P+=27.54 MPa (31.7 MPa) and P−=
−7.39 MPa (−10.9 MPa), the rise time was tr =107 ns (22 ns), and the pulse durations were
t+=0.85 µs (0.85 µs) and t−=5.99 µs (4 µs).

We now compare our pressure field results. Again we place the typical comparison results
(GALCIT in Ref. 39) in parentheses. From Fig. 11, the peak pressures on the symmetry axis
were P+=47.99 MPa (45 MPa) at Δz2=20.05 mm (10 mm) and P−=−8.25 MPa (−9 MPa) at
Δz2 =−18.99 mm (−20 mm). The −6 dB (peak positive) region, found by plotting the entire
peak pressure field (see Fig. 13), was approximately 37.9 mm (60 mm) long in the axial
direction along the symmetry axis and 9.6 mm (10 mm) wide in the transverse direction at
F2. The maximum dimensions for the −6 dB (peak positive) region were 43.7 mm in length
and 10.2 mm in width. Here the agreement is good with the biggest discrepancy in the length
of the −6 dB (peak positive) region.
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C. Upgraded reflector
Next we simulated an upgraded reflector modeled after the upgraded Dornier HM-3 developed
by Zhou and Zhong.15 This geometry generates two LSWs, the leading LSW from the insert
and the secondary LSW from the uncovered reflector bottom. The insert had a semimajor axis
a′=13.25 cm, semiminor axis b′=7.13 cm, and exit plane distance of d′=11.3 cm. The insert
shared the same first focus as the original reflector, but its second focus was 5 mm proximal
to that of the original reflector. The reflector had an initial density of ρ2=5580 ρ1. In this test,
the reflector density was taken to be constant because the exact reflection coefficient for the
insert was not known at the time.

In Fig. 12 we compare the simulation results with experimental measurements. The pressure
waveforms were measured using a fiber optic probe hydrophone (FOPH-500, RP Acoustics,
Leutenbach, Germany). The probe of the hydrophone, the tip of a 100 µm optical fiber, was
placed in-side a holder and attached to a three-dimensional position system (Velmex,
Bloomfield, NY) with a minimum step size of 5 µm and a maximum scanning range of 250
mm. The hydrophone was tilted at 14° so that the probe could be aligned parallel to the
lithotripter axis. A mechanical pointer was used to aid the alignment of the probe tip with F2.
A LabView program was used to control the scan of the probe in the lithotripter field with a
step size of 1 mm or larger. At each location, at least six pressure waveforms were recorded
using a digital oscilloscope (LeCroy 9314 M, Chestnut Ridge, NY) operated at 100 MHz
sampling rate and the data were subsequently transferred to a PC for offline analysis.

The comparison was made by shifting the numerical results in time such that the start of the
leading LSW was the same for both simulation and experiment. A translation in time was
needed for several reasons: (1) The experimental start time was when the spark was ignited
while the simulation start time was when the direct wave was already a distance r0 from F1
due to the size of the source (r0 /c0 =4 mm/1459 ms−1=2.74 µs); (2) bubbles from previous
shots were not fully dissolved before the arrival of the LSW and affected the propagation of
the LSW; and (3) the individual plots in Fig. 12 are for different runs and the variability of the
spark discharge affected the shape of the direct wave, and consequently, the waveforms near
F2.

A quantitative comparison of our results with those mea-sured by Zhou and Zhong33 is made
with experimental results in parentheses as before. The focal waveform (Δz2 =0 mm in Fig.
12) was in good agreement. The peak pres-sures were P+=64.04 MPa (56.19 MPa) and P− =
−6.32 MPa (−5.15 MPa), the rise time was tr=58 ns (16 ns), and the pulse durations were
t+=0.89 µs (0.97 µs) and t−=2.99 µs (2.16 µs).

