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OBJECTIVE—To examine the association between single nucle-
otide polymorphisms (SNPs) in the engulfment and cell motility 1
(ELMO1) gene, a locus previously shown to be associated with
diabetic nephropathy in two ethnically distinct type 2 diabetic
populations, and the risk of nephropathy in type 1 diabetes.

RESEARCH DESIGN AND METHODS—Genotypic data from a
genome-wide association scan (GWAS) of the Genetics of Kidneys
in Diabetes (GoKinD) study collection were analyzed for associa-
tions across the ELMO1 locus. In total, genetic associations were
assessed using 118 SNPs and 1,705 individuals of European ancestry
with type 1 diabetes (885 normoalbuminuric control subjects and
820 advanced diabetic nephropathy case subjects).

RESULTS—The strongest associations in ELMO1 occurred at
rs11769038 (odds ratio [OR] 1.24; P � 1.7 � 10�3) and rs1882080
(OR 1.23; P � 3.2 � 10�3) located in intron 16. Two additional
SNPs, located in introns 18 and 20, respectively, were also
associated with diabetic nephropathy. No evidence of associa-
tion for variants previously reported in type 2 diabetes was
observed in our collection.

CONCLUSIONS—Using GWAS data from the GoKinD collec-
tion, we comprehensively examined evidence of association
across the ELMO1 locus. Our investigation marks the third
report of associations in ELMO1 with diabetic nephropathy,
further establishing its role in the susceptibility of this disease.
There is evidence of allelic heterogeneity, contributed by the
diverse genetic backgrounds of the different ethnic groups ex-
amined. Further investigation of SNPs at this locus is necessary
to fully understand the commonality of these associations and
the mechanism(s) underlying their role in diabetic nephropathy.
Diabetes 58:2698–2702, 2009

D
iabetic nephropathy is a major late complica-
tion of diabetes that affects �30–40% of all
patients with either type 1 or type 2 diabetes
and continues to be the leading contributor to

end-stage renal disease (ESRD) in the U.S. (1–3). In both
type 1 and type 2 diabetes, diabetic nephropathy has been

shown to cluster in families (4–8). Despite its known
familial aggregation and intense effort to determine the
genetic components that underlie its risk, including both
candidate gene investigations and genome-wide linkage
scans, no major gene that contributes to its susceptibility
has yet been identified (9).

Variants in the engulfment and cell motility 1 (ELMO1)
gene, located on chromosome 7p, have previously been
shown to be associated with diabetic nephropathy in
Japanese patients with type 2 diabetes (10). Subsequent
functional studies demonstrated increased expression of
ELMO1 in the presence of high glucose. In support of a
potential role in the pathogenesis of diabetic nephropathy,
overexpression of ELMO1 inhibited cell adhesion while
promoting excess transcription growth factor-�, collagen
type 1, fibronectin, and integrin-linked kinase expression
(10,11). Linkage of ESRD in type 2 diabetes has been
shown with the 7p region in African Americans (12).
Strong support for linkage with variation in glomerular
filtration rate has also been reported at this same region in
Caucasians (13). Leak et al. (14) recently examined genetic
variants across ELMO1 in two large African American
cohorts with type 2 diabetes and ESRD, and, in support of
its potential role in the susceptibility of diabetic nephrop-
athy, variants in intron 13 were found to be associated
with disease.

We recently performed a genome-wide association scan
(GWAS) for diabetic nephropathy susceptibility genes in
type 1 diabetes and reported the identification of several
novel susceptibility loci from the initial analysis of these
data (15). In addition to uncovering associations at novel
loci across the genome, these data also allow for the
comprehensive examination of specific candidate disease
loci. In this report, we investigated the role of 118 varia-
tions in ELMO1 on the risk of diabetic nephropathy in
1,705 Caucasian patients with type 1 diabetes using geno-
typic data from this GWAS.

RESEARCH DESIGN AND METHODS

A detailed description of the Genetics of Kidneys in Diabetes (GoKinD) study
collection has been published previously (16). Briefly, subjects for the GoKinD
collection were recruited through two centers: the George Washington
University (GWU) Biostatistics Center and the Section of Genetics and
Epidemiology at the Joslin Diabetes Center (JDC). Subjects enrolled in
GoKinD by either recruitment center had type 1 diabetes diagnosed before age
31 years, began insulin treatment within 1 year of diagnosis, and were between
18 and 59 years of age at the time of enrollment. Case subjects with advanced
diabetic nephropathy had either persistent proteinuria, defined by a urinary
albumin-to-creatinine ratio (ACR) �300 �g/mg in two of the last three
measurements taken at least 1 month apart, or ESRD (dialysis or renal
transplant). Control subjects had type 1 diabetes for at least 15 years and
normoalbuminuria, defined by an ACR �20 �g/mg in two of the last three
measurements taken at least 1 month apart (if a third measurement was
required, a value �40 �g/mg was necessary for inclusion), without ever having
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been treated with ACE inhibitors or angiotensin receptor blockers and not
being treated with antihypertensive medication at the time of recruitment into
the study. A total of 1,705 individuals (885 control subjects and 820 advanced
diabetic nephropathy case subjects, including 284 with proteinuria and 536
with ESRD) of European ancestry (confirmed by population ancestry and
substructure analysis using EIGENSOFT; for further details see Pezzolesi et
al. [15]) were included in the current study (Table 1).
Genotyping and imputation. The GoKinD collection was genotyped on the
Affymetrix 5.0 500K SNP Array, a genotyping platform with estimated single-

