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Case-cohort data analyses often ignore valuable information on cohort members not sampled as cases or
controls. The Atherosclerosis Risk in Communities (ARIC) study investigators, for example, typically report data
for just the 10%–15% of subjects sampled for substudies of their cohort of 15,972 participants. Remaining subjects
contribute to stratified sampling weights only. Analysis methods implemented in the freely available R statistical
system (http://cran.r-project.org/) make better use of the data through adjustment of the sampling weights via
calibration or estimation. By reanalyzing data from an ARIC study of coronary heart disease and simulations based
on data from the National Wilms Tumor Study, the authors demonstrate that such adjustment can dramatically
improve the precision of hazard ratios estimated for baseline covariates known for all subjects. Adjustment can also
improve precision for partially missing covariates, those known for substudy participants only, when their values
may be imputed with reasonable accuracy for the remaining cohort members. Links are provided to software, data
sets, and tutorials showing in detail the steps needed to carry out the adjusted analyses. Epidemiologists are
encouraged to consider use of these methods to enhance the accuracy of results reported from case-cohort
analyses.

calibration; efficiency; observation; proportional hazards models; selection bias

Abbreviations: ARIC, Atherosclerosis Risk in Communities; Lp-PLA2, lipoprotein-associated phospholipase A2; NWTS, National
Wilms Tumor Study.

BACKGROUND AND MOTIVATION

One of the principal justifications for large cohort studies is
the ability to conduct substudies on selected participants so
that expensive covariates need not be ascertained for every-
one. The nested case-control study (1), in which individually
matched controls are sampled from case risk sets, is the oldest
and most widely used design for collection of additional
covariates to estimate hazard rates and ratios in the context
of Cox regression (2). The case-cohort design (3–5), in which
controls are sampled without regard to failure times as part of
a ‘‘subcohort’’ (cohort random sample), has become more
popular as its advantages have become better known. For
example, the single subcohort may be used to estimate pop-
ulation frequencies of covariates (e.g., genotypes), to select
controls for multiple failure time outcomes (e.g., diagnoses of

diabetes and heart disease), and to conduct analyses by using
multiple time scales (e.g., time-on-study and attained age).
Sometimes, the nested case-control design is infeasible be-
cause the vital status of cohort members needed for risk set
construction is unknown prior to their selection into a potential
subcohort (6).

Published analyses of case-cohort studies routinely fail to
utilize all available data. The original analysis method (5)
does not accommodate case sampling or stratified sampling
of controls and makes inefficient use of cases not in the
subcohort. Hence, most analyses today utilize the ‘‘robust’’
approach of Barlow et al. (7, 8). This approach involves Cox
regression, with case and control observations weighted by
their inverse sampling probabilities (9). A major drawback
to both approaches is that they ignore information on cohort
members not sampled as cases or controls. Survey statisticians
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(10) and biostatisticians (11) have each proposed methods for
recovery of this information by adjusting the sampling
weights. These methods are now implemented in the freely
available R statistical system (http://cran.r-project.org/) in the
NestedCohort package of Mark and Katki (12) and the survey
package of Lumley (13). Both packages accommodate strati-
fied random sampling of cases and controls on the basis, for
example, of rare covariate patterns (14).

In this paper, our goal is to demonstrate important
strengths as well as limitations of these newly available tools.
We compare results obtained by using adjusted weights with
those obtained with standard weights in a reanalysis of data
from a published case-cohort study and in analyses of simu-
lated case-cohort samples.

The Atherosclerosis Risk in Communities (ARIC) study
(15) often uses case-cohort methodology. The cohort con-
sists of 15,972 participants under active follow-up since
1987–1989 for atherosclerosis and its clinical sequelae.
Using samples of stored biologic tissue, ARIC investigators
studied candidate genotypes (16–18) and biomarkers of in-
flammation (19, 20) as possible risk factors for coronary
heart disease and related endpoints. Ballantyne et al. (20)
identified 12,819 ARIC participants who were free from
coronary heart disease and had plasma samples taken at
their second follow-up visit (1990–1992). Stored plasma
for participants who developed incident coronary heart dis-
ease prior to 1999, or who were selected in a cohort random
sample, was assayed for levels of lipoprotein-associated
phospholipase A2 (Lp-PLA2) and C-reactive protein. Cohort
sampling was stratified into 8 strata based on age, sex, and
ethnicity. After exclusions because of missing data, 608
cases and 740 noncases remained for estimation of hazard
ratios for coronary heart disease in tertiles of Lp-PLA2 and
C-reactive protein using a weighted Cox regression analysis
appropriate for stratified case-cohort studies (7, 14).

