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OBJECTIVE—During hypoinsulinemia, when cardiac glucose
utilization is impaired, the heart rapidly adapts to using more
fatty acids. One means by which this is achieved is through
lipoprotein lipase (LPL). We determined the mechanisms by
which the heart regulates LPL after acute hypoinsulinemia.

RESEARCH DESIGN AND METHODS—We used two differ-
ent doses of streptozocin (55 [D-55] and 100 [D-100] mg/kg) to
induce moderate and severe hypoinsulinemia, respectively, in
rats. Isolated cardiomyocytes were also used for transfection or
silencing of protein kinase D (PKD) and caspase-3.

RESULTS—There was substantial increase in LPL in D-55
hearts, an effect that was absent in severely hypoinsulinemic
D-100 animals. Measurement of PKD, a key element involved in
increasing LPL, revealed that only D-100 hearts showed an
increase in proteolysis of PKD, an effect that required activation
of caspase-3 together with loss of 14-3-3�, a binding protein that
protects enzymes against degradation. In vitro, phosphomimetic
PKD colocalized with LPL in the trans-golgi. PKD, when mutated
to prevent its cleavage by caspase-3 and silencing of caspase-3,
was able to increase LPL activity. Using a caspase inhibitor
(Z-DEVD) in D-100 animals, we effectively lowered caspase-3
activity, prevented PKD cleavage, and increased LPL vesicle
formation and translocation to the vascular lumen. This increase
in cardiac luminal LPL was associated with a striking accumula-
tion of cardiac triglyceride in Z-DEVD–treated D-100 rats.

CONCLUSIONS—After severe hypoinsulinemia, activation of
caspase-3 can restrict LPL translocation to the vascular lumen.
When caspase-3 is inhibited, this compensatory response is lost,
leading to lipid accumulation in the heart. Diabetes 58:2464–

2475, 2009

C
ardiac muscle has a high demand for energy and
can use multiple substrates (1). Among these,
glucose (�30%) and fatty acid (�70%) are the
major sources from which the heart derives

most of its energy (2). Fatty acid delivery and utilization by
the heart involves 1) release from adipose tissue and
transport to the heart after complexing with albumin (3),
2) provision through the breakdown of endogenous car-
diac triglyceride (4), 3) internalization of whole lipopro-
teins (5), and 4) hydrolysis of circulating triglyceride-rich
lipoproteins to fatty acids by lipoprotein lipase (LPL)
positioned at the endothelial surface of the coronary
lumen (6). The molar concentration of fatty acids bound to
albumin is �10-fold less than that of fatty acids in lipopro-
tein triglycerides, (7) and LPL-mediated hydrolysis of
triglyceride-rich lipoproteins is suggested to be the princi-
pal source of fatty acids for cardiac utilization (8). Coro-
nary endothelial cells do not synthesize LPL (9). In the
heart, this enzyme is produced in cardiomyocytes and
subsequently secreted onto heparan sulfate proteoglycan
(HSPG) binding sites on the myocyte cell surface (10).
From here, LPL is transported onto comparable binding
sites on the luminal surface of endothelial cells (11). At the
lumen, LPL actively metabolizes the triglyceride core of
lipoproteins; the released fatty acids are then transported
into the heart.

The earliest change that occurs in the type 1 diabetic
heart is altered energy metabolism where in the presence
of lower glucose utilization, the heart switches to using
more fatty acids for energy supply (12). One means by
which this is possible is through an increase in LPL at the
coronary lumen. Using retrograde perfusion of the heart
with heparin to displace vascular LPL, we found elevated
LPL following diabetes (13–15). We determined that the
increased enzyme is 1) not the result of increased gene
expression (13), 2) unrelated to an increase in the number
of endothelial HSPG binding sites (13), 3) associated with
an acute reduction in insulin (within 60 min) (16), and 4)
functionally relevant and capable of hydrolyzing lipopro-
tein triglycerides (17). More recently, we examined the
contributions of the cardiomyocyte and endothelial cell in
enabling this increased enzyme at the vascular lumen.
Within the myocyte, LPL vesicle fission was regulated by
protein kinase D (PKD) (18), whereas recruitment of LPL
to the cardiomyocyte surface was controlled by stress
kinases like AMP-activated protein kinase (AMPK) (19)
and p38 mitogen-activated protein kinase (MAPK) that
allowed for provision of an actin network that facilitated
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LPL movement (20). Translocation of LPL from the cardi-
omyocyte surface to the apical side of endothelial cells is
then dependent on the ability of the endothelium to
release heparanase (21,22), which enables myocyte HSPG
cleavage and transfer of LPL toward the coronary lumen.

