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OBJECTIVE—Insulin and contraction each increase muscle
microvascular blood volume (MBV) and glucose uptake. Inhibit-
ing nitric oxide synthase blocks insulin’s but not contraction’s
effects. We examined whether contraction could augment the
MBV increase seen with physiologic hyperinsulinemia and
whether free fatty acid (FFA)-induced insulin resistance differ-
entially affects contraction- versus insulin-mediated increases
in MBV.

RESEARCH DESIGN AND METHODS—Rats were fasted
overnight. Plasma FFAs were increased by intralipid/heparin
infusion (3 h), insulin was increased with a euglycemic clamp (3
mU � min�1 � kg�1), and hindlimb muscle contraction was
electrically stimulated. Muscle MBV was measured using con-
trast-enhanced ultrasound. Insulin transport into muscle was
measured using 125I-insulin. BQ-123 (0.4 mg/h) was used to block
the endothelin-1 (ET-1) receptor A.

RESULTS—Superimposing contraction on physiologic hyperin-
sulinemia increased MBV within 10 min by 37 and 67% for 0.1 or
1 Hz, respectively (P � 0.01). FFA elevation alone did not affect
MBV, whereas 0.1 Hz stimulation doubled MBV (P � 0.05) and
increased muscle insulin uptake (P � 0.05) despite high FFA.
Physiologic hyperinsulinemia during FFA elevation paradoxi-
cally decreased MBV (P � 0.05). This MBV decrease was
reversed by either 0.1 Hz contraction or ET-1 receptor A antag-
onism, and the combination raised MBV above basal.

CONCLUSIONS—Contraction recruits microvasculature be-
yond that seen with physiologic hyperinsulinemia by a distinct
mechanism that is not blocked by FFA-induced vascular insulin
resistance. The paradoxical MBV decline seen with insulin plus
FFA may result from differential inhibition of insulin-stimulated
nitric oxide–dependent vasodilation relative to ET-1 vasocon-
striction. Our results implicate ET-1 as a potential mediator of
FFA-induced vascular insulin resistance. Diabetes 58:2457–
2463, 2009

I
nsulin delivery to muscle interstitium is reported to
be rate limiting for overall muscle insulin action
(1,2). Insulin promotes its own access to muscle
interstitium by increasing blood flow (3), by recruit-

ing microvasculature (4,5) to expand the endothelial trans-
porting surface available, and perhaps by also stimulating
its own endothelial transport (6). Insulin’s entry to muscle
interstitium is delayed in insulin-resistant states (7). This

implicates insulin’s vascular actions as a significant regu-
lator of overall insulin action in muscle.

Elevated plasma concentrations of free fatty acids
(FFAs), as occur with obesity and type 2 diabetes, increase
cellular lipid concentrations and are associated with insu-
lin resistance in skeletal muscle, liver, and fat (8,9).
Experimentally, increased dietary fat (10–12) or acute
infusion of a lipid emulsion induces insulin resistance
(13–16). Increased intramyocellular lipid content in the
context of obesity and type 2 diabetes could be one factor
that contributes to muscle insulin resistance. Postprandi-
ally or in response to a euglycemic-insulin clamp, plasma
(FFA) falls in insulin-sensitive individuals (17–19). This
response is impaired in states of insulin resistance
(8,17,19,20).

Insulin also increases muscle blood flow and recruits
microvasculature in both humans (21–24) and animals
(4,25–27); both processes are inhibited by nitric oxide
synthases (NOS) blockade (27). Raising plasma FFAs
initiates hemodynamic effects that include decreased com-
pliance, increased blood pressure and heart rate, and
increased vascular resistance (28–31). Raising plasma
(FFA) blunts insulin’s NOS-dependent effects to mediate
increases in both muscle microvascular blood volume
(MBV) and glucose uptake (14,32,33). Thus, FFAs exert
acute vascular as well as metabolic actions.

Insulin (34) and muscle contraction can each increase
MBV and total flow in skeletal muscle (35–37). In addition,
Wheatley et al. (38) observed that in the Zucker rat,
insulin-mediated increases in MBV are blunted, but con-
traction-induced increases in MBV persisted. This suggests
that exercise might recruit microvasculature via a mecha-
nism that is distinct from that of insulin. Supporting this,
we have recently shown that like insulin, brief low-
frequency isometric contraction of the rat hindlimb (0.1
Hz, 10 min) robustly increases MBV without any observed
increase in total femoral blood flow (FBF) and, unlike
insulin’s effect, this process is nitric oxide (NO)-indepen-
dent (39).

