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Abstract
In this article we consider a semiparametric generalized mixed-effects model, and propose combining
local linear regression, and penalized quasilikelihood and local quasilikelihood techniques to
estimate both population and individual parameters and nonparametric curves. The proposed
estimators take into account the local correlation structure of the longitudinal data. We establish
normality for the estimators of the parameter and asymptotic expansion for the estimators of the
nonparametric part. For practical implementation, we propose an appropriate algorithm. We also
consider the measurement error problem in covariates in our model, and suggest a strategy for
adjusting the effects of measurement errors. We apply the proposed models and methods to study
the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic
response is classified into binary variables. A dataset from an AIDS clinical study is analyzed.
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1 Introduction
In recent years, the relation between viral load and CD4 cell counts has been well studied (Wu
et al., 1999; Wu, 2002; Liang, Wu, and Carroll, 2003). These studies have investigated the
concordance and discordance between virologic and immunologic variables and may help
clinicians more deeply understand AIDS pathogenesis and improve therapy regimes. Analysis
of these AIDS data poses statistical challenges. A common feature of the markers, such as viral
load measurements and CD4+ cell counts, used to evaluate antiviral therapy is that their
measurement produces longitudinal data-that is, a series of independent and dependent
variables obtained by taking repeated measurements, over time, from any one subject.
Consideration of the features of longitudinal data, such as within-subject and between-subject
variations and the correlation structure, is of practical interest.

Antiretroviral therapy for HID-1 infected patients has greatly improved in recent years.
Administration of drug cocktails consisting of three or more drugs may reduce and maintain
virus load copies below the detection limit in many patients, although it is unlikely that
combination therapies alone can eradicate HID in infected patients because long-lived infected
cells and sites within the body exist where drugs may not be effective. Because of the success
of highly active antiretroviral therapy for HID infection, viral load in AIDS patients is
suppressed and reaches to magnitudes that are below the limit of quantification, and AIDS
becomes a chronic disease. Clinicians and patients are therefore sometimes only interested in
maintaining the viral load below the detection limit, and in how the immune system (measured
by CD4 cell counts) relates to this suppression.
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Our primary goal in this paper is to propose a generalized partially linear mixed-effects model
(GPLMeM) to study the relation between binary viral load measurement and CD4 cell count.
Our focus is not only on the population characteristic but also on individual diversities. This
is particularly important in AIDS research because that there is generally a large between-
subject variation, which indicates the importance of estimating each individual’s parameters
for the individualization of treatment management and care of patients with AIDS. We propose
a new method to explore the population and individual characteristics by combining local linear
regression (Fan and Gijbels, 1996), penalized quasilikelihood (PQL, Breslow and Clayton,
1993), and local quasilikelihood (Severini and Staniswalis, 1994) techniques.

For longitudinal binary data analysis, generalized linear mixed-effects models (GLMeM) have
been proposed to incorporate the between-subject and within-subject variations. See, for
example, Breslow and Clayton (1993) and Schall (1991) for the PQL method, Zeger and Karim
(1991) for the Gibbs sampler. Wang et al. (1998) considered generalized linear mixed models
when one of the covariates is measured with error, and they proposed a simulation extrapolation
(SIMEX, Stefanski and Cook, 1995) estimation method.

To weaken model assumption for possible misspecification and to avoid the curse of
dimensionality of fully nonparametric regression in the presence of several predictor variables,
semipara-metric models have been studied and used for longitudinal data analysis in literature
(Severini and Staniswalis, 1994). Lin and Carroll (2001) studied marginal semiparametric
mixed-effects models and used the generalized estimating equation to estimate the parameter
of interest. Wu and Zhang (2002) and Ke and Wang (2001) proposed semiparametric nonlinear
mixed-effects models. Lin and Zhang (1999), Zhang (2004), and Zhang et al. (1998) used the
smoothing spline to fit semi-parametric mixed-effects models. These authors considered
between-subject and within-subject variations in their estimation methods, but they mainly
aimed at delineating population features, while individual characteristics are ignored.

The article is organized as follows. In Section 2 we formally introduce the model’s framework,
propose an estimation algorithm, and develop asymptotic results; extend to the case that X is
measured with error; and discuss practical implementation of the methods. We illustrate the
methods by conducting a small simulation experiment and extensively analyzing a data set
from an AIDS study in Section 3 and provide a discussion in Section 4. The proof of the
theoretical results is given in the Appendix.