Selective �-cell death and an ensuing diabetic state can
be produced after a single intravenous dose of streptozo-
tocin (STZ) (23). In Wistar rats, a dose-dependent increase
in severity of diabetes is produced by 25–100 mg/kg STZ
(24). After injection of 55 mg/kg (D-55), stable hyperglyce-
mia develops within 24–48 h in concert with a �50%
reduction in plasma insulin (16,24). Although these ani-
mals were insulin deficient, they did not require insulin
supplementation for survival and did not develop ketoac-
idosis. In the absence of any changes in plasma fatty acids
and triglycerides, these animals demonstrated an increase
in coronary vascular LPL (13–15). Rats administered 100
mg/kg STZ (D-100) demonstrated intense �-cell necrosis,
loss of 98% pancreatic insulin stores, and severely reduced
plasma insulin (16). Compared to D-55 diabetic rats, these
D-100 animals show a remarkable elevation of plasma fatty
acids and triglycerides. Importantly, LPL activity de-
creases (14,25) in D-100 hearts, suggesting a potential
mechanism to restrain LPL-derived fatty acids when the
supply of this substrate from other reservoirs is in surplus.
The objective of the present study was to determine the
mechanisms by which the hypoinsulinemic heart limits its
LPL-derived fatty acids under conditions of hyperlipid-
emia. Our data demonstrate that caspase-3 activation, by
cleaving PKD, attempts to restrict the hydrolysis of circu-
lating triglyceride by LPL to limit fatty acid provision and
cardiac triglyceride overload. Thus, although caspase-3
inhibition could be protective in reducing cell death, its
augmentation of LPL may induce profound cardiac triglyc-
eride accumulation.

RESEARCH DESIGN AND METHODS

An expanded version of the RESEARCH DESIGN AND METHODS has been described
in the online appendix that is available at http://diabetes.diabetesjournals.org/
cgi/content/full/db09-0681/DC1. In this supplement, we have explained our
animal model of hypoinsulinemia, perfusion of isolated hearts, isolation of
cardiomyocytes, assay for LPL activity, adenoviral transfection of cardiac
cells, Western blotting, immunoprecipitation, immunofluorescence, measure-
ment of cardiac triglyceride, heart fractionation and estimation of lipid droplet
protein, electron microscopy, plasma membrane CD36 determination, palmi-
tate oxidation, and separation of golgi.

RESULTS

Severity of diabetes determines the magnitude of
LPL at the coronary lumen. By exploiting two different
doses of STZ, we induced moderate (55 mg/kg) and severe
(100 mg/kg) hypoinsulinemia. Although both groups were
equally hyperglycemic (Fig. 1A, inset), D-100 rats showed a
more profound loss of circulating insulin (Fig. 1A). During
hypoinsulinemia, excessive lipolysis and loss of adipose
tissue mass results in an increase in both plasma fatty
acids and triglycerides (24). Indeed, both plasma fatty
acids (Fig. 1B) and triglycerides (Fig. 1B, inset) levels
were elevated in D-100 animals. Interestingly, measure-
ment of these parameters in D-55 showed no significant
differences when compared to control subjects (Fig. 1B).
During hypoinsulinemia with its attendant loss of glucose
utilization, LPL activity increases at the vascular lumen
(13). Compared to control hearts, there was substantial
increase in heparin-releasable LPL activity in D-55 animals
(Fig. 1C), with most of the enzyme located at the vascular