In this study, we addressed whether 1) low-frequency
contraction enhances muscle MBV and 3H-2-deoxyglucose
(3H-2-DG) uptake beyond the effect of physiologic hyper-
insulinemia; 2) lipid infusion differentially affects contrac-
tion- versus insulin-mediated increases in MBV; and 3)
lipid infusion blunts combined insulin- and contraction-
mediated effects on MBV.

RESEARCH DESIGN AND METHODS

Male Sprague-Dawley rats (225–300 g) were obtained from Charles River
Laboratories (Wilmington, MA), housed at 22 � 2°C with a 12:12-h light:dark
cycle, allowed free access to water and standard rat diet, but fasted overnight
before the study. The experimental protocols were approved by the Animal
Care and Use Committee of the University of Virginia.
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Surgical procedures. Animals were anesthetized with an intraperitoneal
injection of sodium pentobarbital (50–55 mg/kg body wt) and placed on a
surgical platform. Body temperature was maintained at 38°C with a heating
lamp and pad. Both jugular veins and the carotid artery were cannulated with
polyethylene tubing (PE-50) and used for intravenous infusions, arterial blood
sampling, and monitoring of mean arterial blood pressure. A tracheostomy
was performed to facilitate respiration. Animals were maintained under
anesthesia for the duration of the experiment by intravenous infusion of
aqueous sodium pentobarbital solution (0.6 mg � min�1 � kg�1) via the carotid
artery. For experiments in which total FBF was measured, the femoral vessels
in the right hindlimb were exposed as described previously (23,38) and an
ultrasound flow probe (VB series 0.5 mm; Transonic Systems) was positioned
over the femoral artery. The flow probe was interfaced through a flow meter
to a personal computer. FBF and arterial blood pressure were continuously
acquired using Windaq software (Dataq Instruments, Akron, OH). The animals
were allowed 30–45 min to stabilize after surgical procedures before begin-
ning experimental protocols.
Electrical stimulation. Two metal electrodes were placed in the adductor
tendons of the animal’s right hindlimb and the limb was secured in place. The
left hindlimb served as the sham control. Muscles were isometrically con-
tracted for 10 min (2 V, 0.5 ms) at a frequency given in each protocol (Grass
S88 Pulse Generator; Astro-Med, West Warwick, RI). We previously reported
that 0.1 Hz stimulation can increase in basal hindlimb MBV approximately
twofold (39) without an increased femoral artery flow.
Contrast-enhanced ultrasound. MBV was measured at the time points
indicated in the protocols described in Fig. 1. Where indicated, animals
received an infusion of phosphatidylcholine/polyethylene glycol stearate–
coated decafluorobutane-filled microbubbles manufactured at the University
of Virginia as reported previously (40). Microbubbles were diluted 1:3 in
deoxygenated saline and infused at a rate of 10–15 �l/min for 11 min.
Pulse-inversion ultrasound (HDI-5000, Philips Ultrasound) images of the
proximal adductor muscle group (adductor magnus and semimembranosus)
were obtained as previously described (5,27) during the last 6 min at the time
points specified in Fig. 1. Data were analyzed using a commercial software
package (Q-lab, Philips Ultrasound).

Experimental protocols. Rats were studied in each of six experimental
protocols (Fig. 1). 1) A 90-min euglycemic-insulin clamp was given as a primed
(6 mU � kg�1 � min�1 � 8 min) continuous (3 mU � kg�1 � min�1 � 82 min)
insulin infusion with a 30% glucose solution infused to maintain fasting
euglycemia. During the last 30 min of the insulin clamp, 3 � 10 min periods of
electrical stimulation (0.1, 1.0, and 2.0 Hz) were imposed. 2) Animals received
a 70-min euglycemic-insulin clamp (6 mU � kg�1 � min�1 � 8 min, then 3 mU
� kg�1 � min�1 � 62 min) with a 50-�Ci bolus of 3H-2DG (specific activity 48.0
Ci/mmol) given at 60 min followed by 0.1 Hz electrical stimulation of the right
leg for the last 10 min. 3) Animals were given a 3-h infusion of 10 ul/min of
intralipid/heparin (3.3% and 30 units/ml, respectively) together with a saline
infusion over the last 2 h (25 �l/min). 4) The same intralipid/heparin infusion
as in protocol 3 with a euglycemic-insulin clamp (see protocol 1) infusion over
the last 2 h was given. 5) The same infusion protocol as in protocol 4, with the
addition of a continuous infusion of the ET-1 receptor A (ETA), was given. ETA

