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Abstract

Background: Evoked and induced activities are two typical components in the EEG and MEG
time series after a stimulation. While evoked activity is phase-locked to the stimulus, induced
activity is not. Present analysis methods are able to detect non-phase-locked parts of the signal,
however, they do not improve the signal-to-noise ratio (SNR) of these signal components.

Results: We present a new method for estimating induced activation in EEG multi-trial data sets.
It is based on the multiple correlation of single trials. Our method not only detects induced
components within the EEG signal, it also improves their SNR. The method is successfully tested
with artificial data sets. Application to real data is exemplified using EEG data recorded in a photic
driving experiment.

Conclusion: We show that the SNR of the induced activity is enhanced by our method, and the
method found longer lasting induced activity after the end of stimulation compared with a
conventional method.

Introduction
Time series recorded during neuropsychological experi-
ments by means of electroencephalography (EEG) or
magnetoencephalography (MEG) consist of several
signal components. Activation, e.g. oscillations observed
in different frequency bands, can occur spontaneously or
related to a presented stimulus. Stimulus-related oscilla-
tions can be classified into evoked and induced
activations [1-3]. Evoked components arise in all trials
with a fixed temporal delay to the stimulus and are
phase-locked. In contrast, induced activations exhibit a
variance in the temporal delay with respect to the
stimuli and are not phase-locked. However, induced
components are often of interest, e. g. for the evaluation

of neuropsychological experiments, as they refer to
variable cognitive processes in the brain [4-6]. Thus,
methods that can separate coexistent evoked and
induced activity could enhance the understanding of
information processing in the brain. EEG time series are
typically very noisy and possess a low signal-to-noise
ratio (SNR), rendering the detection of the individual
signal components difficult. The most common
approach to separating event-related activities is sam-
ple-wise averaging of the recorded trials in the time
domain. Using this method, the phase-locked evoked
components in the time series can be emphasized
and their SNR can be improved. However, in this
approach, induced components are attenuated by phase
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cancellation and a valuable source of information about
brain activities remains unutilized.

In order to investigate induced activities, more advanced
signal processing methods are required. The method of
event-related synchronization (ERS) and event-related
desynchronization (ERD) was introduced by Pfurtschel-
ler et al. [7-9]. Instead of calculating the mean of
the amplitude of the time series at each sample point,
the instantaneous signal power is averaged to isolate the
induced activities. The instantaneous signal power is
calculated by squaring the amplitude at every sample
point. This method was extended by Kalcher et al. [10]
using the inter-trial variance calculated for all sample
points. A similar approach to estimate induced activa-
tions was used by Tallon-Baudry et al. [6], Herrmann
et al. [4] and Zanto et al. [11] who employed the wavelet
power spectrum to calculate the instantaneous signal
power. A further approach was proposed by McFarland
et al. [12] who utilized a regression based subtraction
procedure to estimate induced activities.

In this paper we present a new method for detecting
induced components in multi-trial EEG time series. The
method is based on estimating and equalizing the phase-
shifts of the non-phase-locked activations in the single
trials. Phase differences are calculated by the simulta-
neous correlation of the recorded single trials. Most
notably, our approach facilitates both the detection of
induced components in the signal, and the improvement
of their SNR.

Methods
The measured time series s(t) consists of the evoked,
phase-locked and the induced, non-phase-locked signal
components e(t) and i(t) respectively, and contains noise
n(t) with an assumed expected value E(nj (t)) = 0,

s t e t i t n tj j j( ) ( ) ( ) ( ).= + + (1)

An estimation of the phase-locked activity and an
improvement of the SNR can be obtained by averaging
over trials sj (t)
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where m is the number of recorded trials. The latency t is
measured with respect to some applied triggers. By
computation of the average value of m trials, the SNR of
the evoked components can be improved by m .
However, activities that are not phase-locked to the
stimulus are also weakened by this averaging but more
slowly than the noise [13].

Methods for the analysis of the induced activity
commonly remove the phase-locked components from
the single trials in a first step

%s t s t s tj j( ) ( ) ( )= − (3)

and the instantaneous power of the remaining signal is
averaged. The instantaneous power of a real-valued time
series can be estimated in several ways. One common
method is to sample-wise square the time series [7-10].
Another method to determine the instantaneous signal
energy uses the analytic signal, calculated by way of the
Hilbert transform ℋ{.} [11,14]. The complex-valued
analytic signal xa(t) of a real-valued time series x(t) can
be calculated by

x t x t x ta( ) ( ) { ( )},= + iH (4)

where i is the imaginary unit. The induced activities in
the time series trials can be estimated by
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For a frequency band selective examination of the time
series by these two methods, the data has to be
bandpass-filtered at the beginning of the analysis.

A further method which provides additional information
about the time-frequency distribution of the signal
power is based on averaging the wavelet power spectra
[4,9,11]. The wavelet power spectrum of a real-valued
time series is the squared absolute value of the complex-
valued wavelet transform Wf{.} at a certain frequency f
[15]. The induced activities are estimated by

i t f
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Using the above methods phase-locked and non-phase-
locked activations can be separated. However, one
common drawback of these methods is that not only
the instantaneous power of the induced activities but
also the instantaneous power of the noise is averaged.
This way, the SNR of the induced components cannot be
improved.