lumen as shown using immunofluorescence (Fig. 1E).
Contrary to the results obtained with D-55 rats, heparin-
releasable LPL activity (Fig. 1C) and LPL immunofluores-
cence (Fig. 1E) in severely hypoinsulinemic D-100 animals
were unchanged when compared to control subjects. Both
hypoinsulinemic groups showed no significant change in
cardiac LPL gene expression (Fig. 1D).
Caspase-3 produces proteolysis of cardiac PKD. Re-
cently, we have reported that phosphorylation of PKD is a
key element to increase cardiac LPL after hyperglycemia
(D-55) by regulating fission of vesicles from golgi mem-
branes (18). In the present study, measurement of PKD
revealed that only D-100 hearts showed a decrease in
full-length PKD (Fig. 2A, inset), with a corresponding
robust increase in the cleaved form (Fig. 2A), that in-
creases its activity (26) but limits its golgi-binding capa-
bility (27). In U-937 leukemic monocyte lymphoma cells,
caspase-3 has been suggested to control PKD by cleaving
its cysteine-rich domain (26), which is necessary for
binding to trans-golgi (27). Measurement of caspase-3 in
D-100 rat hearts demonstrated an increase in its activity
(Fig. 2B). This increase was modest; PAC-1, a pro-
caspase-3 activator, increased caspase-3 activity twofold
higher than D-100. Transferase-mediated dUTP nick-end
labeling (TUNEL) and DAPI nuclear staining were used to
assess cell apoptosis. Hearts from D-100 animals exhibited a
higher number of apoptotic cells. However, the overall
percentage of these cells was very low (�0.01%) (data not
shown). Given the effect of caspase-3 to cleave PKD,
purified glutathione S-transferase (GST)-PKD was incu-
bated with active caspase-3 enzyme. As predicted, GST-
PKD was rapidly cleaved by caspase-3 (Fig. 2C).
Replicating this experiment using PKD isolated from con-
trol hearts also showed cleavage of PKD by caspase-3.
However, caspase-3 proteolysis of GST-PKD was faster
than its cleavage of isolated PKD from control hearts (Fig.
2D). Interestingly, although D-55 hearts also showed an
increase in caspase-3 activity (Fig. 2B), this was not
associated with cleaved PKD (Fig. 2A), suggesting that in
D-55 hearts some protein is preventing PKD cleavage.
Proteins 14–3-3 are binding proteins known to interact
with a number of enzymes protecting them against proteo-
lytic degradation (28), and diabetes is known to decrease
the gene and protein expression of 14–3-3� (29). Measure-
ment of 14–3-3� showed a decrease in its mRNA (Fig. 2E)
and protein (Fig. 2E, inset), only in D-100 hearts. In
addition, severe hypoinsulinemia also resulted in a de-
creased attachment of PKD to 14–3-3� (Fig. 2F). Silencing
of 14–3-3� in cardiomyocytes had no influence on PKD
expression (Fig. 2G, inset). Nevertheless, in these cells,
exposure to caspase-3 accelerated PKD cleavage (Fig.
2G, boxed inset). Our data suggest that both activation
of caspase-3 together with loss of 14-3-3� are required
for cleavage of PKD after severe hypoinsulinemia.
Manipulating PKD in isolated cardiomyocytes is
sufficient to regulate heparin-releasable LPL. In
cardiomyocytes, phosphomimetic (PKD-S744E/S748E) and
kinase-dead mutants of PKD were overexpressed by ad-
enoviral vectors to establish the relationship between PKD
and LPL. First, we validated successful transduction using
Western blotting (Fig. 3A). Both PKD-S744E/S748E and
kinase-dead mutants increased total PKD expression (Fig.
3A, inset); only the phosphomimetic mutant demonstrated
higher Ser916 phosphorylation, which is related to its
catalytic activity (30). The S744/S748 phosphorylation site
has been shown to have a critical role in recruiting PKD
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to the trans-golgi (27). Simply increasing the expression
of the phosphomimetic and kinase-dead mutants aug-
mented their association with the trans-golgi (supple-
mental Fig. IA). However, PKD-S744E/S748E also
increased the colocalization of LPL to the trans-golgi
(Fig. 3C), with a striking increase in heparin-releasable
LPL activity (Fig. 3B).