receptor antagonist, BQ-123 (0.4 mg/h � 3 h) was given as reported previously
(41). 6) Intralipid/heparin � saline was given as in protocol 3 with 125I-insulin
given half-way through the electrical stimulation period. Total FBF was
measured in separate groups of rats (n � 3–5) receiving infusion protocols 3
through 5.
3H-2-DG uptake assay. Frozen muscles harvested from the stimulated and
contralateral leg at the end of protocol 2 (Fig. 1) were ground under liquid
nitrogen, and �100 mg of tissue was homogenized in 2 ml of deionized water
for 20 s on ice and spun for 10 min at 0°C (13,000 rpm). Free and
phosphorylated 3H-2-DG in �1.5 ml supernatant were separated using anion
exchange chromatography (AG1-X8 resin) as previously described (14).
3H-2-DG-P was counted in a liquid scintillation system, and from the total
counts in the supernatant and plasma-specific activity, muscle uptake was
calculated (micrograms of glucose per gram of weight tissue per minute).
Muscle 125I-insulin content. Low-frequency stimulation (0.1 Hz, 2 V, 0.5 ms)
began 10 min before the end of the experiment (protocol 6). Five min after
starting the electrical stimulation, the rats were given a 1.5 �Ci bolus of
125I-insulin. This mono-iodinated species binds to the insulin receptor similarly
to native insulin, and the tracer amount infused does not decrease systemic
glucose concentrations. Gastrocnemius, soleus, and gracilis muscles were
dissected from the stimulated and the control contralateral hindlimb. Protein-
bound 125iodine in blood and muscle samples was precipitated using 10%
trichloroacetic acid, and radioactivity was measured in a gamma counter and
expressed as disintegrations per minute per gram of dry tissue. This was
further normalized to plasma-specific activity.
Plasma insulin and ET-1 concentration. Blood samples were taken at the
time points indicated in each protocol (Fig. 1), quickly spun down, and plasma
was kept frozen (�80°C). The insulin concentration in plasma samples was
run in duplicate using a radioimmunoassay (LINCO Research, St. Charles, MI).
ET-1 concentration in samples was measured in duplicate using an enzyme-
linked immunoassay (ALPCO Diagnostics, Winham, NH).
Western detection of AMP-activated protein kinase phosphorylation.

Muscle samples were rapidly frozen and subsequently prepared for PAGE and
Western blotting as previously described (5). Proteins were transferred to
nitrocellulose membranes and detected using antibodies against AMP-
activated protein kinase (AMPK)-	 and p-AMPK	 (Thr172) according to
manufacturers’ protocols. Membranes were incubated with IgG-peroxidase–
linked secondary antibody for 60 min. Bands were detected via chemilumi-
nescence using enhanced chemiluminescence reagents and quantified by
ImageQuant 3.3 software.
Chemicals and reagents. Chemicals and reagents were as follows: intralipid
20% (Baxter Healthcare, Deerfield, IL); ETA antagonist BQ-123 (Alexis Bio-
chemicals, San Diego, CA); 3H-2-DG (Amersham Biosciences, U.K.); 125I-
insulin (Perkin Elmer, Waltham, MA); AG-1X8 anion exchange resin (Bio-Rad
Laboratories, Hercules, CA); AMPK antibodies (Cell Signaling Technology,
Beverly, MA); ECL reagents (Amersham Biosciences, U.K.).
Statistical analysis. Statistical calculations were performed using SigmaStat
software. Individual tests are described in the figure legends. Data are
presented as means � SE.

