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BACKGROUND: The aim of this study is to elucidate the expression patterns of GATA transcription factors in neuroblastoma and the
developing sympathetic nervous system (SNS).
METHODS: GATA-2, -3 and -4 and their cofactor friend-of-GATA (FOG)-2 were investigated in primary neuroblastoma by
immunohistochemistry, real-time RT-PCR (n¼ 73) and microarray analysis (n¼ 251). In addition, GATA-2, -3 and FOG-2 expression
was determined by northern-blot hybridisation. In the developing murine SNS, Gata-4 and Fog-2 were examined by
immunohistochemistry.
RESULTS: Although Gata-2, -3 and Fog-2 are expressed in the developing nervous system, Gata-4 was not detected. In contrast,
protein expression of all factors was observed in human neuroblastoma. Northern-blot hybridisation and real-time RT-PCR
suggested specific expression patterns of the four genes in primary neuroblastoma, but did not show unequivocal results. In the large
cohort examined by microarrays, a significant association of GATA-2, -3 and FOG-2 expression with low-risk features was observed,
whereas GATA-4 mRNA levels correlated with MYCN-amplification.
CONCLUSION: The transcription factors GATA-2 and -3, which are essential for normal SNS development, and their cofactor FOG-2
are downregulated in aggressive but not in favourable neuroblastoma. In contrast, upregulation of GATA-4 appears to be a common
feature of this malignancy and might contribute to neuroblastoma pathogenesis.
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GATA transcription factors comprise a family of six zinc-finger
proteins regulating cell differentiation and proliferation. Initially,
GATA-1, -2 and -3 have been grouped as regulators of haemato-
poiesis, but analyses of mutant mice with homozygous Gata-2 or
Gata-3 deletion indicate their essential function also in the
development of other organs, particularly the nervous system
(Pandolfi et al, 1995; Zhou et al, 2000). During development, Gata-2
and -3 are expressed in different neurons of the brainstem and
spinal cord, which are critical for the generation and differentiation
of sympathetic neurons (Pandolfi et al, 1995; Nardelli et al, 1999;
Lim et al, 2000; Zhou et al, 2000; Tsarovina et al, 2004). In contrast,
GATA-4, -5 and -6 are predominantly implicated in heart and gut
development (Laverriere et al, 1994; Molkentin, 2000). In the normal
brain, Gata-4 expression has only been described in migrating
gonadotropin-releasing hormone (GnRH)-secreting neurons
(Lawson and Mellon, 1998). However, Gata-4 could not be detected
in the adult CNS (Lawson and Mellon, 1998). It has recently been
demonstrated that a 5-kb proximal promoter of Gata-4 can drive
reporter gene expression in migratory neural crest cells. Yet,
endogenous Gata-4 has not been detected (Pilon et al, 2008). In
other reports, Gata-4 expression has been described in some neural
crest-derived cardiac progenitors (Tomita et al, 2005) and in
primitive neural stem cell spheres (Hitoshi et al, 2004).

Although primarily considered as important transcriptional
regulators during embryogenesis, GATA-2, -3 and -4 have also
been associated with tumours. They have been suggested both as
tumour suppressors and oncogenes (Ohyashiki et al, 1996;
Laitinen et al, 2000; Akiyama et al, 2003; Usary et al, 2004;
Engelsen et al, 2008; Ayala et al, 2009; Thurisch et al, 2009). Thus,
repression or activation of GATA function could be important for
cancer biology, and the precise function may depend on cofactors
and the specific cellular context.

Friend-of-GATA (FOG) proteins are important cofactors for
GATA transcription factors. In vitro, all GATA factors can interact
with FOG-2 (Cantor and Orkin, 2005). FOG-2 may act as a
coactivator or corepressor depending on the cell type and the
promoter (Holmes et al, 1999; Lu et al, 1999; Svensson et al, 1999).
During development, Fog-2 is expressed in a variety of tissues
including the heart and the brain (Cantor and Orkin, 2005). From
E11.5 on, it has also been detected in the ganglia of the peripheral
nervous system (Tevosian et al, 1999). In an adult, FOG-2 is
predominantly expressed in the heart, the brain and the testis
(Holmes et al, 1999; Lu et al, 1999; Svensson et al, 1999; Tevosian
et al, 1999), and has been described in tumours (Laitinen et al, 2000).