Using a different strategy, cardiomyocytes were trans-
fected with PKD-D378A point mutated to prevent caspase-3–
mediated proteolysis (26). Successful transfection of
PKD wild type and PKD-D378A is demonstrated in
supplemental Fig. 1B. Although PKD wild type and
PKD-D378A themselves elevated PKD phosphorylation
at Ser916, phosphorylation of Ser744/748 (supplemental
Fig. IB) and heparin-releasable LPL activity (supplemen-
tal Fig. IC) remained unchanged compared to enhanced
green fluorescent protein (EGFP). Bryostatin-1 is a potent
activator of PKD (31). Control cardiomyocytes treated

with bryostatin-1 increased phosphorylation (both S744/
S748 and Ser916) of PKD and heparin-releasable LPL
activity (Fig. 3D, inset). In wild-type and D378A cardi-
omyocytes, bryostatin-1 was not only capable of further
increasing Ser916 phosphorylation but also Ser744/748

phosphorylation (supplemental Fig. IB). In these myo-
cytes, bryostatin-1 also elicited a robust increase in
heparin-releasable LPL activity (supplemental Fig. IC).
Pretreating EGFP and wild-type cells with PAC-1 followed
by bryostatin-1 induced significant cleavage of PKD, an
effect that was not apparent in PKD-D378A cardiomyo-
cytes (Fig. 3D). More importantly, caspase-3 activation in
D378A did not decrease LPL activity as seen in EGFP and
wild type (Fig. 3E). It should be noted that in this
experiment, using nondiabetic myocytes 14-3-3� was un-
able to protect PKD from cleavage by PAC-1, which
elicited a more robust increase in caspase-3 compared to
D-100. Overall, these data suggest that LPL transport to the
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cell surface is dependent on PKD phosphorylation at
S744/S748 rather than PKD’s intrinsic activity and that
cleavage of PKD by caspase-3 is sufficient to prevent
PKD-mediated increase in LPL activity.
Silencing of caspase-3 prevents PKD proteolysis and
increases cardiac LPL activity. We used siRNA to
silence caspase-3 in isolated cardiomyocytes. We first
validated successful caspase-3 inhibition using Western
blotting (Fig. 4A, inset). In myocytes in which caspase-3
was silenced, PAC-1 was unable to increase caspase-3
activity (Fig. 4A) or to increase PKD cleavage (Fig. 4B).

Furthermore, in myocytes in which caspase-3 was si-
lenced, the PAC-1–induced decrease in LPL activity was
prevented (Fig. 4C).
Caspase-3 restricts PKD-mediated LPL vesicle forma-
tion. PKD, by associating with vesicle-associated mem-
brane protein (VAMP, one of v-SNAREs), is known to
trigger vesicular movement (32). To further elucidate the
interactions between caspase-3, PKD, and LPL, purified
golgi were incubated in the presence or absence of GST-
PKD and caspase-3 and vesicle formation determined
using antibodies against VAMP. As predicted, VAMP-asso-
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ciated vesicle formation significantly increased on incuba-
tion with GST-PKD; the GST-PKD–induced vesicles
contained high levels of LPL (Fig. 5A and B). These effects
of PKD on VAMP-associated vesicle formation and LPL
content were impeded by caspase-3 (Fig. 5A and B). We
applied a similar approach in vivo, using Z-DEVD to inhibit
caspase-3 in D-100 hearts. Interestingly, when the cytosolic
fraction from Z-DEVD–treated D-100 hearts was incubated
with isolated golgi, VAMP-associated vesicular formation
together with LPL vesicle content increased significantly
(Fig. 5C and D).
Inhibiting caspase-3 in D-100 rats increases LPL at
the vascular lumen. Given the strong relationship be-
tween caspase-3 and LPL, D-100 rats were treated with the
caspase-3 inhibitor Z-DEVD and LPL activity determined.
Z-DEVD was very effective in preventing caspase-3 cleav-
age and its subsequent activation (Fig. 6A). More impor-
tantly, this caspase-3 inhibitor prevented the cleavage of
PKD that is seen in D-100 hearts (Fig. 6B). This effect on
PKD in Z-DEVD–treated D-100 hearts increased the appear-
ance of LPL at the vascular lumen (Fig. 6D), in addition to
augmenting heparin-releasable LPL activity (Fig. 6C) to
levels observed in D-55 hearts. Z-DEVD had no influence on
total LPL expression, which remained �20% lower than
that in control subjects (Fig. 6E). In addition, Z-DEVD had
no further influence in increasing vascular LPL in D-55

hearts (data not shown). In summary, activation of
caspase-3 in D-100 hearts restrains the transfer of LPL to
the coronary lumen by affecting proteolysis of PKD.
Caspase-3 inhibition in D-100 promotes excessive