RESULTS

Contraction further increases MBV after insulin-
induced microvascular recruitment. In agreement with
previous studies (4,5), 60 min of insulin increased MBV by
�65% compared with baseline (Fig. 2). We previously
reported that doses of insulin above the 3 mU � min�1 �
kg�1 dose used here further enhanced MBV only minimally
(34). Isometric contraction for 10 min at 0.1 Hz signifi-
cantly (P � 0.05) increased MBV by an additional �37%
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FIG. 1. Lipid and insulin infusion protocols. Time points for micro-
bubble infusion and data acquisition are denoted by (*) for contrast-
enhanced ultrasound. Blood samples (20 �l) were taken at t � 0, 30, 60,
120, and 180 min.
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over 60 min of insulin alone. Stimulation at 1 or 2 Hz
further increased MBV. The increases seen at 1 and 2 Hz
cannot simply be attributed to the longer duration of
stimulation, as in separate experiments, we observed that
45 min of continuous stimulation at 0.1 Hz does not
increase MBV beyond that seen during the first 10 min of
stimulation (data not shown). We previously reported (39)
that contraction alone (in the absence infused insulin)
increased MBV by 131, 200, and 200% above basal at
frequencies of 0.1, 1.0, and 2.0 Hz, respectively. These
incremental increases above basal were similar to those
seen in the current study (100, 176, and 176% above basal
for these same frequencies in the setting of hyperinsulin-
emia, Fig. 2). These findings demonstrate that contraction
increases MBV beyond that observed at insulin concentra-
tions that are physiological and near-maximally effective
in recruiting the microvasculature (34).
Low-frequency contraction further enhances insulin-
stimulated 3H-2DG uptake in muscle. Study protocol 2
addressed whether very low-frequency (0.1 Hz) electrical
stimulation of brief (0.5 msec) duration, which would be
expected to minimally effect leg energy expenditure (but
effectively enhances MBV), affects muscle glucose disposal
during a euglycemic clamp. We first observed that in the
absence of a systemic insulin infusion, this brief contractile
stimulus did not affect basal muscle 2-deoxyglucose uptake
(2.7 � 0.3 vs. 2.0 � 0.2 �g glucose � g wt tissue�1 � min�1 for
0.1 Hz and control legs, respectively) (Fig. 3B). At the end of
the euglycemic-clamp muscle 2-deoxyglucose uptake was
significantly stimulated compared with saline controls, and
glucose uptake by the electrically stimulated leg exceeded
that in the control contralateral limb by �1.3-fold (Fig. 3B;
P � 0.05).

We also examined whether 0.1 Hz stimulation enhanced
muscle AMPK	 phosphorylation as this is often correlated
with exercise-stimulated glucose uptake and metabolism
in muscle. In rats receiving only a saline infusion, neither
10 min nor an extended 45 min of 0.1 Hz contraction
significantly increased AMPK	 phosphorylation as com-
pared with control (Fig. 3A). In contrast, as a positive

control, 10 min of high-frequency electrical stimulation at
8.0 Hz significantly increased AMPK	 phosphorylation.
FFAs do not affect basal or contraction-mediated
increases in MBV nor prevent contraction-mediated
125I-insulin uptake. We previously reported that total
FBF remains unchanged in response to 10 min of 0.1 Hz
contraction, whereas skeletal muscle insulin uptake is
modestly increased by this brief 0.1 Hz contractile stimu-
lus (39). In the present study, plasma FFA levels increased
�1.5-fold over baseline after 1 and 3 h, of the infusion
protocol (Table 1). With lipid infusion, total FBF trended
toward a slight increase after 3 h, but this was not
significant (Fig. 4B). When insulin was added to the FFA
infusion, FBF declined significantly. Presumably, this was
secondary to increased tone of resistance vessels in the
leg. Others had reported a paradoxic vasoconstriction
induced by insulin when FFAs were infused (42). Infusing
BQ 123 for 1 h before and throughout the insulin infusion
did not prevent this decline (Fig. 4B). In response to
intralipid/heparin alone, MBV remained unchanged after
either 1 or 3 h of infusion (Fig. 4A). However, MBV
increased �1.8-fold within 10 min of initiating 0.1 Hz
contraction (vs. 1 h and 3 h; P � 0.05). Here again, in the
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context of FFA-provoked insulin resistance, 0.1 Hz con-
traction still significantly promoted the delivery of 125I-
insulin to muscle as compared with the resting control
limb (Fig. 5). We had previously observed a similar effect
when saline was infused instead of FFA (39).
Contraction, but not insulin, increases MBV in the
presence of FFAs. Infusion of intralipid/heparin (proto-
col 3) decreased the glucose infusion rate required to
maintain euglycemia during the insulin clamp indicating
insulin resistance (Table 1). Interestingly, MBV did not
increase but declined slightly during the first 30 min after
the onset of insulin infusion and was significantly below
baseline after 2 h (Fig. 6; P � 0.05). This was paralleled by
a gradual and significant decrease in total FBF over the
last 60 min studied in a separate group of five animals (Fig.
4B; P � 0.05). At the end of the 3 h of intralipid/heparin
and 2 h of insulin, 0.1 Hz muscle contraction increased
MBV by more than threefold within 10 min, reaching levels
comparable to but not significantly above baseline.
ETA receptor antagonism prevents the effect of com-
bined lipid and insulin to decrease MBV. In addition to
stimulating NO production, insulin can enhance produc-
tion of the vasoconstrictor ET-1 via the ERK1/2 protein
kinase cascade. To address whether the unexpected MBV
decrease produced by combined intralipid/heparin and
insulin infusion might be caused by increased ET-1 pro-
duction, we measured plasma ET-1 concentrations at
baseline and at the end of protocol 4. The circulating ET-1
concentrations did not change during the infusion proto-
col (Table 1). As ET-1 is thought to act principally in a
paracrine fashion, we investigated this further by infusing
the ETA receptor antagonist BQ-123 (0.4 mg/h) (41) con-
comitantly with intralipid/heparin throughout the duration
of the experiment. In this protocol, MBV did not change
significantly during combined BQ-123, intralipid/heparin,
and insulin infusion (Fig. 7) (mean 14% rise, P � not
significant), unlike the 32% decline observed in MBV in
protocol 4 without BQ-123 present (Fig. 6). When the