We now compare our pressure field results as done for the original reflector. From Fig. 5 the
peak pressures on the symmetry axis were P+=64.67 MPa (51.9 MPa) at Δz2 =2.05 mm (0.0
mm) and P−=−7.75 MPa (−9.67 MPa) at Δz2=−17.59 mm (−15 mm). The −6 dB (peak positive)
region was approximately 36.3 mm (62.1 mm) long in the axial direction along the symmetry
axis and 2.7 mm (5.9 mm) wide in the transverse direction at F2. The maximum dimensions
for the −6 dB (peak positive) region were 36.3 mm in length and 2.9 mm in width.

VI. DISCUSSION
We now turn to the characterization of the two reflectors in this section. We first use the peak
pressure field to analyze the flow physics. We then calculate the rmax fields using the work
done on the bubbles to determine the effect reflector geometry has on the cavitation potential
of the lithotripters. Finally, we present conclusions.
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Figures 13(a) and 13(b) show the peak positive pressure field and Figs. 13(c) and 13(d) show
the peak negative pressure field produced by the two reflectors. The dark areas in the grayscale
denote high peak pressures (i.e., the most positive or negative pressures). The outline of the
−6 dB regions for the original and upgraded reflectors are marked to help visualize the
differences. To make an accurate comparison, the contours corresponding to the −6 dB
pressures of the original reflector are plotted for the upgraded reflector. That is, the 24.05 and
−4.13 MPa contours are shown for both reflectors. Note that the range of the axes are different
between the positive and negative plots in order to represent better the dynamics of the flow
field.

Several features of the field maps stand out. First, the focusing dynamics of the original reflector
can be seen. The LSW approaches conically toward F2 and reflects off the symmetry axis at a
smaller angle. Second, the −6 dB regions are larger for the negative case than the positive. This
is due to the fact that leading shock of the LSW steepened and focused while rarefaction tail
flattened out. Third, the field maps of the upgraded reflector contain distinct zones due to the
multiple center and edge waves produced by the insert. A consequence of this is that the volume
of strong negative pressure for the upgraded reflector is disconnected into three separate
regions. Finally, the regions of intense compression and tension are more compact at F2 for
the upgraded reflector. For example, the −6 dB volumes (with respect to peak positive pressure)
were 1.6 and 0.4 cm3, and the −26 dB volumes (with respect to peak negative pressure) were
14.5 and 8.3 cm3 for the original and upgraded reflectors, respectively. Note that although the
areas in Fig. 13 are similar, the corresponding volumes are vastly different when the plots are
rotated about the symmetry axis.

Next we make a comparison of the bubble dynamics associated with the pressure fields. Figure
14 shows the maximum radius fields produced by the original (a) and upgraded (b) reflectors.
The radii were found by first determining the radial dynamics corresponding to the pressure
fields with (7), then calculating the work done on the bubbles with (4), and finally determining
the maximum radii by (5). The dark areas in the grayscale denote large radii. As before, the
−6 dB contours are marked to help visualize the differences. Here we define the −6 dB radius
the same way the −6 dB pressure is defined. Thus, the contours are the 429 µm contours.

From the maximum radius field maps, it is seen that the original reflector has its “focus” at
Δz2=0. On the other hand, the upgraded reflector has two disconnected regions of high
cavitation potential. The two regions are separated by a thin region of very low cavitation
potential indicated by the white streak in the map. The streak, as well as the overall suppression
of bubble growth for the upgraded reflector, is caused by the secondary LSW.

Figure 15 shows a comparison of the maximum radii on the symmetry axis for the original
reflector calculated using pressure data from the present study and the KZK equation.31 Near
and on the distal side of F2, both models show good agreement. In that range the difference
between the two models is only a few percent. However, the models disagree by 10%–20% on
the proximal side of F2.