2 Generalized Partially Linear Mixed-effects Models
2.1 Model

Suppose that data are obtained from n independent subjects with outcome variables Yij, linear
covariates Xij(p × 1) and Aij(q × 1), and nonlinear scalar Zij, where i = 1, …, n indicates the
subjects; j = 1, …, ni indicates the observation of the ith subject. Given the covariates Xij, Zij,
Aij, and unobserved q × 1 random effects vectors bi and unobserved random effects function
ci(·), the observations Yij are assumed to be independent with means μij and variance ϕωijV
(μij), where ωij is a known weight and V(·) is a known variance function. The GPLMeM of Y
given X, Z is specified by

(2.1)

where g(·) is a known monotonic differentiable link function, β is a p × 1 vector, and θ(·) and
ci(·) are unknown smoothing functions. ci(·) indicates the random-effects, which can be
regarded as a realization of a stochastic process with mean zero. The random effects bi are
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independent of ci(·) and are independently distributed N(0, Σb), where the covariance matrix
Σb is determined by finite parameters. Given the covariates Xij, Aij and Zij, and bi and ci(·), the
observations Yij and Yik are independent; i.e., E(Yij|Xij, Zij) = E{Yij|Xij, Zij, (Xik, Zik)k≠j}. In
longitudinal data, Zij are often the treatment times, and Xij, Aij, and Yij are the observations of
the ith subject at time Zij, for example, in the AIDS data set studied later.

2.2 Estimation
To estimate the parametric and nonparametric parts β, bi, θ(·), and ci(·), we combine local linear
regression, the PQL technique, and the quasilikelihood principle. We estimate these parameters
by considering local PQL, then we update the estimate of β and bi, using all data points, by
relying on the global PQL. In local PQL, we approximate θ(·) and ci(·) by linear functions:

Denote α = (α0, α1)T, νi = (νi0, &nu;i1)T, . In a neighborhood of z0, model (2.1)
can be approximated by a GLMeM and described as

where νi ~ N(0, Σν) are random effects. In a conventional GLMeM setting, we can estimate
α, β, bi, and νi by using the PQL principle; i.e., maximize

with respect to α, β, bi, and νi, where  and

.

To consider the localization, we propose a locally PQL approach. The motivation of doing so
is essentially the same as localization in conventional nonparametric regression.

Denote ρk(t) = {dg−1)(t)/dt}k/[σ2V{g−1(t)}] and qk(t,y) = ∂kQ{g−1(t), y}/∂tk for k = 1, 2, 3. Let

kj = ∫ ujK(u)du, μj = ∫ ujK2(u)du for j = 1, 2, , and .

Step 1—For each fixed z0, we consider the maximization

(2.2)

with respect to α, β, bi, and νi. Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is a bandwidth.
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Take the differential of (2.2) on α, β, bi, and νi. Step 1 is equivalent to solving the equations

(2.3)

and, for each i,

(2.4)

Denote , Zi = (Zi1,…Zini)
T, and Ai similarly. Let

Kih = diag{Kh(Zi1 − z0), …, Kh(Zini − z0)}, Ri = diag(Ri1, …, Rini) with Rij = {g′(μ̃ij)}2V(μ̃ij).

Equations (2.3) and (2.4) are approximately equivalent to iteratively fitting the following linear
mixed-effects (Laird and Ware, 1982) model:

(2.5)

where εi ~ (0, Ri) and Ji = (Λi1, ···, (Λini)
T.

Consequently, the estimates defined by step 1 are approximately given in closed-form
expressions (Davidian and Giltinan, 1995):

where  with . &thetas;(z0) and
ci(z0) are estimated by θ ̂(z0) = α̂0 and ĉi(z0) = νi0.

Note that β and bi are global parameters and their estimates given in step 1 are based only on
local information. We update their estimate, using all data, by considering a global penalized
quasilikelihood procedure:

Step 2—Update estimates of β and bi by maximizing the object function

(2.6)

with respect to β and bi, where .
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The expressions containing matrices Σb, Σν, and Ri, which are generally unknown and need to
be estimated. To estimate these matrices, one may use the maximum and the restricted
maximum likelihood methods to estimate the unknown components of Σb, Σν, and Ri under
the normality assumption. To implement these non-trivial methods, the EM-algorithm and
New-Raphson methods have been proposed(Laird and Ware, 1982; Davidian and Giltinan,
1995). The standard statistical software packages such as SAS and Splus/R provide user-
friendly functions to implement these methods( lme Splus/R function and the SAS procedure
SAS MIXED). After obtaining the point estimates of the unknown components, we have Σ̂b,
Σ ̂ν, and R ̂i, and then Σ̂i and Ω ̂i. The estimators of α, β, bi, and μi thus can be obtained by
substitution of Σ̂i and Ω ̂i in steps 1 and 2.