cardiac triglyceride accumulation. Interestingly, the
augmented amount of LPL in Z-DEVD–treated D-100 rats
corresponded to an increased clearance of circulating
triglyceride (Fig. 7A), without affecting plasma fatty acids
(Fig. 7B). In these animals, unlike the drop in plasma
triglyceride, there was a striking accumulation of cardiac
triglyceride, which was almost twofold higher than that in
the untreated D-100 animals (Fig. 7C and D). Sucrose
fractionation and subjection of the different fractions to
Western blotting for OXPAT or determination of triglyc-
eride revealed that in D-100, the fractions (top) that had
highest amount of triglycerides were associated with
OXPAT (supplemental Fig. 2); caspase inhibition in
D-100 induced a further increase of OXPAT in these
fractions (supplemental Fig. 2). Hearts from D-100 ani-
mals demonstrated an approximately twofold increase
in CD36 protein (Fig. 7E). Treatment of these animals
with Z-DEVD did not initiate a further increase in
plasma membrane CD36 (Fig. 7E). Cardiac palmitate
oxidation in D-100 rats treated and untreated with
Z-DEVD remained high (Fig. 7F).

0

1100

2200

3300

 C
ar

di
om

yo
cy

te
 L

PL
 a

ct
iv

ity
(n

m
ol

/h
r/1

06  c
el

ls
)

Basal
HR-LPL

 WB : FL-Casp3

WB : β-Actin

0.0

1.2

2.4

3.6

C
as

p3
 A

ct
iv

ity
 

(μ
M

 A
M

C
 / 

m
g 

pr
ot

ei
n)

Con

A

C

WB : FL-PKD

0.0

1.1

2.2

3.3

C
L-

PK
D

 (A
U

)

B

WB : CL-PKD

 WB : CL-Casp3

Bry
PAC-1

Casp3
siRNA

Casp3
siRNA

Casp3
siRNA

Casp3
siRNA

Scr
siRNA

Casp3
siRNA

HR-LPL 
+ PAC-1

+
+

* * *

#

− + +
− − +

− + +
− − +

Bry
PAC-1

− + +
− − +

− + +

Bry − + + − + +

− − +

Bry
PAC-1

− + +
− − +

− + +
− − +

WB : Casp3

WB : β-Actin

FIG. 4. Impeding PKD proteolysis by silencing caspase-3 substantially increases cardiac LPL activity. Plated myocytes were exposed to the
caspase-3 siRNA (or scrambled, Scr). The inset (A) depicts transfection efficiency. After transfection of caspase-3 siRNA, cells were treated with
or without PAC-1 (10 �mol/l for 30 min), lysed, and subjected to Western blot for evaluating full-length (FL) and cleaved (CL) caspase-3 and PKD
(A and B). Caspase-3 activity was measured using a fluorometric assay kit (A). In these cells, LPL activity was determined by adding heparin to
the incubation medium and the release of surface-bound LPL activity into the medium determined (C). Bryostatin-1 (Bry, 1 nmol/l for 30 min)
was used to activate PKD. Results are the means � SE of 3–5 cardiomyocyte preparations from different animals. *Significantly different from
control subjects; �significantly different from all other groups; #significantly different from heparin releasable, P < 0.05. AU, arbitrary unit;
Casp3, caspase-3; WB, Western blot.

M.S. KIM AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 58, NOVEMBER 2009 2469



DISCUSSION

During diabetes, when cardiac glucose uptake, glycolysis,
and pyruvate oxidation are impaired, the heart rapidly
adapts to using a greater amount of fatty acids for ATP
generation, allowing it to maintain its function (33). This
change occurs not only as a consequence of increased
exogenous fatty acids (because of release of fatty acids
from adipose tissue and hydrolysis of triglyceride-rich
lipoproteins by LPL) and endogenous fatty acids (hor-
mone-sensitive lipase hydrolysis of intracellular stored
triglycerides) supply but also through an intrinsic adapta-
tion or maladaptation to elevated fatty acids that includes
an augmented fatty acid oxidation and expression of genes
that control utilization of this substrate (33). To avoid
oversupply of this potentially lethal substrate, the heart
can exquisitely regulate its LPL content at the vascular
lumen. Thus, following moderate acute STZ diabetes (that
resembles a poorly controlled type 1 diabetes patient),
when circulating fatty acids and triglycerides have yet to
increase, significantly elevated luminal LPL protein and
activity is observed (14). Given that vascular endothelial
LPL is acquired from the cardiomyocyte, we previously