To provide even more qualitative validation for these bubble dynamics calculations, a simple
experiment was performed to image bubbles near F2. The images were taken with a resettable
CCD camera (Sony XC-ST50, Edmund Optics, Barrington, NH). A strobe backlight (1100
Series Lite- Pac, EG&G, Salem, MA) with a diffuser was used to illuminate the bubbles for
~1 µs during the bubble oscillation. The lithotripter spark registering on a photodetector was
used to trigger the camera and the strobe light via a delay generator (DG535, Stanford Research
Systems, Sunnyvale, CA). The instant of the spark discharge was used as the reference time
(t=0) for the shadowgraph images. An ultrasound transducer (V395, F=150 mm, Panametics,
Waltham, MA) was used as a passive cavitation detector (PCD) to mea-sure collapse time of
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the bubble field. The PCD signals were amplified and filtered with a Pulser/Receiver (PR5052,
Panametics) recorded by a digital oscilloscope (Wave Runner 6050A, LeCroy, Chestnut Ridge,
NY).

Figure 16 shows representative images of bubble fields near F2 for the original and upgraded
reflectors at half the collapse time Tc. In the experiments, the collapse time (counted from the
spark) was measured with the PCD (subtracting the propagation delay of the acoustic emission
signal) and found to be 620 and 540 µs for the original and upgraded reflectors, respectively.
This corresponded to collapse times of Tc=440 and 360 µs, respectively, because the LSW
included a delay time of 180 µs. Thus, the moments of maximum bubble expansion (as
measured by the PCD) were t=180 µs+Tc/2=400 µs and 360 µs. Figure 16 shows the bubble
clusters at t=400 and 360 µs. At those times, the maximum bubble diameters were 2.6 mm and
1.5 mm for the original and upgraded reflectors, respectively. In comparison, the maximum
bubble diameters calculated by our numerical scheme were 1.71 and 1.24 mm. The comparison
is better for the upgraded reflector case than the original reflector case.

However, a better comparison is to look at the whole field rather than individual bubbles. In
(a) large distinct bubbles can be seen throughout the frame, but in (b) distinct bubbles can only
be found along the symmetry axis. This result is consistent with Fig. 14 in which the focal
region is almost a constant black in (a), but varies greatly in (b). To facilitate the comparison,
the −6 dB curve from Fig. 14(b) is plotted in Fig. 16(b) in order to show that the numerically
obtained region of high cavitation captures all but a few of the large distinct bubbles seen in
the experiments.

Now that we have asserted that the LSW simulation and cavitation potential are reasonably
accurate, we turn to the implications of the results. From Fig. 14 we see that the use of an insert
reduced the maximum cavitation potential of the original reflector. This implies that the use
of an insert should decrease the propensity of vascular damage as well as the effectiveness of
the reflector to break stones into fine grains. In vitro tests15 of vessel and stone phantoms
confirm these statements. Those tests show that vessel phantoms can withstand over 200 shocks
from the upgraded reflector but only 30 shocks from the original reflector. In addition, the
upgraded reflector produced slightly larger stone fragments than the original.

Figure 14 also shows that the insert greatly reduced the extent of the high cavitation potential
region of the original reflector. By localizing the region of high cavitation potential, one is able
to maintain effective stone comminution while reducing collateral tissue damage, provided, of
course, that adequate targeting can be maintained. Quantitatively, the volumes enclosed by the
−6 dB contours for the original and upgraded reflectors were 102.8 and 25.8 cm3, respectively.
Thus, the insert was a promising start to localization, and its effects suggest the possibility of
optimizing the shape of the reflector.