2.3 Asymptotic Results
We claim the following condition, which is standard in the literature describing the generalized
partially linear models.

Condition
a. The function q2(t, y) < 0 for t ∈ R and y in the range of the response variable.

b. The random-effects functions ci(z) are iid and have zero mean gaussian marginal
distribution, and have the same distribution as a random-effects curve c(z), a two times
continuously differentiable function.

c. The density function f(z) of Z is positive and continuous at the point z0.

d. The functions θ(·) and θ(2)(·) are continuous at the point z0.

e. With R = XTβ+ATb+θ(Z)+c(Z), , and 
are twice differentiable in z.

f.  and , for some δ > 2.

Mh/N → λ, a finite nonnegative constant.

Let γy(z1, z2) be the covariance of [Y − g−1{XTβ + ATb + θ(Z) + c(Z)}]ρ1{XTβ + ATb
+ θ (Z) + c(Z)} for Z = z1 and z2. γy(z1, z2) is continuous on z1 and z2.

The functions V″(·) and g‴(·) are continuous.

Theorem 1—Consider the estimator θ ̂(z0) given in step 1. Then, as n → ∞, h → 0 and Nh →
∞, and under the specified condition, we have the asymptotic expansion

(2.7)

and hence

(2.8)

where
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and

Theorem 2—Let β ̂ be the estimate given in step 2. Under the condition, as n → ∞, Nh4 → 0
and Nh2/log(1/h) → ∞,

(2.9)

where B = E[ρ2(R)XXT] and .

As in generalized partially linear models for cross-sectional data, theorem 2 indicates that in
order to estimate β at the root–n rate, one must undersmooth the nonparametric part θ(·). This
undersmoothing request is standard in the kernel literature, although ordinary bandwidth rates
are permissible in partially linear models.

2.4 Implementation

To obtain the estimates by fitting (2.5), we give an initial value for μ̃ij, say , and then have
the working response variable

For a given bandwidth h, we fit model (2.5) and obtain estimates α ̂, β ̂, b ̂i, and ν̂i. Update

 and g′(μ̂ij). Correspondingly, Ỹij can be updated as g(μ̂ij) + (yij −
μ̂ij)g′(μ̂ij), and fit (2.5) again. Repeat these procedures until convergence, and collect the final
estimates θ ̂ (z0) = α̂0, ĉi(z0) = ν̂i0.

During the process of the implementation, one should keep in mind that the bandwidth needs
to be selected in the estimation procedure involved in step 1. Theorem 2 indicates that
undersmoothing the nonparametric part is necessary to guarantee to estimate β at the root-n
rate. Because only the rates of convergence for the bandwidth h are necessary for the same
limiting distribution for the estimators of β, we select h by using the empirical bias bandwidth
selection method (Ruppert, 1997) in our data analysis. In our numerical analysis below, we
select initial values by fitting the data by a generalized linear mixed-effects model. Because
iteration is needed, we set the maximum number of iteration to be 30. Computation results for
our numerical analysis are obtained within 18 iterations. This adoption leads to potentially
burdensome computation, which may be attenuated with a powerful computation platform.
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2.5 Measurement errors in covariates
In practice, the covariates may not be exactly observable, and like CD4 cell counts in our AIDS
dataset analyzed later, are measured with substantial errors. The estimators and inference may
be biased if one ignores these measurement errors. We need to adjust the resulting bias. In this
special case, we denote Xij by Xi(Zij), the true covariates of subject i, and Wij by Wi(Zij), the
observed values of Xij at time Zij. Suppose we have the measurement error model,

(2.10)

where Wi(z) is the observed value and Xi(z) is the underlying true value for the ith patient at
treatment time z. The error ui(z) represents measurement error in the CD4+ cell counts. We
assume that ui(z) is a mean zero process, and {Xi(z), ui(z)} are mutually independent. Fuller
(1987) and Carroll, Ruppert, and Stefanski (1995) provided a good survey of measurement
error models. Buonaccorsi, Demidenko, and Tosteson (2000) studied measurement errors in
linear mixed-effects models. Higgins, Davidian, and Giltinan (1997) proposed a two-step
approach to deal with measurement errors in nonlinear mixed-effects models. Wang et al.
(1998) studied generalized linear mixed measurement error models. Liang and Ren (2005)
investigated generalized partially linear models with errors-in-variables and proposed a
measurement error calibration based on a SIMEX algorithm. The computation burden in a
similar platform is tremendously expensive, although its implementation is straightforward. In
this paper we adjust measurement error by using a mixed-effects regression spline model, as
done by Higgins et al. (1997); a similar idea was used by Liang, Wu, and Carroll (2003).