Neuroblastoma is the most common extra-cranial solid tumour
in childhood. The tumours arise from neural crest cells of the
sympathetic nervous system (SNS) and are highly heterogeneous
in nature and clinical behaviour. Although younger patients with
localised tumours and those with stage 4S disease have an excellent
prognosis and often follow spontaneous regression, the outcome of
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older patients with disseminated disease (stage 4) is still very poor
despite intensive multimodal treatment (Maris et al, 2007).
Although the exact mechanisms leading to the divergent neuro-
blastoma phenotypes have yet not been characterised, it has been
noticed that markers of neuronal differentiation are downregulated in
unfavourable tumours (Ohira et al, 2003; Nakagawara, 2004; Fischer
et al, 2006). From these data it has been suggested that
de-regulation of normal developmental pathways may contribute to
the pathogenesis of the biologically distinct neuroblastoma subtypes.

As GATA transcription factors are involved in both tumour-
igenesis and SNS development, we aimed at characterising the
expression patterns of GATA-2, -3, -4 and FOG-2 in primary
human neuroblastoma and in neuronal development of mice to
evaluate their possible implication in human neuroblastoma.

MATERIALS AND METHODS

Neuroblastoma patients and tissue specimens

Neuroblastoma tissue specimens and RNA samples of 251 patients,
who were enrolled in the German Neuroblastoma Trials NB90-
NB2004, were obtained from the neuroblastoma tumour repository
of the German Competence Net Pediatric Oncology und Hemato-
logy. Biopsy specimens were taken before the cytotoxic treatment.
Informed consent was obtained from all patients. Age at diagnosis
ranged from 0 to 296 months (median 15 months). The median
follow-up of patients without fatal event was 6.15 years. Tumour
stage was determined according to the criteria of the International
Neuroblastoma Staging System (INSS). Stage distribution of the
patients is as follows: stage 1, n¼ 69; stage 2, n¼ 44; stage 3,
n¼ 40; stage 4, n¼ 67; and stage 4S, n¼ 31. At diagnosis, 94
patients were o1 year, whereas 157 were older than 1 year. Ampli-
fication of the MYCN oncogene was analysed by fluorescence
in situ hybridisation and detected in 33 out of 251 neuroblastomas.
Molecular classification according to gene expression profiles
determined by oligonucleotide-microarrays (Oberthuer et al, 2006)
separated the cohort into 82 high-risk and 169 low-risk patients.

Immunohistochemistry

The expression patterns of Gata-4 and Fog-2 protein were analysed
by immunohistochemistry in cryosections from CD1 mice. The day
of vaginal plug was defined as E0.5. Approval for animal studies
was given by the Institutional Review Board (T 0152/05). Embryos
were fixed in 4% PFA (Sigma-Aldrich Chemie, Munich, Germany).
Before fixation, embryos older than E15 and pups were
additionally perfused under lethal anaesthesia. Tissue was
embedded in Cryo-M-Bed (Bright Instrument, Huntingdon,
Cambridgeshire, UK) and sectioned at 14 mm. The sections were
washed in PBS with 0.1% Triton X-100 (Sigma-Aldrich Chemie),
then blocked in PBS containing 0.1% BSA Fraction V (Roth,
Karlsruhe, Germany), 10% FBS, 0.1% Triton X-100 and 0.05%
sodium azide at room temperature for 1 h and incubated with the
primary antibody at 41C overnight. After three washes, sections
were incubated with the secondary antibody for 2 h at room
temperature and counterstained with DAPI (0.2 mg ml�1 in PBST
for 5 min; Roche, Mannheim, Germany). Sections of human
neuroblastoma tissue were fixed with 4% PFA for 10 min, then
washed, permeabilised and stained.

Primary antibodies: anti-GATA-2 (sc-1235), anti-GATA-3
(sc-1236), anti-GATA-4 (sc-25310, all Santa-Cruz Biotechnology,
Santa Cruz, CA, USA; 1 : 200), anti-b III Tubulin (TUJ-1) (ab53234,
Abcam, Cambridge, UK; 1 : 500) and anti-FOG-2 (sc-10755,
Santa-Cruz Biotechnology; 1 : 500). Secondary antibodies: Alexa
Fluor 488 donkey anti-goat IgG (A11055, Invitrogen, Karlsruhe,
Germany), Alexa Fluor 594 goat anti-mouse IgG2a (A21135,
Invitrogen), Alexa Fluor 488 goat anti-mouse IgG1 (A21121,

Invitrogen) and Cy3 donkey anti-rabbit IgG (711-165-152, Jackson
Immunoresearch Europe, Suffolk, UK) diluted 1 : 500–1 : 5000.