change in MBV was compared between animals studied
using protocols 4 and 5, the MBV decline in protocol 4 was
of borderline (P � 0.07) significance. This pattern of MBV
response contrasts with the lack of effect of BQ 123 on the
insulin-induced decline in FBF (Fig. 4B) noted previously.
However, low frequency contraction at 0.1 Hz (10 min)
significantly increased MBV in the BQ-123, intralipid/hep-
arin, and insulin group.

DISCUSSION

In the present study, we confirmed that insulin alone
increased the skeletal muscle microvascular volume ac-
cessible to microbubbles significantly over basal values.
However, when compared with basal (preinsulin or con-
traction) the combination of insulin plus exercise had no
greater effect on MBV versus contraction alone at either
0.1, 1.0, or 2.0 Hz. Muscle contraction did increase MBV
above that seen with insulin alone. As the insulin infusion
rate used here exerts near-maximal effects on MBV, the
significant augmentation after contraction suggests that
contraction is a more potent stimulus to microvascular
recruitment. We had previously found that insulin recruits
microvasculature by a NO-dependent (27) and exercise by

TABLE 1
Physiological parameters

AVG

Weight 266 � 6
Fasting blood glucose (mmol/l) 5.3 � 0.1
GIR (mg � kg�1 � min�1)

Insulin only 9.5 � 0.8
Insulin � FFAs 3.5 � 0.7*
Insulin � FFAs � BQ-123 3.3 � 0.9*

Insulin (pmol)
Baseline 104 � 16
FFAs 1 h 294 � 63
FFAs 3 h 203 � 25
FFAs 3 h � 0.1 Hz 223 � 49
FFAs 1.5 h � insulin 30 min 543 � 188†
FFAs 3 h � insulin 2 h 1,029 � 205†

FFA (mM)
Baseline 0.62 � 0.06
FFAs 3 h 0.98 � 0.07‡
FFAs 3 h � insulin 2 h 1.13 � 0.11‡

ET-1 (fmol/ml)
Baseline 0.93 � 0.19
FFAs 3 h 0.76 � 0.12

Data are means � SE (n � 6, 9 per group). *P � 0.05 vs. insulin; †P �
0.05 vs. baseline; ‡P � 0.05 vs. baseline (one-way ANOVA). GIR,
glucose infusion rate.
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a NO-independent mechanism (39). The additional finding
that FFA elevation blocked insulin’s but not contraction’s
ability to recruit microvasculature further differentiates
these several mechanisms that regulate capillary
recruitment.

Low-frequency muscle contraction (0.1 Hz) also signifi-
cantly increased muscle 2-deoxyglucose uptake during
hyperinsulinemia but not when insulin concentrations
remained at postabsorptive levels. In addition, it did not
affect AMPK	 phosphorylation. Lack of any increase of
2-deoxyglucose uptake under conditions of basal insulin
underscores the very light workload from this contraction
stimulus protocol. It appears likely that the increased
muscle 2-deoxyglucose uptake during insulin infusion
(euglycemic clamp) plus muscle contraction could be

explained by the observed changes in MBV. Such changes
would increase endothelial surface available for insulin
delivery to muscle interstitium, which in turn may have
enhanced insulin’s action to stimulate muscle glucose
uptake. Indeed, we had previously reported that a 0.1 Hz
contraction significantly increased the muscle uptake of
iodinated insulin (39). In the current study, we observed
that FFA-provoked insulin resistance did not block the
effect of 0.1 Hz contraction to increase 125I-insulin delivery
to muscle. These findings raise the possibility that muscle
contraction–induced increases in MBV and enhanced in-
sulin delivery to muscle interstitium may be one of the
mechanisms by which exercise ameliorates insulin
resistance.