The data points repeatedly measured along time z are similar to replications if we can assume
that the measured variable is a smooth function of z. Shi, Weiss, and Taylor (1996) and Rice
and Wu (2001) have modeled the natural history of the CD4+ cell process in untreated HID-
infected patients by using a mixed-effects regression spline model. Model the CD4+ cell counts
as follows:

(2.11)

where Ψi(z) = {ψ0(z), ψ1(z), ···, ψp(z)} and Φi(z) = {φ0(z), φ1(z), ···, φq(z)} are basis functions
such as cubic B-spline basis, ξ = (ξ0, ξ1, ···, ξp)T is a fixed-effect parameter vector, and ηi =
(ηi0, ηi1, ···, ηiq)T is a random effect vector with mean zero and covariance matrix Ση (Ση may
be unstructured or can be specified with a special structure). The selection of the number (p
and q) and locations of knots for regression splines can be achieved by using cross-validation
(Eubank, 1999). Rice and Wu (2001) suggest setting p = q and ψk(z) = φk(z). Model (2.11) is
a standard linear mixed-effects model, which can be fitted by using the LME function of Splus
(Pinheiro and Bates, 2000).

Higgins et al. (1997) have proposed a two-step approach to deal with measurement errors in
time-dependent covariates in nonlinear mixed-effects models. The first step is to estimate the
covariate function by fitting an appropriate model for covariate processes, and then fit the
nonlinear mixed-effects model by plugging in the estimates of the covariates in the second
step. This is essentially similar to the regression calibration idea (Carroll et al. 1995). By
applying a similar idea to our model for measurement error in CD4+ cell counts, we fit a LME
model,
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(2.12)

and obtain an estimate Ŵij of Wij, which is regarded as Xij.

3 Numerical Illustration
In this section, we first conduct a small simulation study for an illustration. We then use the
proposed methods to analyze a data set from an AIDS study. In our numerical analysis, we
calculate the naive estimates, i.e., those obtained by ignoring measurement errors, the proposed
estimates. We use the quartic kernel k(u) = 15/16(1 − u2)2I(|u|≤1) for nonparametric regression.

3.1 A Small Simulation Experiment
We performed a small simulation experiment and the data were generated from a logistic
model, whose log(odd) can be expressed as

where Xij is independent uniform (0, 1) components, Zij is uniformly distributed U(0, 1), and
Ui is normally distributed . The parameter β is equal to 1.85, and the nonparametric
function is θi(z) = (1 + c1i) cos(2πz) + (2 + c2i) sin(2πz) with (c1i, c2i) being 2-dimensional
normal distribution .

We consider a combination of (n, m) = (20, 30), (40, 50), (60, 70), σu = 0.1, 0.25, and σb = 0.1.
In each of configurations, we run 500 replications. We calculate the proposed estimates and
the naive estimates (i.e., we ignore the measurement errors). The estimated values of β are
summarized in Table 1.

The results are in accord with the theory for measurement error models. The simulation results
based on the proposed method indicate that the naive estimator of β is markedly biased, while
the estimated values based on the proposed method is much closer to the true value than the
naïve estimate of β.

3.2 Data Analysis
Let Y be binary viral load, X be CD4 cell counts and Z be the treatment time. An ordinary
logistic mixed-effects model says that the logit of Y = 1 satisfies

(3.1)

where b1i and b2i reflect the individual variations. The merit of this model includes its
computational convenience and easy interpretation of the model parameter. However, this
model may not be able to capture some curvature, as we shall see later because drug resistance,
and noncompliance probably contribute nonlinearly along the treatment time. An alternative
is a partially logistic mixed-effects model, described as

(3.2)
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where θ(z) and ci(z) are unknown smoothing functions, which describe the population
characteristic and individual diversities.