Negative controls were treated in parallel with only a secondary
antibody. Microscopic observations were carried out under an
epifluorescence microscope (AxioPlan 2 Imaging System, Carl
Zeiss, Jena, Germany). Photographs were taken with a digital
camera (AxioCAM MRc; Carl Zeiss) and AxioVision 4.2 software
(Carl Zeiss).

Northern blot, real-time RT-PCR and western blot were carried out
as described in the Supplementary material.

Microarray analyses

Gene expression analyses were carried out using oligonucleotide-
microarrays (Oberthuer et al, 2006). Expression profiles were
generated in dye-flipped duplicates in dual-colour experiments. In
brief, 1 mg of linearly amplified Cy3- and Cy5-labelled cRNA was
hybridised together with 1 mg of reverse colour Cy-labelled refer-
ence cRNA to a customised 11 kb oligonucleotide-microarray
(Agilent Technologies, Waldbronn, Germany). Quality control of
raw data was carried out using the software package arrayMagic
(Buness et al, 2005). After normalisation of the expression profiles
using the variance stabilisation algorithm (Huber et al, 2002), data
from dye-flipped chip pairs were averaged to yield one intensity
value for every gene probe of each patient. All microarray data
are available at the ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress; Accession: E-TABM-38).

Statistics

Statistics for the microarray analyses were carried out using the
nonparametric Mann– Whitney test; P-values o0.05 were consi-
dered as statistically significant.

RESULTS

GATA-4 and FOG-2 as well as GATA-2 and -3 are expressed
in human neuroblastoma

To determine whether the transcription factors GATA-2, -3 and -4
and their cofactor FOG-2 were expressed in human neuroblastoma,
expression of these proteins was analysed in primary tumours by
immunohistochemistry. We detected GATA-4 and FOG-2 protein
(Figure 1A) as well as GATA-2 and -3 protein (Figure 1B) in the
cell nuclei. Morphological analysis was performed using H&E
staining.

Gata-4 is expressed neither in the developing and adult
brain nor in the developing SNS

Although the relevance of GATA-2 and -3 for the development of
the central and peripheral nervous system has been well
characterised (Pandolfi et al, 1995; Nardelli et al, 1999; Lim et al,
2000; Zhou et al, 2000; Tsarovina et al, 2004), it is not known
whether GATA-4 contributes to these processes. We therefore
analysed the developing murine brain and SNS for Gata-4
expression using immunohistochemistry. At E9.5 (Figure 2 left
panel), there was no Gata-4 in neural crest cells migrating from the
closing neural tube, as well as in the dorsal root ganglion. In
addition, no Gata-4 was detected in the facio-acoustic and the
trigeminal neural crest complexes. The spinal cord, the hindbrain
and pons were also Gata-4-negative. At E11.5 (Figure 2 right
panel), there was no Gata-4 in the cervical region, including the
neural tube, dorsal root ganglia and sympathetic ganglia.
Trigeminal ganglia were also negative. There was no labelling in
the spinal cord and the thalamus. Sections of the heart
(myocardium) served as positive controls and b-tubulin for
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demarcation of areas containing immature neurons. In addition,
Gata-4 was undetectable in structures of the SNS at E17.5 and in
the brain from E11.5–E18.5, P4.5–P8.5 and adult (not shown).

Fog-2 is expressed in migrating neural crest cells

As FOG-2 is an important cofactor for GATA transcription factors,
we were also interested if Fog-2 was expressed in the developing
PNS. By immunohistochemistry, we found Fog-2-positive migratory
neural crest cells and some post-mitotic neurons in the ventral spinal
cord at E10.5 (Figure 3A and B). However, there was no labelling
within the dorsal root and sympathetic ganglia (Figure 3A). In
addition, Fog-2 was not expressed in ventral sympathetic ganglia
(Figure 3C), in contrast to the medial portion of the facio-acoustic
ganglion (Figure 3D). Fog-2 staining in migratory neural crest was
confirmed at E11.5, as well as the absence of Fog-2 in dorsal root
ganglia (data not shown). At E13.5, dorsal root and sympathetic
ganglia were also negative (Figure 3E–F).