As do many epidemiologists, ARIC investigators (16–20)
ignored most of their data. Apart from known sampling
fractions, their analyses involved only those cases or con-
trols sampled as part of the substudy. Since cases were de-
liberately overrepresented, the substudy included many of
the most informative subjects. Nonetheless, important vari-
ables in the regression models were ignored for nearly 90%
of the cohort. The Ballantyne et al. study (20) ignored data
on smoking history, low density lipoprotein and high density
lipoprotein cholesterol, and diabetes, all of which were used
for secondary adjustment of the hazard ratios for Lp-PLA2

and C-reactive protein. Other data items were ignored that,
although not used in the regression, were correlated with
biomarkers measured for sampled participants and hence
provided potentially valuable information about them.
Through reanalysis of the Ballantyne et al. data, we dem-
onstrate in the sequel how main cohort data may be incor-
porated into the analysis to improve precision of regression
coefficients.

Survey statisticians recognize the case-cohort study as
a 2-phase, stratified sampling design. The first-phase sample
is the cohort itself, considered a sample from some target
population. The second-phase sample, stratified by using
information from phase 1, consists of cases and controls
in the subcohort. We first describe 2-phase designs and sum-

marize some statistical properties of weighted estimates.
Next, we report reanalyses of the Ballantyne et al. (20)
case-cohort data. Finally, we report results of analyses of
simulated case-cohort data from the National Wilms Tumor
Study (NWTS) (21, 22). The NWTS data, R code for the
survey package, and related tutorials are available online
(http://faculty.washington.edu/norm/IEA08.html).

TWO-PHASE STUDIES AND WEIGHTED ANALYSES

Two-phase stratified sampling

Suppose the N subjects in the cohort (phase 1 sample) are
classified into K strata on the basis of information known for
everyone and that the numbers Nk of subjects in each stratum
are determined (N ¼ N1 þ N2 þ � � � þ NK). For the substudy
(phase 2 sample), nk � Nk subjects are sampled at random
without replacement (no subject is sampled more than
once) from the kth stratum, with the sampling from each
stratum conducted independently. The total number of
subjects sampled at phase 2, for whom biologic material is
analyzed or additional information otherwise obtained,
is n ¼ n1 þ n2 þ � � � þ nK . Associated with each subject
is a sampling weight Nk/nk depending on only the subject’s
stratum. In a weighted analysis, the contribution from a sam-
pled subject is up-weighted so the total contribution from
each stratum is representative of the total contribution assum-
ing all cohort members from that stratum had been analyzed.

Table 1 illustrates the design using the ARIC data. The
slight differences in totals from those reported previously
(20) arise because some participants, including 9 in the
original substudy, had not given proper consent. A few
more, including 3 in the original substudy, lacked informa-
tion on body mass index. This factor was the most important
predictor of C-reactive protein and hence a key auxiliary
variable. After exclusions for missing values of baseline
variables for main cohort subjects, and for missing bio-
marker variables at phase 2, N ¼ 12,345 remained in the
main cohort and n ¼ 1,336 remained at phase 2, including
604 coronary heart disease cases. Sampling of the original
subcohort had been stratified on sex, race, and age. The
cases were treated as an additional, ninth stratum (K ¼ 9)
in our analyses. Table 1 shows the distribution of cohort and
sampled subjects over the strata, with the standard sampling
weights in the last row. Since they are based on observed
sampling fractions, the weights are slightly different and
more accurate than those used previously (20). The weight
of 1.2 for cases illustrates the importance of being able to
handle sampling of both cases and controls in case-cohort
analyses (23).