and multimarker genomic coverage of 76 and 84%, respectively, by the Genetic
Association Information Network (GAIN) genotyping laboratory at the Eli and
Edythe L. Broad Institute (Cambridge, MA) (17). After internal quality control,
the GAIN genotyping laboratory released genotypes for 467,144 single nucle-
otide polymorphisms (SNPs). Details of the quality control criteria applied to
these data have been published previously (15). Briefly, the application of
quality control metrics for minor allele frequency (MAF) �0.01, rejection of
Hardy-Weinberg assumptions (P � 10�5), and differential rates of missing data
(by case/control subject status) resulted in high-quality genotypic data for
359,193 autosomal SNPs.

Genotypic data for all SNPs with a minor allele frequency �0.05 that
mapped to the ELMO1 locus, including 50 kb of flanking sequence (chromo-
some 7 position 36,810,486 to 37,505,036, in reference to NCBI Build 36.1),
were extracted from the GWAS data. Within this 694.5-kb region, a total of 106
genotyped SNPs were obtained. Because none of the SNPs previously
reported to be associated with diabetic nephropathy were genotyped on the
Affymetrix 5.0 platform, the genotypes for these SNPs were imputed using
MaCH (www.sph.umich.edu/csg/abecasis/MACH/) software. Three SNPs
(rs3807163, rs4723593, and rs1541727) were not genotyped in HapMap and,
therefore, were not able to be imputed in the GoKinD collection. In total, 118
SNPs (106 genotyped and 12 imputed) with an average intermarker distance of
5.9 kb were included in our association analysis.
Statistical analysis. Linkage disequilibrium (LD) blocks were defined using
the method of Gabriel et al. (18) as implemented in Haploview version 4.1 (19).
All SNPs were analyzed using stratified additive tests of association (adjusting
for both sex and JDC/GWU strata) using the Cochran-Mantel-Haenzel test
procedure to calculate combined P values and odds ratios (ORs). Associations
with diabetic nephropathy were also assessed under both dominant and
recessive genetic models. All statistical and haplotype analyses were per-
formed using PLINK (19).

RESULTS

Genotypic association with diabetic nephropathy for all 118
SNPs in ELMO1 under an additive genetic model is shown in
Fig. 1 (also see supplemental Table S1 in the online appendix,
availableathttp://diabetes.diabetesjournals.org/content/early/
2009/08/02/db09-0641/suppl/DC1). A total of eight SNPs
showed nominal evidence of association with diabetic ne-
phropathy (P � 0.05) among the 885 control and 820 case
subjects (Table 2). The strongest associations occurred at
rs11769038 (OR 1.24; P � 1.7 � 10�3) and rs1882080 (OR
1.23; P � 3.2 � 10�3). These two SNPs map to intron 16
(located �12.5 kb apart) and are in near-complete LD (r2 �
0.98). Two additional SNPs, rs2041801 (intron 18) and
rs7785934 (intron 20), were also associated with diabetic
nephropathy in the GoKinD samples (OR 1.22, P � 5.6 �

TABLE 1
Baseline clinical characteristics of the GoKinD collection

GoKinD collection

P

Control
subjects

Case
subjects

n 885 820
Men/women 363/522 423/397 �0.0001
Age at type 1 diabetes

diagnosis (years) 12.9 	 7.4 11.8 	 6.7 0.0008
Duration of type 1

diabetes (years)* 25.4 	 7.8 26.5 	 7.7 0.003
Age at examination

(years) 38.3 	 8.7 43.1 	 6.9 �0.0001
Laser treatment (%) 17 85 �0.0001
A1C (%)† 7.4 	 1.2 8.3 	 1.6 �0.0001
ACR (�g/mg)