Expression levels of GATA-2, -3, -4 and FOG-2 vary in
neuroblastoma specimens

To quantify expression levels of GATA-2, -3, -4 and FOG-2 in
various subtypes of neuroblastoma, we evaluated their mRNA
levels. Using northern-blot analysis, consistent GATA-2, -3 and
FOG-2 expressions were observed in tumours of lower stages

(n¼ 11), whereas a remarkable reduction in mRNA levels of all
three genes was found in neuroblastoma of stage 4 (n¼ 3;
Supplementary figure S1). Owing to technical limitations in
establishing a northern blot for GATA-4, expression levels of this
gene were determined by real-time RT-PCR in a set of 73 primary
tumours (Supplementary table S2). Comparisons of MYCN-
nonamplified vs MYCN-amplified tumours, localised stages vs
stage 4 vs stage 4S and patients below 1 vs above 1 year, did not
show significantly differing expression levels. Similarly, analysis
of FOG-2, GATA-2 and GATA-3 expression by real-time RT-PCR
(Supplementary tables S3–S5) disclosed only lower FOG-2
levels in MYCN-amplified vs MYCN-nonamplified tumours at a
significant level.

GATA-4 is highly expressed in MYCN-amplified
neuroblastoma

As the association of GATA expression levels and the prognostic
phenotype of neuroblastoma could not unequivocally be addressed
by northern blot and real-time RT-PCR, we examined GATA
expression levels by microarray analysis in a larger cohort of
primary neuroblastoma (n¼ 251). In this set, we compared not
only MYCN-nonamplified vs MYCN-amplified tumours, localised
stages vs stage 4 vs stage 4S, patients below 1 vs above 1 year, but
also high vs low-risk tumours according to a highly accurate
gene expression-based classification using the PAM algorithm
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Figure 1 GATA-4 and friend-of-GATA (FOG)-2 as well as GATA-2 and -3 protein detection in human neuroblastoma. (A) GATA-4 and FOG-2, plus
H&E staining. (B) GATA-2 and -3, plus H&E staining. Bars equal 20mm.
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(Oberthuer et al, 2006). MYCN-amplified tumours (n¼ 32 out of
33; one specimen was not available for GATA-4 analysis) expressed
significantly more GATA-4 than MYCN-nonamplified (n¼ 218)
tumours (Figure 4A; P¼ 0.001). Comparisons of tumours of
different stages and from patients of varying ages did not show
significant differences (Figure 4B and C), although stage 4 tumours
tended to have higher transcript levels than tumours of localised
stages. High-risk tumours according to the PAM classification

showed significantly higher GATA-4 expression levels than low-
risk tumours (Figure 4D; P¼ 0.001).

To further strengthen the significance of GATA-4, protein
expression levels of GATA-4 were analysed by western blot.
Low- and high-expressing specimens were chosen according to
microarray analyses, and protein expression levels were confirmed
to correlate well with mRNA expression data (Supplementary
figure S2).
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Figure 2 Gata-4 immunohistochemistry in the murine brain, sympathetic nervous system (SNS) and the heart. Left panel from top to bottom: double
immunohistochemistry for Gata-4 and b-tubulin at E9.5 showing the closing neural tube, the cervical spinal cord, the hindbrain and pons. Right panel from
top to bottom: Gata-4 and b-tubulin at E11.5 showing the cervical region, sympathetic ganglia, the ventral thalamus and a trigeminal ganglion. The heart
served as a positive control. Orange frames represent magnified areas from the lower magnification above. drg: dorsal root ganglion; h: hindbrain; n:
notochord; nc: neural crest; ncc: facio-acoustic (VII –VIII) neural crest complex; nt: neural tube; ov: otic vesicle; p: pons; tnc: trigeminal (V) neural crest tissue;
sc: spinal cord; sg: sympathetic ganglion; st: sympathetic trunk; III: third ventricle; IV: fourth ventricle; *ventral root. Bars equal 100 mm.
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High FOG-2, GATA-2 and -3 expression levels in
neuroblastoma with favourable prognostic markers

FOG-2 transcript levels determined by microarrays were evaluated
for the same 251 tumours. In contrast to GATA-4, tumours without
MYCN-amplification exhibited higher expression values than those
with MYCN-amplification (Figure 4E; Po0.001). Stage as well as
age also showed significant differences in FOG-2 expression.
Localised tumours and those of stage 4S had higher transcript
levels than stage 4 tumours (Figure 4F; Po0.001). Tumours of
younger patients (o1 year) expressed more FOG-2 compared with
older patients (41 year) (Figure 4G; Po0.001). Moreover, low-risk
tumours according to the PAM classification expressed signifi-
cantly more FOG-2 than high-risk neuroblastomas (Figure 4H;
Po0.001).