Weighted estimates and their sampling properties

Let b denote the regression coefficients (log hazard ratios)
in the Cox model. If complete data on covariates and event
times were available for allN cohort subjects, wewould fit the
model to the cohort data to obtain an estimate b̃N . Ordinarily,
b̃N cannot be observed. Aweighted analysis of the n subjects
sampled at phase 2, however, yields an observable estimate
b̂nwhose sampling variance is the sum of 2 components: 1) the
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variance of the unobserved b̃N , which represents the usual
uncertainty in generalizing results for the N cohort subjects
to the target population; and 2) the variance of b̂n � b̃N , which
represents the additional uncertainty from not having com-
plete data for the entire cohort. We refer to these as the phase
1 and phase 2 components of variance, respectively.

Improving precision

Survey statisticians adjust theweights to reduce the phase 2
variance when auxiliary variables V, correlated with variables
in the regression model, are available for all subjects. The
simplest method, poststratification, replaces the K sampling
strata with a finer stratification incorporating the auxiliary
information. In an ARIC case-cohort study of glutathione-S-
transferase genotypes as a susceptibility factor in smoking-
related coronary heart disease, smoking data were ignored for
all but 10% of subjects even though smoking was a risk factor
of primary interest (16). Poststratification on smoking history
would have improved the analysis. Poststratified analyses of
simulated case-control data have been reported for the NWTS
cohort (24).

Calibration (25, 26) adjusts the weights to be as close as
possible to the sampling weights subject to the constraint
that the cohort total of V is equal to its weighted sum among
sampled subjects. Estimation (11) uses as weights the recip-
rocals of inclusion probabilities estimated from a logistic
regression model that predicts which cohort subjects are
sampled at phase 2. Here, the requirement is that the ob-
served total of V in the sample equals the predicted total: the
sum over the cohort of V multiplied by the estimated sam-
pling probability. It is important to include the sampling
strata as a factor (‘‘dummy’’ variables) in the logistic model
to account for the bias in the phase 2 sample. If dummy
variables corresponding to the original or finer (poststrati-
fied) strata are the only auxiliary variables, calibrated and
estimated weights are identical, being equal to inverse sam-
pling fractions for each stratum. Adjusted weights increase
precision through their dependence on the auxiliary infor-
mation available for all cohort subjects.

As described in a companion paper for statisticians (27),
Cox regression coefficients obtained by using calibrated and
estimated weights have very similar theoretical properties.
Both are consistent and asymptotically normal. Depending
on the choice of auxiliary variables, both can attainminimum

variance in the class of ‘‘augmented’’ inverse probability
weighted estimates (11, 12). To approximate the optimum
choice of auxiliary variables, we adopted the ‘‘plug-in’’
approach of Kulich and Lin (28). It requires separate models
for prediction of the values of each partially missing variable
(ascertained for phase 2 subjects only) and is likely of great-
est usewhen there are only 1 or 2 such variables. The method
has 4 steps:

1. Develop weighted regression models from the phase 2
data for prediction of the partially missing variables from
information available for all subjects. (For the Ballantyne
et al. study (20), this means prediction of Lp-PLA2 and
C-reactive protein.)

2. Use the prediction equations to impute values of the
partially missing variables for all cohort subjects.

3. Using imputed values for the partially missing variables
and known values for other variables, fit the Cox model to
the whole cohort and determine the imputed delta-beta
(estimated influence function contribution obtained as
a residual in theR coxph program) for each cohort subject.

4. Use the imputed delta-betas as auxiliary variables in cal-
ibration or estimation of the weights, and estimate b by
weighted Cox regression analysis of the phase 2 data.

As demonstrated below, adjustment by calibration or es-
timation has the potential to reduce the phase 2 variances for
some regression coefficients to negligible levels. The var-
iances for others are left virtually unchanged.