In conclusion, a method to characterize shock wave lithotripters has been developed. The
method is based on the cavitation potential of bubbles and uses the maximum radius achieved
by a bubble as the key parameter that defines the potential damage a lithotripter could cause.
Using this method, we characterized two reflectors: an ellipsoidal reflector and the same
ellipsoidal reflector with an insert. The results showed that the use of an insert greatly reduced
the extent of high cavitation potential region of the ellipsoidal reflector without compromising
the magnitude of cavitation potential. In other words, the effect of the insert is primarily one
of localizing—rather than eliminating—the region of high cavitation potential.
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FIG. 1.
The radial dynamics of a bubble (dashed) subjected to a typical LSW (solid) is shown.
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FIG. 2.
Test showing the relationship between the work done on a bubble and the maximum radius
attained by the bubble (c). Various rarefaction shapes were tested (a) to yield the corresponding
bubble dynamics are shown in (b). Note that maximum radius is not a function of the
mechanical index (d) for the two families of rarefaction shapes shown in (a).
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FIG. 3.
Test showing the relationship between the work done on a bubble and the maximum radius
attained by the bubble in an elastic medium.
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FIG. 4.
The bubble radius calculated using the full (heavy) and simplified (light) RP equations are
compared. In (a) the driving pressures were of the form given by (3), and in (b) the pressures
were the pressures at F2 for the reflector shapes considered in Sec. V. Note that there are six
curves in (a) and four in (b).
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FIG. 5.
A schematic of the computational domain used by CLAWPACK. The computational grid is not drawn
to scale.
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FIG. 6.
The direct wave generated by our source (solid line) is compared with experimental
measurements (dotted) from a spark source.
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FIG. 7.
A schematic of the computational and actual reflector interface, and the waves set up upon
reflection. In the computational domain, the incident wave (IW) gives rise to a reflected wave
(RW) and transmitted longitudinal wave (TLW). In the actual domain, the IW gives rise to a
RW, TLW, and transmitted transverse wave (TTW).
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FIG. 8.
The reflection coefficient for a water-brass interface is shown (solid). The dotted line marks
R=1 for reference.
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FIG. 9.
A comparison of the reflection of a shock using a rigid-boundary boundary condition and our
pseudo-solid is shown for two angles of incidence: (a) 0° and (b) 30°. The shock was initially
10 and 8.8 mm in front of the wall for cases (a) and (b), respectively, and the pressures were
taken 2 mm in front of the wall.
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FIG. 10.
The pressure at various locations along the symmetry axis for an ellipsoidal reflector as
calculated with the present study (solid) and the KZK equation (Ref. 30) (dashed).
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FIG. 11.
Distribution of the peak pressures along the symmetry axis (a) and transverse axis at F2 (b)
generated by the original reflector (solid) and upgraded reflector (dashed). The curves with
positive/negative pressure values correspond to the peak positive/negative pressure for each
reflector design.
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FIG. 12.
Comparison of numerical results (solid line) with experimental data (dashed line) at
representative points in the vicinity of F2 for the upgraded reflector.
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FIG. 13.
A comparison of the peak pressures (MPa) is shown in grayscale. The contours of the −6 dB
regions P{with respect to the peak positive [(a) and (b)] and negative [(c) and (d)]} are outlined
for the original [(a) and (c)] and upgraded reflectors [(b) and (d)]. The −6 dB contours for the
upgraded reflector corresponds to the −6 dB pressures for the original reflector. The r-scale is
exaggerated and the z-range is different between the positive and negative plots for better
visualization of differences.
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FIG. 14.
A comparison of the maximum radius (µm) fields is shown in grayscale. The contours of the
−6 dB regions are outlined for the original (a) and upgraded reflectors (b). The −6 dB contours
for the upgraded reflector corresponds to the −6 dB radius for the original reflector. The r-scale
is exaggerated for better visualization of differences.
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FIG. 15.
A comparison of the maximum radii on the symmetry axis for the original reflector calculated
using pressure data from the present study and the KZK equation (Ref. 30) is shown.
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FIG. 16.
Bubble fields near the focus of the original (a) and upgraded (b) reflectors operating at 20 kV
are shown at t=400 µs (counted from the spark) and t=350 µs, respectively. The shock wave
comes from the right. Exposure time is ~1 µs. Frame width is 22 mm. The dotted line in (b) is
the −6 dB contour.
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