examined the mechanisms by which diabetes increases
cardiomyocyte cell surface LPL, a reservoir that can
rapidly augment coronary luminal LPL when the need for
fatty acids is intensified. In the myocyte, we reported that
recruitment of LPL to the cell surface was controlled by
PKD (that regulated LPL vesicle fission) (18), whereas
stress kinases like AMPK and p38 MAPK allowed for actin
cytoskeleton polymerization, providing the cardiomyocyte
with an infrastructure to facilitate LPL movement (20). In
the present study, our data demonstrate that after severe
hypoinsulinemia (with its attendant elevation of plasma
fatty acids and triglycerides), caspase-3 activation, by
cleaving PKD, restricts amplification of LPL, thereby lim-
iting fatty acid provision and overwhelming cardiac tri-
glyceride accumulation.

The cytosolic serine-threonine kinase, PKC-�, also
known as PKD, regulates vesicular fission from the trans-
golgi network, allowing cargo proteins to be delivered to
the plasma membrane (27). Within PKD, a cysteine-rich
domain has been shown to have a critical role in recruiting
and binding PKD to the trans-golgi (27). We have recently
reported that PKD is a key modulator of LPL vesicular
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trafficking within cardiomyocytes and is related not only to
binding of PKD to the golgi (18) but also to phosphory-
lation of Ser744/748 in its catalytic domain. In D-55 animals,
PKD phosphorylation was strongly correlated to an in-
crease in LPL on the luminal surface of the capillary
endothelium. Given the observation that in hearts from
D-100 animals LPL activity remained unchanged after 4

days or decreased after 1 week (14,25), we hypothesized
that a signal deficiency for LPL translocation exists
within these hearts. Interestingly, measurement of PKD
revealed that only D-100 hearts showed a decrease in
full-length PKD, with a corresponding robust increase in
the cleaved form. Our data suggest that following severe
hypoinsulinemia, proteolysis of PKD may be an impor-
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tant event to limit an increase in LPL activity at the
vascular lumen.

In U-937 cells, caspase-3 has been suggested to control
PKD by cleaving its cysteine-rich domain (26). Given the
relationship between caspase-3 and PKD, we measured
caspase-3 and determined that both D-55 and D-100 hearts
demonstrated an increase in its activity, likely mediated by
reactive oxygen species (34). It should be noted that the
observed increase of caspase-3 in these hearts did not
reach the upper limit seen with PAC-1, the caspase-3
activator that induces apoptosis (programmed cell death).
Thus, although caspase-3 plays a key role in apoptosis (35)
in the acute hypoinsulinemic heart, caspase-3 may also
have a nonapoptotic function. Other studies have also
suggested that caspase-3 has a regulatory function in cell
proliferation, differentiation, and shaping (36). This sec-
ondary function of caspase-3 in D-100 hearts included
cleavage of PKD, an observation that was absent after
moderate hypoinsulinemia, even though these hearts showed

an increase in caspase-3 activity. Given that 1) measure-
ment of 14-3-3� showed a decrease in its mRNA and
protein only in D-100 hearts, 2) caspase-3’s proteolysis of
cardiac PKD was slower than its cleavage of GST-PKD,
and 3) silencing of 14-3-3� in cardiomyocyte accelerated
PKD cleavage on exposure of these cells to caspase-3, our
data suggest that this 14-3-3� binding protein protects PKD
against proteolytic degradation by caspase-3 in D-55. Using
control myocytes, we confirmed the relationship between
PKD, LPL, and caspase-3. Thus, the phosphomimetic PKD
colocalized with LPL in the trans-golgi, facilitating LPL
secretion to cardiomyocyte cell surface. In addition, PKD
mutated to prevent its cleavage by caspase-3 or silencing
of caspase-3 was able to increase LPL activity. Overall, our
data suggest that caspase-3, by cleaving PKD, limits LPL
vesicle formation and eventual increase of LPL at the
vascular lumen.