RESULTS

Reanalysis of ARIC data

Similar procedures were followed and similar results ob-
tained for the separate analyses of C-reactive protein and
Lp-PLA2. Following the 4 steps just described, we first pre-
dicted Lp-PLA2 by using linear regression on white race,
male sex, low density lipoprotein cholesterol, high density
lipoprotein cholesterol, systolic and diastolic blood pres-
sures, and the sex 3 race interaction (coefficients not
shown). The prediction was not very successful, with
R2 ¼ 0:28 (Figure 1). Nonetheless, it was used to impute
Lp-PLA2 (step 2) and thus to calculate auxiliary variables
(step 3) used for adjustment of weights.

Table 1. Stratified Sampling Design for the Atherosclerosis Risk in Communities Study

Non-CHD Cases (Controls)

CHD
Cases

Totals,
no.

Black White

Female Male Female Male

Age <55
Years

Age ‡55
Years

Age <55
Years

Age ‡55
Years

Age <55
Years

Age ‡55
Years

Age <55
Years

Age ‡55
Years

Stratum (k) 1 2 3 4 5 6 7 8 9

Cohort Nk 1,133 719 598 393 2,782 2,213 1,959 1,818 730 12,345

Sample nk 59 54 42 71 88 154 117 147 604 1,336

Weights Nk/nk 19.2 13.3 14.2 5.5 31.6 14.4 16.7 12.4 1.2

Abbreviation: CHD, coronary heart disease.
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Results are shown in Table 2. Variances for each regres-
sion coefficient are obtained by summing the squares of the
phase 1 and phase 2 standard errors. Hazard ratios and 95%
confidence intervals for the middle and upper tertiles of
Lp-PLA2 relative to the lowest were 1.05 (95% confidence
interval: 0.76, 1.46) and 1.18 (95% confidence interval:

0.85, 1.64), respectively, when estimated by using standard
weights. The corresponding estimates reported by ARIC—
in model 2, Table 4 of Ballantyne et al. (20)—were 1.02
(95% confidence interval: 0.73, 1.43) and 1.16 (95% con-
fidence interval: 0.85, 1.65). In spite of differences in data
sets and the fact that ARIC used slightly different sampling
weights and a slightly different method of variance estima-
tion (7), the results of the reanalysis were close to the orig-
inal, particularly with regard to precision as measured by
widths of the confidence intervals.

When standard weights were used, the contribution of
phase 2 sampling to the overall variance exceeded the phase
1 contribution for all but 1 coefficient. For the adjustment
covariates known for all, both calibration and estimation
reduced the estimated phase 2 standard error dramatically,
calibration consistently more so. The overall standard errors
were very similar to the estimates (phase 1 standard error) if
complete data had been available for all subjects. For the
tertiles of Lp-PLA2, however, there was virtually no change;
in fact, both adjustment methods resulted in very slight in-
creases in the phase 2 standard error. The phase 1 standard
errors were nearly identical for the 3 weighting schemes,
reflecting the fact that they all represent variability in the
unobserved b̃N .

Results for C-reactive protein (not shown) were similar,
with R2 ¼ 0.21. The increase in precision by adjustment of
the weights was again confined to coefficients of baseline
covariates.

To investigate possible improvement in precision when
studying the interaction between a partially missing cova-
riate and 1 available for everyone, we searched for baseline
covariates that exhibited an interaction with Lp-PLA2. Table 3
reports findings for a model having a grouped linear3 linear
interaction with systolic blood pressure. When standard
weights were used, the hazard ratios estimated separately

Figure 1. Scatter plot and nonparametric regression curve showing
predicted values of lipoprotein-phospholipase A2 (lg/L) plotted
against measured values. Predicted values are based on weighted
linear regression from phase 2 data (the Atherosclerosis Risk in Com-
munities case-cohort study).