To alleviate this problem, we propose the following
multiple correlation method. First, phase differences of
the non-phase-locked activations between the single
time series in the investigated time segment and
frequency band are estimated. A zero-phase bandpass
filter BP(.) is applied to the time series %s tj( ) and the
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time segment of the data under investigation is masked
using a window function WF(.),

ˆ ( ) ( ( ( ))).s t s tj j= WF BP % (7)

Then, the correlation matrix R(τ1,..., τm) of the time series
ˆ ( )s tj
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with the coefficients of correlation
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is calculated. The parameters τ1,..., τm describe the
temporal shift in sample points applied to the time
series. Maximizing the sum of the coefficients of
correlation underneath the main diagonal of R, one
obtains a set of shift parameters (τ1,..., τm-1) for which all
pairs of time series correlate maximally
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The time series ˆ ( )s tm is used as fixed reference of the
correlation.

The optimization problem is solved using the differen-
tial evolution method [16], which is a stochastic,
population-based optimization algorithm. The m - 1
parameters of the optimization problem are stored in a
vector. Several of these vectors are used to compose a
population of NP individuals xp n

g
, where p = 1,..., NP is

the index of the individuals of the population, g is the
corresponding generation and n = 1,..., m - 1 is the index
of the parameter within the individuals. The differential
evolution method consists of four steps, the initializa-
tion, the mutation, the recombination and the selection.
In the initialization step, the first generation of the
population xp n,

1 is randomly created considering the
domain of the parameters. In the mutation step, NP new
vectors vp

g with p = 1,..., NP are generated using three
randomly chosen, mutually different individuals
x x xa
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F Œ (0, 2) is the scaling factor, which controls the
amplification of the differential variation. During
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r Œ [0, 1] is a random number and s is the crossover
probability, which controls the recombination. Finally,
in the selection step, the fitness of the original and the
newly created individuals are compared and the next
generation of a population is generated
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FIT(.) is the fitness function. The mutation step, the
recombination step and the selection step are iterated
until a termination condition is fulfilled. In the
literature, a population size between NP = 5·D and
NP = 10·D is recommended [16] and a population size
NP < 2·D should be avoided [17], where D is the
number of parameters of the optimization problem. In
our application, a population size of 50 elements was
found to be a good tradeoff between robust and correct
estimation of the maximum obtained in maintainable
computing time. Further, a scaling factor of 1.0 was
chosen, given that we face an integer optimization
problem. Note that for our application, the implementa-
tion of this algorithm in the computer algebra system
MATHEMATICA was used. We restricted the search space for
the parameters τ1,..., τm to integers within ± half the wave
length of the lowest frequency of the non-phase-locked
activations which remains in the time series ˆ ( )s tj . This is
the lower cutoff frequency of the bandpass filter. This
way, only the phase variability of the induced activation
is to be determined. The time series %s tj( ) are corrected
with estimated phase-shift parameters (τ1,..., τm-1) yield-
ing scj(t). By averaging the time series scj(t), one obtains
an estimation of the induced activity
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Data
We applied the multiple correlation method to data sets
from a previously performed EEG experiment addressing
cortical activation related to flicker stimuli [18]. The
experiment employed a visual stimulation using repeti-
tive flashes of light with a certain frequency. Such
stimulation can lead to an entrainment of the alpha
rhythm in the visual cortex which is also called photic
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driving. During stimulation, the alpha frequency of most
subjects is changed towards the stimulation frequency
[19], and it is phase-locked. This effect is preserved shortly
after offset of the stimulation [20]. Thereafter the phase-
locking to stimulation frequency trails away and the alpha
frequency changes back to the individual rhythm.

For proof of concept the time series of a single subject
(female, age 32, individual alpha rhythm at 10.7 Hz)
were analyzed. During the experiment, the subject had
her eyes closed and was stimulated with a periodically
flickering light. EEG (32 channels, Compumedics Neu-
roscan) signals were recorded simultaneously. Data were
sampled at 1000 Hz and hardware filtered with a pass-
band from 0.1 to 300 Hz. The alpha rhythm generally
shows a large variability between subjects [21]. There-
fore, the individual alpha frequency for the subject was
estimated at rest condition. Then, fifteen individual
stimulation frequencies were specified with fixed ratios
of flicker frequency to individual alpha rhythm ranging
from 0.4 to 1.6. Twenty trains of each stimulation
frequency were presented to the subject. Every train
comprised forty periods of flicker light. Two trains were
separated by a rest period of 4 seconds.