In this section, we present the results of analysis of an AIDS clinical study conducted by the
Pediatric AIDS Clinical Trials Group (PACTG 345, Scott et al., 2001). In this study, 33 patients
were enrolled as cohort II. Specimens were obtained on days 0, 1, 3, 7, 14, 28, 56, …, 1115,
and 559 observations were obtained with 256 HID-1 RNA measurements below the detection
limit of 400 copies/mL: 45% viral load observations were therefore suppressed below the
detection limit. Figure 1 presents the individual observations of plasma HID RNA
concentration (viral load) after initial antiretroviral treatments. A main objective of the
treatment is to suppress the viral load below the limit of detection.

The purpose of this analysis focuses on whether the viral load is suppressed and how the of
CD4 cell counts change during the treatment. We apply the model and estimation method
described in section 2 to explore this data set and address the concerns mentioned in Section
1 by modeling the dynamic relation between the binary response (with or without viral
suppression) and CD4 cell counts during the treatment period of about 3 years.

Let Yij = 1 if the viral load of the ith subject at time Zij is below the detection limit, and 0
otherwise. In this analysis, we consider 4 scenarios: (i) model (3.1) and ignoring consideration
of measurement error in CD4+ cell counts; (ii) model (3.1) with consideration of measurement
error in CD4+ cell counts; (iii) model (3.2), ignoring measurement error in CD4+ cell counts;
and (iv) model (3.2) with consideration of measurement error in CD4+ cell counts. When
considering measurement errors in CD4+ cell counts and using the method proposed in
subsection 2.5 to produce the “true” CD4+ cell counts, the smoothing parameters (the number
of knots) are selected by the model selection criterion BIC and the location of knots is selected
at the quantiles of the data (Eubank, 1999). We obtain p = q = 3. To stabilize the variance and
computational algorithms, we centered the covariate CD4+ cell counts and took a log-
transformation for time in the model fitting. We fitted the model by using the LME function
of Splus.

The population estimated values of the parameter β for these 4 scenarios are presented in Table
2. Comparing the estimates of β under (i) scenarios to (iii) and (ii) to (iv), we saw that models
(3.1) and (3.2) derive remarkably different results. We also compared the estimates obtained
with or without considering measurement error in the CD4+ cell counts. The estimates
attenuated toward zero regardless of the models (3.1) or (3.2) used when the measurement error
in the covariate is not considered. This finding is similar to that in standard linear or nonlinear
regression models with measurement error (Carroll et al. 1995).

The population estimates of θ(z) for scenarios (iii) and (iv) are shown in Figure 2. Two
population curves have similar patterns; that is, the curves rise rapidly at first and then maintain
a steady decline from day 56 to the end of treatment. However, a consideration of measurement
error reflects a sharper increase at the beginning.

Recalling the viral load of each subject shown in Figure 1, we note that the between-subject
variation can not be ignored and the individual curves, αi(z) = θ(z) + ci(z), may not follow the
pattern of the population curve. We present the results for 4 individual subjects, and these
results illustrate the principal advantage of the proposed model and developed methods in that
the estimates can be obtained for both population and individuals. Because the patterns for the
same individual under scenarios (iii) and (iv) are similar, we report in detail only the results
for the case in which measurement errors in CD4+ cell counts are ignored. Figure 3 shows the
individual estimates from 4 patients. For comparison, the corresponding population estimate
is also plotted. The population and individual estimates are different not only in magnitude but
also in patterns of change. The individual curve for subject 1 almost follows the population
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curve. The individual curves of the other 3 subjects are totally different from the population
curve. Curves of subjects 6 and 24 decline sharply at first and then rebound later, to the end of
treatment, but have different rebounding times. In contrast, the curve of subject 17 follows a
convex shape. Given this large between-subject variation, the estimated trajectories of the
individual curves become very important for individualizing treatment management and care
for AIDS patients.

4 Discussion
In order to study the relation between binary virologic variables and immunologic variables,
repeatedly measured indices of success of suppression of viral load (the virologic variable) and
CD4+ cell counts (the immunologic variable) in AIDS clinical trials, we proposed a
semiparamet-ric mixed-effects model, which can parsimoniously reflect both population and
individual relationships between the two longitudinal variables. Similar models have been
reported in the literature. However, most published studies focused only on the estimation of
the population characteristic, although between-subject and within-subject variations have
been incorporated. The method proposed in this article extends existing methods and allows
us to estimate the population profile and individual diversities.

In step 1 we minimized the objective function with respect to α, β, bi and νi. Alternatively, we

may specify initial values β(0) and , and maximize the objective function (a similar form to

(2.2) but replacing β and bi with β(0) and ) with respect to α and νi. This alternative may
increase efficiency (see Carroll et al., 1997 for a related discussion), but it increases
computation efforts.