Table 2. Results of Reanalysis of Data From a Case-Cohort Study of Lp-PLA2: the

Atherosclerosis Risk in Communities Studya

Model Term
Standard Weights Calibrated Weights Estimated Weights

Coef SE1 SE2 Coef SE1 SE2 Coef SE1 SE2

Age in years/10 0.420 0.073 0.075 0.393 0.073 0.012 0.432 0.073 0.015

Male sex 0.762 0.088 0.091 0.791 0.088 0.019 0.742 0.088 0.022

White race 0.037 0.098 0.090 0.159 0.099 0.016 0.101 0.100 0.029

Former smoker �0.421 0.093 0.126 �0.464 0.092 0.017 �0.459 0.092 0.020

Never smoked �0.552 0.099 0.129 �0.557 0.099 0.016 �0.622 0.099 0.020

SBP/100 1.554 0.207 0.267 1.539 0.208 0.046 1.580 0.207 0.048

LDL-C/100 0.777 0.106 0.151 0.786 0.106 0.045 0.748 0.108 0.047

HDL-C/100 �2.539 0.329 0.392 �2.361 0.329 0.052 �2.736 0.334 0.060

Diabetes 0.572 0.092 0.127 0.738 0.090 0.019 0.531 0.093 0.026

Lp-PLA2 0.310– 0.052 0.110 0.126 0.054 0.111 0.127 0.050 0.111 0.127

Lp-PLA2 0.422– 0.163 0.108 0.129 0.182 0.108 0.130 0.154 0.108 0.130

Abbreviations: Coef, regression coefficient; HDL-C, high density lipoprotein cholesterol (mg/L);

LDL-C, low density lipoprotein cholesterol (mg/L); Lp-PLA2 0.310– and 0.422–, approximate

middle and upper tertiles, respectively, of lipoprotein-associated phospholipase A2 (lg/L); SBP,
systolic blood pressure (mm Hg); SE1, phase 1 standard error; SE2, phase 2 standard error.

a N ¼ 12,345; n ¼ 1,336 including 604 coronary heart disease cases.
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for the middle and upper tertiles of Lp-PLA2 relative to the
lowest, for subjects with average systolic blood pressure, were
exp(0.137) ¼ 1.15 (95% confidence interval: 0.81, 1.62) and
exp(0.303) ¼ 1.35 (95% confidence interval: 0.95, 1.92), re-
spectively. This finding was consistent with a grouped linear
model having a hazard ratio of approximately 1.156 per
tertile. The interaction coefficient suggested that the per-tertile
hazard ratio decreased by a factor of exp(�0.0672) ¼ 0.935
for each 10-mm Hg increase in systolic blood pressure. Al-
though of clinically important magnitude, this decrease was
not statistically significant (Z ¼ �1.89, P ¼ 0.062).

Calibration and estimation of the weights reduced the
phase 2 standard errors of the adjustment covariates (not
shown) and left effectively unchanged those for the main
effects of Lp-PLA2 (Table 3), just as observed for the no-
interaction model. There was, however, a reduction of about
10% in the phase 2 standard error of the interaction coeffi-
cient. This reduction led to changes in the associated test
statistics, Z ¼ �2.10, P ¼ 0.036 for calibration and Z ¼
�2.02, P ¼ 0.043 for estimation, both now significant. Be-
cause systolic blood pressure was selected from among sev-
eral covariates examined for interaction effects, it would be
imprudent to draw substantive conclusions from this re-
analysis. It serves primarily to illustrate the potential for

improvement in precision of interaction coefficients, even
when there is none for the corresponding main effects.

Simulated case-cohort data

The NWTS cohort consisted of 3,915 patients with Wilms
tumor diagnosed during 1980–1994 and followed until the
earliest of disease progression or death for ‘‘event-free sur-
vival.’’ Baseline covariates available for all patients from the
registering institutions included ‘‘favorable’’ vs. ‘‘unfavor-
able’’ histology, stage of disease (I–IV), age at diagnosis,
and tumor diameter. Histology evaluated by the central ref-
erence laboratory was also available for everyone, which
allowed repeated drawing of stratified phase 2 samples in
which central histology was treated as known for sampled
subjects only. Since the normally unobservable b̃N was
available, the phase 2 variance could be determined empir-
ically. Institutional histology was strongly related to central
histology: of 439 unfavorable history tumors (central labo-
ratory), 324 were classified unfavorable history by the pa-
tient’s institution, for a sensitivity of 74%; 3,418 of 3,476
favorable histology tumors were correctly classified, for
a specificity of 98%.