As northern blot results suggested differential GATA-2 and -3
expression in different clinical neuroblastoma subgroups
(Supplementary figure S1), we also analysed their associations
with tumour characteristics. Microarray analyses revealed
higher transcript levels of both factors in neuroblastoma with
favourable prognostic markers, similar to FOG-2. GATA-2 showed
significantly higher expression values in MYCN-nonamplified
compared with MYCN-amplified tumours (Figure 5A, Po0.001).
GATA-3 revealed a similar trend, but not a significant association

(Figure 5E). Localised neuroblastoma had higher GATA-2 and -3
expression levels than tumours of stage 4 (Figure 5B, P¼ 0.048)
and 5F (P¼ 0.039)). Comparisons of stage 4S tumours vs stage 4
disclosed a significant association only for GATA-2 with higher
transcript levels in the more favourable 4S tumours (Figure 5B;
P¼ 0.019). Younger patients had higher GATA-2 and -3 expres-
sions than older ones (Figure 5C (Po0.001) and 5G (P¼ 0.027)).
Consistently, the PAM classification indicated significantly higher
transcript levels in low-risk tumours for both GATA-2 and -3
(Figure 5D (Po0.001) and 5H (P¼ 0.001)).

Taken together, GATA-4 expression appears to be a common
feature of neuroblastoma with highest expression levels in MYCN-
amplified tumours. In contrast, GATA-2, -3 and FOG-2 are
preferentially expressed in neuroblastomas with favourable prog-
nostic characteristics.

DISCUSSION

GATA transcription factors are crucial for the normal development
of a variety of tissues. In addition, they have been implicated in the
pathogenesis of multiple malignancies. In this study, we charac-
terise the expression patterns of GATA-2, -3, -4 and FOG-2 in
murine nervous system development and primary human
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neuroblastoma to elucidate their potential implication in neuro-
blastoma pathogenesis. Although GATA-2 and -3 expression has
previously been described in various neuroblastoma cell lines
(Yang et al, 1994; Minegishi et al, 2005; Scherzer et al, 2008;
Wallach et al, 2009), we show their expression in primary

neuroblastoma for the first time. Furthermore, we demonstrate
nuclear GATA-4 protein expression in human neuroblastoma cells.
Concerning cofactors for GATA proteins, we also show nuclear
FOG-2 expression in primary neuroblastoma. Therefore, FOG-2 is
available for interaction with GATA factors.
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Figure 5 Relative expression levels of GATA-2 and -3 according to
microarray analyses. (A–D) GATA-2 and (E–H) GATA-3. (A and E)
MYCN-nonamplified (n¼ 218) vs MYCN-amplified (n¼ 33). (B and F)
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G) Patients below 1 year (n¼ 94) vs above 1 year (n¼ 157). (D and H)
High-risk (HR; n¼ 82) vs low-risk (LR; n¼ 169) tumours according to the
PAM classification. Expression values are given in log ratios (sample vs
reference RNA). Box plots represent data as in Figure 4. *Po0.05;
**Po0.01; ***Po0.001 according to the nonparametric Mann–Whitney
test.
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Moreover, we show that Gata-4 is expressed neither in the
developing or adult murine CNS nor in the developing murine
SNS, including migratory neural crest. Apparently, GATA-4
expression only arises during tumourigenesis of neuroblastoma,
suggesting that it may have a role in the pathogenesis of
neuroblastoma. The absence of Gata-4 in migratory neural crest
cells confirms a recent report (Pilon et al, 2008), in which whole
mount in situ hybridisation failed to detect Gata-4. Pilon et al
(2008) discussed the possibility of a small subset of migratory
neural crest cells expressing Gata-4. In their hands, a 5-kb
proximal promoter of Gata-4 can drive reporter gene expression in
migratory neural crest cells at E9.5–E11.5. They discussed that
Gata-4 might only be expressed in a very limited subset of likely
cardiac neural crest cells. Tomita et al (2005) detected Gata-4 in
neural crest-derived cardiac progenitor cells that rest as dormant
stem cells in the heart. However, it could be possible that neural
crest-derived cardiac progenitors only express Gata-4 when they
arrive in the heart. As for primitive neural stem cells, the spheres
derived from E6.5 epiblasts have also been reported to express
Gata-4, in contrast to definitive neurospheres (Hitoshi et al, 2004).
As epiblasts give rise to all three germ layers, it may not be
surprising that Gata-4 has been detected there. Therefore, we
conclude that endogenous Gata-4 is absent in sympathetic
structures during mouse development, if not below the detection
limit of our method.