When considering measurement errors in CD4 cell counts, we used a mixed-effects based
approach to calibrate the effect of measurement error. This calibration may also be achieved
by using a SIMEX-based procedure such as Liang and Ren (2005). However, additional
information is required to estimate the covariance matrix cov(X) in implementing the SIMEX
procedure. This investigation also increases computation efforts.

In this article, we develop a method using local linear regression. There are a lot of alternative
ways for local linear approximation in step 1, including higher degree local polynomial kernel
methods and smoothing and regression splines. The details for these methods require a further
investigation in our setting. We chose the local linear smoother because theoretical results can
be derived and the estimators of nonparametric components do not suffer from boundary effects
(Fan and Gijbels, 1996).

Model (2.1) may be extended to a generalized additive partially linear mixed-effect model, of
the form

The study of this model is interesting and requires tedious efforts, but is beyond the scope of
this paper.
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Appendix

A.1 Proof of Theorem 1
Let cn = (Nh)−1/2,

and let f(z) denote the density function of Zij. Denote further

. (2.3) implies that β ̂*
maximizes

with respect to β*. By the concavity of the function ℓn(β*) and Taylor expansion of the function
Q{g−1(·), Yij} with respect to β*, we obtain that

(A.1)

where  and

. Furthermore, let

. Without loss of generality,
assume that the means of random-effects terms b ̂i − bi, ĉ(z0) − ci(z0), and  are
zeros. Then

Liang Page 12

Ann Inst Stat Math. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A.2)

where ζij is between  and η ̄ij. Note that

. Using an argument similar
to the proof of (A.9) of Carroll et al. (1997) and condition (i) yield that the second term in the
(A.2) is of order o(h). We therefore have

In a similar way, we obtain that

Let

We write  and deal with the first two moments of . Note
that . We find for the first moment, with η ̄ = XTβ + ATb + θ
(z0) + θ(z0)(Z − z0) + c(z0) + c′(z0)(Z − z0),

(A.3)

The first term in (A.3) is of order O(h2). It follows that

(A.4)

In an analogous way we can show that
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(A.5)

Combining (A.4) and (A.5), we obtain

(A.6)

Therefore, by (A.1),

(A.7)

By applying the convexity lemma (Pollard, 1991), we obtain that . Hence
the asymptotic normality of β ̂* will follow from that of , which we will establish below. By
the definition of  and using Taylor’s expansion we get for the first moment,

(A.8)

It follows from these statements and (A.6) that

where  with sij = q1(ηij, yij)Kh(Zij − z0). We have

where

It is easy to see that
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and

Furthermore, for j1 ≠ j2, by condition (h)

which, combined with condition (g), yields that

It follows that

Finally, using condition (f), it can be shown that Liapounov’s condition is satisfied and hence
Theorem 1 holds, as claimed.

A.2 Proof of Theorem 2
First of all, we note that under the specified condition, in a proof similar to that for theorem 2
of Carroll et al. (1997), we can establish

(A.9)

Let ζ̂ = N1/2(β ̂ − β0), , and . Then,
ζ̂ maximizes

(A.10)

with respect to ζ. By Taylor’s expansion, we have
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(A.11)

where

with ζnij and  between 0 and , independent of Yij, and with
. It can be shown that

(A.12)

Using similar arguments as for obtaining (A.12), we get

By (A.9), the second term in the above expression can be expressed as

Tn1 can further be simplified as

(A.13)

Combining (A.10)–(A.13) we obtain that

where
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By the convexity lemma (Pollard, 1991) we find that

, from which it follows that

as claimed.
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Figure 1.
Individual viral load measurements of plasma HID RNA concentration in the PACTG 345
study. The detection limit of 400 copies of HID RNA per mL of plasma is indicated by the
horizontal line.
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Figure 2.
Population curve estimates of θ(z) considering measurement errors (solid line) and ignoring
measurement errors (dashed line).
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Figure 3.
Selected individual curve estimates (solid line), with the population curve estimate (dashed
line) provided for comparison.
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Table 2

Estimates of the parameters in scenarios (i)–(iv), based on PACTG 345 data

(i) (ii) (iii) (iv)

β ̂ −0.272 −0.358 −0.692 −1.046

SE 0.10 0.143 0.134 0.223

Pvalue 0.007 0.0014 < 10−4 < 10−4
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