Sixteen strata were formed on the basis of event-free sur-
vival, stage, institutional histology, and age (2 groups each).

Table 4. Stratified Sampling Design for the National Wilms Tumor Study

Totals,
no.

Favorable Histology Unfavorable Histology

Stage I–II Stage III–IV Stage I–II Stage III–IV

Age <1
Yeara

Age ‡1
Years

Age <1
Year

Age ‡1
Years

Age <1
Year

Age ‡1
Years

Age <1
Year

Age ‡1
Years

Main Study Cohort or Phase 1 Sample (N ¼ 3,915)

Cases 669 57 232 10 208 15 41 29 77

Controls 3,246 452 1,620 40 914 12 107 2 99

% Relapsed 17.1 11.2 12.5 20.0 18.5 55.5 27.7 93.5 43.8

Phase 2 Sample (n ¼ 1,329)

Cases 669 57 232 10 208 15 41 29 77

Controls 660 120 160 40 120 12 107 2 99

a Age in years at diagnosis of Wilms tumor.

Table 3. Results of Reanalysis of Data From a Case-Cohort Study of Lp-PLA2: Interaction With

SBP

Model Terma
Standard Weights Calibrated Weights Estimated Weights

Coef SE1 SE2 Coef SE1 SE2 Coef SE1 SE2

Lp-PLA2 0.310– 0.137 0.118 0.130 0.139 0.119 0.131 0.138 0.118 0.131

Lp-PLA2 0.422– 0.303 0.121 0.132 0.306 0.122 0.131 0.299 0.121 0.131

Lp-PLA2 3 SBP �0.672 0.204 0.302 �0.681 0.205 0.274 �0.692 0.205 0.274

Abbreviations: Coef, regression coefficient; Lp-PLA2 0.310– and 0.422–, approximate middle

and upper tertiles, respectively, of lipoprotein-associated phospholipase A2 (lg/L); SBP, systolic
blood pressure (mm Hg); SE1, phase 1 standard error; SE2, phase 2 standard error.

a The covariates age in years/10, male sex, white race, former smoker, never smoked, SBP/

100, low density lipoprotein cholesterol/100, high density lipoprotein cholesterol/100, and diabetes

were also included in the model, but results for only Lp-PLA2 and its interaction with SBP are

shown. The interaction term used ‘‘grouped linear’’ values of 1, 2, 3 for the 3 tertiles of Lp-PLA2

and centered SBP (in units of 100 mm Hg) at its mean value.
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All subjects were sampled from the 13 smallest strata: all
cases, all institutional unfavorable history, and all patients
less than 1 year of age with stage III–IV disease (Table 4).
Since the 13 strata all had a sampling weight of 1, they could
be collapsed into a single analysis stratum with no effect on
the results. Random samples of sizes 120, 160, and 120 were
selected from the 3 largest strata to yield a phase 2 sample
consisting of all 669 cases and 660 sampled controls. Kulich
and Lin (28) used nearly the same sampling scheme with the
NWTS data to evaluate their ‘‘combined, doubly weighted’’
estimate for the same problem. Their sample sizes varied,
with expectations of 120, 160, and 120 for the 3 sampled
strata, which would be expected to decrease precision very
slightly in comparison with fixed sample sizes.

Ten thousand stratified phase 2 samples were drawn in
this fashion. For each, we estimated Cox regression coeffi-
cients by using standard weights, calibrated weights, and
estimated weights following the 4-step procedure. The
Cox and imputation models, which used different variable
codings to achieve the best fit for their distinct purposes,
were again those of Kulich and Lin (28). The Cox model
included central histology, age as a piecewise linear variable
with change point at 1 year, stage (III–IV vs. I–II), diameter,
and the interactions histology 3 age and stage 3 diameter.
Central histology (unfavorable history) was imputed by us-
ing institutional histology, stage (IV vs. I–III), age (>10
years vs. �10 years), tumor diameter (linear), and the in-
teraction histology 3 stage in the logistic regression equa-
tion. The R2 value between true and predicted unfavorable
history was 0.59. Imputed delta-betas, augmented by addi-
tion of 1 for numerical reasons, served as auxiliary variables
for calibration. For estimation, delta-betas multiplied by
sampling weights served as auxiliaries.