We also analysed the expression of Fog-2 in the developing
nervous system and confirmed the expression in the facio-acoustic
ganglion shown by in situ hybridisation at E11.5 (Tevosian et al,
1999), but on the protein level and a day earlier in embryonic
development. We further specified the staining to the medial
portion of the ganglion. Yet, the dorsal root ganglion and
sympathetic ganglia were clearly negative. In addition, for the
first time we show Fog-2 expression in migratory neural crest cells
that may give rise to neuroblastoma. During normal development,
FOG-2 might interact with GATA-2 and/or GATA-3, as all three
factors are expressed in neural crest derivatives (Tevosian et al,
1999; Tsarovina et al, 2004).

This allows to conclude that during the development of the
nervous system, the four factors investigated show a distinct
expression pattern with Gata-4 being unique because of its
complete absence. Next, we performed quantitative expression
analyses of all four factors in neuroblastoma. Northern blot
analysis and real-time RT-PCR of 14 and 73 specimens,
respectively, suggested different expression levels in distinct
neuroblastoma subgroups of all factors. To evaluate these
observations, we used microarray data of 251 primary neuroblas-
tomas, and compared the expression levels of GATA-2, -3, -4 and
FOG-2 in different clinico-genetic subgroups. It should be noted
that we found significantly higher GATA-4 expression levels in the
unfavourable subgroups of MYCN-amplified tumours and of
neuroblastoma with unfavourable PAM prediction (Figure 4).
This finding is similar to ovarian granulosa cell tumours,
where a high GATA-4 expression is associated with aggressive
behaviour (Anttonen et al, 2005). In mucinous ovarian carcinoma,
however, nuclear localisation of GATA-4 correlated negatively
with the grade and stage of tumours (Lassus et al, 2001). In
neuroblastoma, no significant correlation was observed with stage
of the disease, although localised tumours tended to have lower
GATA-4 expression than those of disseminated stages 4 and 4S
(Figure 4B). In addition, age at diagnosis had no influence on
GATA-4 expression levels. Together, these findings support the
notion that GATA-4 is specifically upregulated in neuroblastoma
pathogenesis instead of being expressed in progenitor cells of the
developing sympathetic system. So far, our microarray analyses
suggest higher GATA-4 expression levels in more aggressive
tumours.

It is interesting to note that the GATA cofactor FOG-2 as well
as GATA-2 and -3 behave oppositely to GATA-4. The expression

of FOG-2 was higher in tumours without MYCN-amplification and
in tumours with favourable PAM prediction. In contrast to
GATA-4, FOG-2 expression did depend on both stage of the
tumour and age at diagnosis. Localised tumours and those of stage
4S had higher transcript levels than stage 4 tumours, and tumours
of younger patients expressed higher levels of FOG-2 compared
with older patients (Figure 4). In breast cancer, FOG-2 expression
is also correlated with favourable prognosis, likely as it is required
for the normal expression of its downstream target genes Esr1 and
Foxa1 (Manuylov et al, 2007). Whether FOG-2 is involved in the
processes of spontaneous regression in neuroblastoma by support-
ing cellular differentiation as in breast cancer still remains to be
elucidated.