Z-DEVD-fmk is a potent, irreversible, and cell-permeable
inhibitor of caspase-3. Using this compound in D-100
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animals, we effectively lowered caspase-3 activity, pre-
vented PKD cleavage, and increased LPL vesicle formation
and translocation to the vascular lumen. This increase in
LPL at the vascular lumen occurred even though the total
LPL protein expression remained �20% lower than that in
control subjects. It should be noted that electron micros-
copy using immunogold labeling established that in the
heart, 78% of total LPL is present in cardiac myocytes,
3–6% in the interstitial space, and 18% at the coronary
endothelium (6). Thus, LPL at the vascular lumen is likely
more dependent on the signaling that promotes transfer of
this enzyme from the cardiomyocyte to the coronary
lumen rather than its absolute cardiomyocyte content.

Cardiac LPL is a major determinant of plasma triglycer-
ide (37). Thus, the increase in cardiac luminal LPL in
Z-DEVD–treated D-100 animals could explain the decline in
circulating triglyceride. Whether other tissue LPL contrib-
utes toward this observed fall in plasma triglyceride is
unknown because heparin perfusion to release vascular-
bound LPL is difficult to accomplish in other tissues. As no
apparent change was noted in plasma fatty acid levels in
these animals, our data suggest that following LPL-medi-
ated triglyceride hydrolysis, fatty acids can be taken
rapidly and directly into tissues. In support of this sugges-
tion, cardiac- and skeletal muscle–specific overexpression
of LPL decreased plasma triglyceride and elevated triglyc-
eride storage in muscle tissue but was without effect when

plasma fatty acid was measured (38). In the event of an
increased availability of fatty acid, its disposal can occur
either via oxidation or via its conversion into triglyceride,
which serves as the primary storage form of fatty acids.
Caspase-3 inhibition did not alter the high fatty acid
uptake and oxidation in D-100 rats. However, measure-
ment and visualization of cardiac triglyceride revealed a
striking accumulation in Z-DEVD–treated D-100 hearts,
which was almost twofold higher than that in the un-
treated D-100 animals. This triglyceride was richly associ-
ated with the lipid-storage droplet protein, OXPAT (39).
Overall, these data suggest that in D-100 hearts treated
with Z-DEVD, fatty acid uptake and oxidation are likely
operating at their maximum capacity. The additional tri-
glyceride accumulation in this group is most likely a
consequence of an increase in LPL and vascular lipolysis,
with the released fatty acids rapidly taken up and stored as
triglycerides with the assistance of OXPAT. Other studies
have also reported excessive triglyceride overload when
LPL is specifically overexpressed in the heart (40). It
should be recognized that PKD has also been linked to
GLUT4-mediated glucose uptake in contracting myocytes
(41). However, as STZ diabetes rapidly decreases the
myocardial content of total membrane GLUT4 (t1/2 of 3.5
days) (42), the impact of PKD in regulating glucose uptake
is likely minimal under conditions of hypoinsulinemia and
hyperglycemia.
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In summary, severe hypoinsulinemia with its associated
increase in circulating fatty acids and triglycerides lowers
14-3-3� expression and activates caspase-3, which can
cleave PKD, reduce LPL vesicle fission, and restrict LPL
translocation to the vascular lumen (Fig. 7G). When
caspase-3 is inhibited, this compensatory response is lost,
leading to accumulation of triglycerides (Fig. 7G). It
should be noted that in transgenic rabbits that have
global overexpression of LPL, attenuation of hypertri-
glyceridemia was observed, an effect suggested to con-
tribute toward amelioration of insulin resistance and
obesity (43). Contrary to systemic overexpression, tissue-
specific overexpression of LPL in skeletal muscle and
heart is associated with lipid oversupply, insulin resis-
tance, and severe myopathy, characterized by muscle fiber
degeneration, extensive proliferation of mitochondria and
peroxisomes, excessive dilatation, and impaired left ven-
tricular systolic function (18,38,40,44,45). Interestingly,
drugs such as pioglitazone that are known to decrease
caspase-3 (46) have been reported to reduce circulating
triglycerides (47,48) by increasing LPL in humans (49) and
to increase the myocardial content of lipids in rats fed a
high-fat diet (50). Whether this effect can explain the risk
of heart failure when thiazolidenediones are used in
patients with type 2 diabetes has yet to be determined
(51,52). Thus, although caspase inhibition has been con-
sidered to have therapeutic effects in many human dis-
eases, including heart attack, neurodegenerative diseases,
and autoimmune disorders, its use in diabetes to prevent
cardiac cell death could lead to significant cardiac triglyc-
eride accumulation and warrants further investigation.
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