Results are shown in Table 5. The first 2 columns display
the coefficients b̃N estimated by using all 3,915 patients and
the corresponding robust standard errors (29). Averages of
b̂n over the 10,000 simulations (not shown) were close to
b̃N , regardless of adjustment method. The standard errors

calculated by the R survey package incorporate separate
estimates of the robust phase 1 and ‘‘design-based’’ phase
2 variance components (30). The mean squared error of
estimation of b̃N by b̂n is the observed phase 2 variance
component.

Results agreed well with the sampling properties outlined
above. Consider, for example, the standard errors for
unfavorable history shown in the first row of Table 5.
The total variance estimated by using standard weights,
0.5372 ¼ 0.288, was approximately equal to the sum of the
phase 1 and phase 2 components, 0.5032 þ 0.1922 ¼ 0.290.
Since this relation holds only in expectation and in large
samples, of course, not all table entries exhibit it so closely.

Calibration and estimation both improved precision.Gains
were greatest for covariates known for all: age, stage, and
tumor diameter. Ratios of standard to adjusted square root of
the mean squared error for the 5 model terms involving these
covariates alone ranged from 3.0 to 4.4 (median ¼ 3.5) for
calibration and from 1.7 to 2.7 (median ¼ 2.3) for estima-
tion. In several instances, the phase 2 variancewas negligible
in comparison with phase 1. Substantial gains were also
achieved for the unfavorable history main effect, whose
phase 2 standard error was reduced by 29%, andmoremodest
gains for the interaction effect of unfavorable historywith the
initial slope of age. The phase 2 standard error for the in-
teraction of unfavorable history with age beyond 1 year was
effectively unchanged, but the lack of change matters little
in view of the small, statistically insignificant coefficient.
Overall performance using calibrated and estimated weights
was quite comparable to that of the ‘‘combined, doubly
weighted’’ estimate shown in Table 3 of Kulich and Lin (28).

DISCUSSION AND CONCLUSIONS

Substantial gains were observed from calibration and es-
timation of the sampling weights in the simulated NWTS
case-cohort studies. While most pronounced for baseline

Table 5. Results From 10,000 Simulated Phase 2 Samples From the National Wilms Tumor

Study

Model Term

Phase 1
Estimates

Summary Statistics for Phase 2 Estimates

Standard
Weights

Calibrated
Weights

Estimated
Weights

b̃N SE1 ASE SMSE ASE SMSE ASE SMSE

Unfavorable history 4.042 0.503 0.537 0.192 0.519 0.136 0.518 0.139

Age0 �0.661 0.321 0.360 0.162 0.325 0.037 0.324 0.061

Age1 0.104 0.015 0.026 0.021 0.017 0.006 0.017 0.012

Stage 1.346 0.259 0.346 0.237 0.270 0.072 0.271 0.103

Diameter 0.069 0.015 0.021 0.015 0.015 0.005 0.015 0.007

Stage 3 diameter �0.076 0.020 0.029 0.021 0.021 0.006 0.021 0.009

Unfavorable histology 3 age0 �2.635 0.552 0.612 0.285 0.592 0.243 0.590 0.249

Unfavorable histology 3 age1 �0.058 0.033 0.051 0.047 0.049 0.047 0.048 0.049

Abbreviations: Age0 and Age1, piecewise linear terms for age at diagnosis (years) before and

after 1 year, respectively; ASE, average (total) standard error; diameter, diameter (cm) of the

excised tumor; SE1, robust phase 1 standard error; SMSE, square root of mean squared phase 2

error; stage: binary indicator of stage III–IV disease.
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covariates known for all, important gains were also observed
for the main effect and an interaction involving unfavorable
history. These gains were possible because therewas a strong
surrogate, institutional histology, for the partially missing
variable. By reducing the number of slides sent to the central
reference laboratory from 3,915 to 1,329, and thereby low-
ering costs, the investigators could in principle have esti-
mated the hazard ratios of interest with little loss of
precision. (Central histology was essential, of course, for
many other purposes.)