Control subjects 6.5 	 3.7
Proteinuric subjects 1,520 	 1,478

Systolic blood
pressure (mmHg) 117.6 	 11.9 131.1 	 18.9 �0.0001

Diastolic blood
pressure (mmHg) 71.4 	 7.8 74.3 	 10.8 �0.0001

Case subjects with
proteinuria/ESRD — 284/536

ESRD duration (years) — 7.3 	 5.5
Kidney transplant (%)‡ — 92

Data are means 	SD unless otherwise indicated. *The duration of
type 1 diabetes in control and proteinuric subjects is based on the
duration at examination. Among ESRD case subjects, this is based on
the duration of type 1 diabetes at the onset of ESRD. All other clinical
characteristics are based on measurements performed at examina-
tion. †Mean A1C values do not include data from case subjects that
have undergone pancreas transplantation (32%). ‡Percentages are of
ESRD group.
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FIG. 1. Summary of association results for SNPs in the ELMO1 locus in the GoKinD collection. GWAS and imputed data for 118 SNPs across the
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10�3 and OR 1.22, P � 4.4 � 10�3, respectively). Although
rs2041801 is in tight LD with rs11769038 and rs1882080 (r2 �
0.97), LD among these three variants and rs7785934 is dimin-
ished (r2 � 0.60–0.62). The four associated SNPs localize to
three distinct LD blocks. Haplotype analysis of these three
blocks (using representative tagging SNPs) did not yield
more significant differences between case and control sub-
jects than our single SNP analysis (data not shown). Two-
SNP haplotype analysis of rs7785934 in combination with
either rs11769038 (P � 2.5 � 10�4) or rs1882080 (P � 3.7 �
10�4) yielded more significant differences between case and
control subjects than the single-SNP analysis of these
variants.

Because recent studies have suggested that the devel-
opment of proteinuria and its progression to ESRD may be
influenced by different genetic factors, we analyzed the
eight nominally significant ELMO1 SNPs for association
with prevalent proteinuria (n � 284) and ESRD (n � 536)
(Table 2) (20,21). Only SNP rs7785934 was found to be
primarily associated with ESRD (OR 1.33, P � 3.3 � 10�4

vs. OR 1.03, P � 0.77 in proteinuria). Additionally, analysis
of the two-SNP haplotypes formed by rs7785934 and either
rs11769038 or rs1882080 was more strongly associated
with ESRD than the individual SNPs (P � 1.3 � 10�5 and
P � 1.7 � 10�5, respectively), whereas no association of
these haplotypes was observed in patients with protein-
uria (P � 0.36 and P � 0.43, respectively). We also
examined the effects of this exposure on the SNPs (Table
2) by stratifying case and control subjects across tertiles of
diabetes duration (at the onset of ESRD or at enrollment
into GoKinD for proteinuric and control subjects) (22).
The strength of the associations was consistent across
these strata (data not shown). Finally, we investigated
whether differences in A1C levels between case and con-
trol subjects contributed to the associations at these SNPs.
No evidence of interaction was observed with this quanti-
tative trait (P � 0.18–0.98).

The ELMO1 variants previously shown to be associated
with diabetic nephropathy in type 2 diabetes were exam-
ined for evidence of association under additive, dominant,
and recessive genetic models (Table 3). Three variants
that had been reported to be associated with diabetic
nephropathy in Japanese case subjects with type 2 diabe-
tes (rs1558688, rs741301, and rs7799004) achieved nominal
significance in the GoKinD collection (P � 0.03); however,
the SNP genotypes had an opposite direction of genetic
effect in this collection and, thus, did not confirm the
previous associations (supplemental Table S2 in the online
appendix). The allele frequencies of these three variants in
both the GoKinD and CEU HapMap (www.hapmap.org)
populations are similar (data not shown).

DISCUSSION

Genetic variants in ELMO1 have recently been shown to
be associated with diabetic nephropathy in two indepen-
dent and ethnically distinct collections of patients with type
2 diabetes (10,14). In this report, we examined whether
variants in this same gene are associated with the risk of
diabetic nephropathy in patients with type 1 diabetes.
Through our comprehensive analysis of this locus, we extend
these previous findings by demonstrating that variants in
ELMO1 are also associated with the risk of diabetic nephrop-
athy in Caucasian type 1 diabetic patients.