We also wanted to ascertain the effect of acute infusion
of intralipid/heparin on contraction- and insulin-mediated
increases on muscle MBV. Contraction appeared to in-
crease MBV normally during intralipid/heparin infusion
(Fig. 4). In contrast, infusing insulin with intralipid/
heparin paradoxically decreased MBV below baseline.
Adding low-frequency muscle contraction restored MBV
to baseline values but did not produce increases over
baseline as was seen when either insulin or FFA alone
were followed by electrical stimulation (Fig. 6).

Insulin stimulates the release of both ET-1 and NO by
endothelial cells. Inhibiting PI-3-kinase reduces NO-
mediated arteriolar dilation but enhances constriction by
ET-1 (42). Insulin-resistant individuals have higher fasting
ET-1 levels than healthy control subjects. Acute increases
in both plasma insulin and FFAs in normal subjects raises
plasma ET-1 to concentrations seen with insulin resistance
(43). Interestingly, it was recently shown that ETA recep-
tor antagonism in obese insulin-resistant individuals in-
creased skeletal muscle hemodynamic and metabolic
responses to insulin (44). We hypothesized that the bal-
ance between insulin’s effect to increase NO (vasodilation)
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FIG. 6. Effect of FFA microvascular responses to insulin and contrac-
tion. Intralipid/heparin (FFAs) and insulin were infused as described
in experimental protocol 4. In the presence of elevated FFAs, insulin
had a paradoxical effect to decrease MBV vs. baseline. Brief low-
frequency contraction (0.1 Hz, 10 min) restored MBV to baseline (n �
9). *P < 0.05 vs. all other treatment groups; one-way repeated-
measures ANOVA.
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groups; one-way repeated-measures ANOVA.
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and ET-1 (vasoconstriction) might be affected in the
context of elevated plasma FFAs.

We were not able to detect an effect of elevated plasma
FFA concentrations on plasma ET-1 concentration. How-
ever, antagonism of ETA receptors with BQ-123 prevented
the decline in MBV observed in response to combined
FFAs and insulin. This suggests that FFAs might enhance
insulin-mediated ET-1 release. Although BQ-123 prevented
MBV from decreasing in response to combined FFA ele-
vation and insulin, MBV did not rise above baseline values.
Adding a contraction stimulus further increased MBV.
Therefore, antagonism of ETA alone might not be expected
to fully restore the vascular response to insulin in the
presence of FFAs. Another possible mechanism that might
explain these results is that FFAs might facilitate conver-
sion of NO to reactive oxygen species as has been previ-
ously suggested (45,46), and in the context of elevated
plasma FFAs, insulin-mediated NO production might lead
to biologically unfavorable effects.

We conclude that in the absence of elevated plasma
FFAs, insulin and low-frequency muscle contraction can
each increase MBV. Muscle contraction stimulates muscle
insulin uptake, and this contributes to the enhancing effect
of contraction on glucose metabolism. Raising plasma
FFA concentration does not block the effect of contraction
to recruit microvasculature. However, raising FFA alters
endothelial function to provoke a paradoxical insulin-
mediated de- or recruitment of the microvasculature. The
effect of BQ123 to block MBV decreases, triggered by
combining hyperinsulinemia with elevated plasma FFA,
suggests a shift in a balance of insulin action on the
microvascular endothelium toward increased ET-1 pro-
duction and at least partly underlies this paradoxic vaso-
constrictor response. However, this does not exclude the
possibility that in the context of elevated plasma FFAs,
insulin signaling in the vascular endothelium might acti-
vate other hemodynamically unfavorable actions. The fact
that BQ123 did not also prevent the decline in leg blood
flow (Fig. 4B) may also suggest either other pathways by
which insulin may cause vasoconstriction or that resis-
tance vessels are not as sensitive to BQ123 and the
dosages used here. These findings extend our understand-
ing of the distinct mechanisms used by insulin and exer-
cise to act on the vasculature within skeletal muscle.
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