Comparable gains were observed for only baseline covar-
iates upon reanalysis of the ARIC case-cohort data, most like-
ly because of lack of good predictors for Lp-PLA2 and
C-reactive protein. Our limited experience in other contexts
indicates that R2 for prediction of the partially missing vari-
able should be at least 0.5 to substantially improve precision of
the corresponding regression coefficient. Modest, but impor-
tant gains were evident, however, for the linear interaction of
Lp-PLA2 with systolic blood pressure. This finding suggests
that the methodology might usefully be applied to the ARIC
case-cohort study of glutathione-S-transferase and smoking
(16) and to other studies of genotype-environment interaction
in which the environmental factor is known for everyone.
Even if there is no obvious improvement in precision of esti-
mation of principal risk factors, the knowledge that they have
made more complete use of the available information should
give epidemiologists greater confidence in their results.

Our simulations demonstrated that efficiency gains from
weighted Cox regression with calibrated or estimated
weights were similar to those found with the more compli-
cated estimate of Kulich and Lin (28). It too was designed to
achieve near optimality in the class of augmented inverse
probability weighted estimates. Theoretically, the best
choice for auxiliary variables would be conditional expec-
tations, given the phase 1 data, of influence function con-
tributions for the Cox model (11). We approximated these
unknown quantities by using imputation, as described in the
4-step procedure. Further numerical work involving alterna-
tive choices for auxiliary variables, and further practical
comparisons of calibration and estimation, are warranted.

The goal of our case-cohort analyses was to approximate
as closely as possible results that we would have obtained
had we been able to fit the standard (unweighted) Cox model
to complete data for the entire cohort. Such results are usu-
ally expressed as point and interval estimates of model pa-
rameters under the assumption that the cohort is a simple
random sample from a target population described by the
model. In fact, the ARIC cohort was constructed by survey
sampling of approximately 4,000 adults 45–64 years of age
from each of 4 US communities. The target population is
best viewed as a hypothetical population comprising a large
mix of subjects ‘‘like those’’ in the 4 communities (31). If
results differed systematically between communities, the
appeal of generalizing to this target would be lessened.

We considered Cox regression modeling of stratified case-
cohort data. The principle of increasing precision through
adjustment of sampling weights applies much more gener-
ally. The R survey package accommodates a variety of anal-
yses of data from 2-phase stratified samples including
estimation and log-linear modeling of population frequen-

cies in contingency tables and estimation of regression co-
efficients in generalized linear models. Adjustment of
sampling weights using auxiliary variables enhances preci-
sion in these analyses. The NestedCohort package is re-
stricted to Cox regression and adjustment by estimation.
However, it provides estimates of the baseline (cumulative)
hazard function and thus of failure probabilities, which are
important in many applications (12).

Stratified case-cohort studies involve data missing by de-
sign. Sometimes, as for biomarkers in the ARIC study, phase 2
data are also missing by chance (12). The methods proposed
here assume that, within each stratum, the phase 2 subjects
with complete data still constitute a random sample from the
cohort. This assumptionmay be relaxed by adding variables to
the logistic model used to predict which subjects are sampled
for phase 2 and have complete data. Of course, one can never
be certain that the probability of having complete data does not
further depend on the missing values themselves, so the pos-
sibility of bias remains when data are missing by chance.

Stratified case-cohort studies based on large cohorts are
increasingly common designs in epidemiology. Analyses to
date have largely ignored relevant information available for
the parent cohort. Improvements in statistical methodology
described here, and their implementation in the freely avail-
able R software system, can help prevent this waste of valu-
able information. We have demonstrated that adjustment of
sampling weights via calibration or estimation, using infor-
mation available for the entire cohort, can sometimes dra-
matically improve the precision of estimated hazard ratios.
We have also provided links to related R code, data sets, and
tutorials and we encourage readers to utilize these tools.
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