We investigated the role of 118 SNPs in ELMO1,
including 12 SNPs previously reported to be associatedT
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with diabetic nephropathy in type 2 diabetes. Our
analysis identified associations at several intronic SNPs
(rs7785934, rs2041801, rs11769038, and rs1882080; P �
1.7 � 10�3 to 5.6 � 10�3). Although none of these SNPs
met stringent criteria for significance following adjustment
for multiple testing (P � 0.05/118 � 4.3 � 10�4), this
threshold was exceeded by one SNP (rs7785934) when our
analysis was limited to case subjects with ESRD. More-
over, the modest effect size of this variant (OR 1.33) is
consistent with those previously reported in two indepen-
dent African American ESRD populations (14), suggesting
a comparable effect in the two populations. Additionally,
the two-SNP haplotypes formed by rs7785934 and either
rs11769038 or rs1882080 were more strongly associated
with ESRD than these individual SNPs, suggesting that the
LD block containing these SNPs forms a larger haplotype
that either contains or is in tight LD with the causal
variant at this locus. Together, these data also suggest
that ELMO1 may have a role in the advanced stages of
diabetic nephropathy, perhaps contributing to renal func-
tion decline, rather than its initiation. We acknowledge,
however, that the GoKinD collection is heavily weighted
with case subjects with ESRD. The small number of case
subjects with proteinuria may have limited our ability to
detect ELMO1 variants that are primarily associated with
the risk of proteinuria. Despite this limitation, functional
studies have demonstrated that ELMO1 contributes to the
progression of chronic glomerular injury through its
dysregulation of extracellular matrix (ECM) metabo-
lism, resulting in renal ECM accumulation (11). This
accumulation contributes to both glomerular and tubular
basement membrane thickening, two well-established hall-
marks of advanced diabetic nephropathy (23).

Our investigation marks the third report of genetic
associations in ELMO1 with diabetic nephropathy, further
establishing its role in conferring increased susceptibility
to this disease. Previous reports (10,14) identified their
strongest associations at variants located more than 280
kb apart in introns 17 and 13. Although our strongest
associations are located near the associated SNP reported
by Shimazaki et al. (10), our most associated SNPs are

independent of those reported in this study. Furthermore,
no evidence of association for the variants reported in
either type 2 diabetic population was identified in our
collection. The associations at ELMO1 across each study
are consistent with allelic heterogeneity, likely contrib-
uted by the diverse ancestral genetic backgrounds of the
different ethnic groups. Examination of the associated
SNPs from each study in the available HapMap popula-
tions (www.hapmap.org) confirms the variable allele fre-
quencies of these variants among different ethnic and
racial groups (data not shown). We hypothesize that rare
polymorphisms in ELMO1, either the same variants or those
in strong or complete LD, may be common to each ethnic
group and merely tagged by the common variants identified
in each study. Further investigation of rare SNPs at the
ELMO1 locus is necessary to fully understand the common-
ality of these associations and to elucidate the mechanism(s)
underlying their role in diabetic nephropathy.

In summary, our study provides the first comprehensive
analysis of genetic variants at the ELMO1 locus in a
Caucasian population with diabetic nephropathy and type
1 diabetes. Our analysis identified several associations that
are independent of those previously identified in other
ethnic groups with diabetic nephropathy and type 2 dia-
betes; however, our examination of this locus in the
GoKinD collection further supports its potential role in
this disease. Confirmation of the associations identified in
our study in additional collections, including ethnically
diverse populations with either type 1 or type 2 diabetes, is
necessary to better understand the role of these variants,
and, perhaps, rare variants yet to be examined may
underlie the genetic susceptibility of diabetic nephropathy
attributed to this locus.
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TABLE 3
Summary of associations for SNPs reported by Shimazaki et al. and Leak et al. in the GoKinD collection

SNP Position Location
Risk allele

(nonrisk allele)
Genetic model

Additive Dominant Recessive

Shimazaki et al. (ref. 10): Japanese, type 2 diabetes, diabetic nephropathy*

rs7804092 36,859,757 3’ flanking region T(A) 0.38 0.56 0.20
rs1558688 36,881,710 Intron 19 C(T) 0.13 0.55 0.03
rs741301 36,884,520 Intron 18 T(C) 0.06 0.33 0.03
rs7799004 36,895,489 Intron 17 T(C) 0.02 0.06 0.05
rs11983698 36,915,072 Intron 16 T(C) 0.25 0.52 0.06
rs4723596 36,917,569 Intron 16 T(C) 0.51 0.81 0.17

Leak et al. (ref. 14): African American, type 2 diabetes, ESRD

rs1345365 37,167,138 Intron 13 G(A) 0.46 0.54 0.81
rs1981740 37,178,829 Intron 13 C(A) 0.97 0.98 0.89
rs10951509 37,180,008 Intron 13 G(A) 0.14 0.12 0.94
rs2058730 37,201,281 Intron 13 T(C) 0.94 0.54 0.32
rs2717972 37,270,120 Intron 5 A(G) 0.50 0.54 0.79
rs9969311 37,381,582 Intron 1 G(A) 0.62 0.97 0.05

SNP positions and locations are in reference to NCBI Build 36.1. *Three SNPs reported by Shimazaki et al. (ref. 10) (rs3807163, rs4723593,
and rs1541727) were not genotyped in HapMap and, therefore, were not imputed in the GoKinD collection.
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