The expression levels of GATA-2 and -3 were also higher in the
more favourable subtypes of neuroblastoma (Figure 5). Both
were more highly expressed in localised tumours (vs stage 4),
younger patients and tumours with favourable PAM prediction.
In addition, significantly higher expression values were also
found for GATA-2 in tumours without MYCN-amplification and
stage 4S tumours (vs stage 4). In an attempt to select genes
for prognosis prediction in neuroblastoma, among other genes
GATA-2 has been observed to be associated with favourable
prognosis (Ohira et al, 2005), which is strengthened by our
detailed analysis. In patients with acute myeloid leukaemia,
GATA-2 was rather associated with poor prognosis (Ohyashiki
et al, 1996), although this correlation is challenged by a recent
report (Ayala et al, 2009). In breast cancer, high GATA-3
expression correlates with low tumour grade and slow prolifera-
tion rates (Usary et al, 2004; Mehra et al, 2005), corresponding to
our results. In this malignancy, silencing of GATA-3 is not the
primary molecular mechanism that leads to the GATA-3-negative
state. Rather, proliferation of GATA-3-negative stem cell-like
cells may cause tumour progression (Kouros-Mehr et al, 2008).
Moreover, using a retroviral delivery strategy Kouros-Mehr et al
(2008) proved that Gata-3 is sufficient to induce differentiation in
breast cancer. This raises the question on upstream regulators of
GATA-3 signalling; candidates may be members of the Wnt
genes (Davidson et al, 2002). However, GATA-3 has also been
identified as a marker of an aggressive phenotype and poor
prognosis in endometrial cancer (Engelsen et al, 2008). Thus,
GATA factors have been associated with favourable or unfavour-
able tumours, depending on the type of cancer. In neuroblastoma,
favourable tumour subtypes have been described to be more
differentiated on the molecular level (Ohira et al, 2003;
Nakagawara, 2004; Fischer et al, 2006). Accordingly, GATA-2
overexpression has been shown to cause differentiation of human
neuroblastoma SK-N-BE2 cells (Kaneko et al, 2006). In addition,
Gata-2 overexpression arrested the proliferation of mouse
neuroblastoma cells (NB2a), yet without induction of differentia-
tion (El Wakil et al, 2006). In this context, GATA-2 may act on
regulators of cell cycle components and/or shut-off the Notch
pathway (El Wakil et al, 2006). Although FOG-2 is likely to interact
with any GATA protein, our data obtained in neuroblastoma
specimens suggest a predominant interaction with GATA-2 and/or
GATA-3; in addition, the interaction between FOG-2 and GATA-4
could be disturbed.

The observation of concordant expression of Gata-2, -3 and
Fog-2 in the ganglia of neural crest origin (Tevosian et al, 1999;
Tsarovina et al, 2004), migrating neural crest cells (Fog-2;
Figure 3) and favourable neuroblastoma supports the hypothesis
that developmental molecular pathways are intact in this
subtype of neuroblastoma. Accordingly, the low expression levels
of these genes in unfavourable neuroblastoma are in line with a
loss of differentiation pathways in these tumours. Moreover,
the strong correlation of FOG-2 with favourable markers suggests
its possible involvement in the development of a regressive
phenotype. In contrast, the finding of GATA-4 expression in
primary neuroblastoma, but not in cells of the developing
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nervous system, indicates its unique role in neuroblastoma
pathogenesis.

ACKNOWLEDGEMENTS

We thank Dr Barbara Hero for providing clinical data and Yvonne
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Gemahlin-Stiftung (Stifterverband für die Deutsche Wissenschaft
e.V., Essen), and the Verein für Frühgeborene Kinder am Virchow-
Klinikum e.V. (Berlin, Germany).
Funding: The study is supported by grants from the
Fritz–Thyssen–Stiftung (AZ. 10.05.2.162 to CD), the Berliner
Krebsgesellschaft (DAFF200829 to CD) and the Bundesminister-
ium für Bildung und Forschung through the National Genome
Research Network 2 (Grant No. 01GS0456 to MF and FB).
Additional support has been provided by the Jürgen–Manchot–
Stiftung (to CD).

Conflict of interest
The authors declare no conflict of interest.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M,
Sakai H, Ren CY, Yuasa Y, Herman JG, Baylin SB (2003) GATA-4 and
GATA-5 transcription factor genes and potential downstream anti-
tumor target genes are epigenetically silenced in colorectal and gastric
cancer. Mol Cell Biol 23: 8429 – 8439

Anttonen M, Unkila-Kallio L, Leminen A, Butzow R, Heikinheimo M (2005)
High GATA-4 expression associates with aggressive behavior, whereas
low anti-Mullerian hormone expression associates with growth
potential of ovarian granulosa cell tumors. J Clin Endocrinol Metab 90:
6529 – 6535

Ayala RM, Martinez-Lopez J, Albizua E, Diez A, Gilsanz F (2009) Clinical
significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute
myeloid leukemia. Am J Hematol 84: 79 – 86
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