Validation
Artificial time series were employed to validate the
multiple correlation method. Specifically, twenty test
data sets consisting of fifteen time series with 2000
samples with a sampling period of 1 ms were used. The
time domain comprised -1000 ms to 999 ms. The design
of the test data was chosen to simulate the behavior of the
cortical activity related to flicker stimuli, recorded during
the photic driving experiment. Each time series was
subdivided into three sections, which correspond to the
entrainment of the alpha rhythm, the change back to the
alpha rhythm and the individual alpha oscillation,
respectively. The first part has a duration from -1000 to
0 ms and is a harmonic oscillation at 15 Hz. The second
part of the artificial time series is a linear chirp. It starts at
the frequency of 15 Hz and ends at 10 Hz. The duration of
the chirp is uniformly distributed in the range of 50 to
450 ms, which leads to an uniformly distributed phasing
of the 10 Hz oscillation in the third part of the time series,
see Figure 1. So the phase-shift of the third part of every
time series in the data set is known and will be used to
validate the multiple correlation method. The artificial
time series were disturbed by additive Gaussian noise
with a SNR of 10: 1, 5: 1, 2.5: 1, 2: 1, 1: 1, 0.5: 1 and 0.25:
1, where the following definition of SNR is used

SNR = =PS
PN

PS

Ns 2
. (15)

PS and PN are the power of signal and power of noise
respectively, s N

2 is the variance of noise.

For the analysis of the artificial time series, the phase-
locked activities of the time series were removed first,
see equation (3). Then, the multiple correlation method
was applied to the time series in order to estimate the
phase-shift parameters. The search space was restricted to
± 50 ms. The root mean square error (RMSE) of the
known phase-shift parameters regarding the reference
before and the RMSE of the remaining phase-shift after
multiple correlation analysis were estimated
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tj with j = 1,..., m - 1 are the estimated phase-shifts of the
time series ˆ ( )s tj and tref is the phase-shift of the
reference time series ˆ ( )s tm .

For every SNR twenty runs were performed and the mean
μRMSE and the standard deviation sRMSE of RMSE1,...,
RMSE20 of the single runs were calculated and compared
with the uncorrected data, see Table 1 and Figure 2. As
can be seen, by applying multiple correlation analysis to
the artificial time series, the phase-shift of the non-
phase-locked signal components could be considerably
reduced, even for data sets with a low SNR.

Figure 1
Artificial time series. The frequency characteristic of the
artificial time series used for the validation of the presented
method. It consists of three parts. The first part is a
harmonic oscillation at 15 Hz. The second part is a linear
chirp which starts at a frequency of 15 Hz and ends at a
frequency of 10 Hz. The duration of the chirp is uniformly
distributed between 50 and 450 ms. The third part is a
harmonic oscillation at a frequency of 10 Hz with an
uniformly distributed phasing.
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Application
For the analysis of the time series, phase-locked activities
were first estimated and removed from every single train,
resulting in %s tj( ) see equations (2) and (3). The main
focus of our analysis of the non-phase-locked activities
was on the alpha rhythm in the time segment from 0 to
512 ms after stimulus. Therefore, before employing the
correlation method, the single time series were band-
pass-filtered from 2 to 20 Hz, comprising all possible
stimulation frequencies. The time segment from 0 to 512
ms after stimulus offset was masked using a rectangular
window. For determining the shift parameters, the search
space for (τ1,..., τm) was restricted to ± 50 ms. The
estimated mean of the shift parameters (τ1,..., τm) was
t = -2.7 ms with a standard deviation sτ = 35.4 ms, the
minimum and the maximum were -50 ms and 50 ms,
respectively, which was the border of the search space.
Afterwards, the trains %s tj( ) were corrected by the
estimated shift parameters (τ1,..., τm). The resulting
time series scj(t) were averaged, see equation (14), and
time frequency representations were calculated.

The adaption of the alpha rhythm to the stimulation
frequency can be analyzed by estimating the phase-
locked activity. Results of this part of our analysis are
presented in Figure 3a. In this example, the subject was
stimulated at a frequency corresponding to 1.1 times the
individual alpha rhythm previously determined at rest.
The adaption of the alpha rhythm to the stimulation
frequency (white dashed line) can be well observed. The
individual alpha rhythm estimated for the subject is
marked by the black dashed line.

The synchronization of stimulation frequency and alpha
rhythm continues to t = 200 ms after stimulation offset,
and afterwards ends gradually. This behavior can be
investigated by estimating the non-phase-locked activity
after offset of the stimulation. The divergence of the
synchronization of the alpha rhythm starts at t = 100 ms
after stimulation offset. It is reflected in the increasing

non-phase-locked activity in the time segment from
100 ms to 250 ms after stimulus offset, which slowly
decreases to 350ms. As can be seen in Figures 3b and3c, due
to the improvement of the SNR, this phenomenon can
be much better recognized by our correlation procedure
(Figure 3c) in comparison to the conventional procedure
(Figure 3b) for the determination of induced activation.

The signal power of the oscillatory activities around
the stimulation offset at the individual alpha rhythm of
10.7 Hz and at the stimulation frequency of 11.63 Hz is
presented in Figure 3d. The maximum activity at the
stimulation frequency appears at 134 ms after stimula-
tion offset. In contrast, the highest activation at the
individual alpha rhythm occurs 33 ms later at 177 ms
after stimulation offset.

Discussion
We have presented a new method for the detection of
non-phase-locked components in EEG time series. In
contrast to traditional procedures, our novel method
estimates and compensates for the phase-shift of the
induced components in the investigated single trials.
This way, it is possible to isolate induced components in
EEG time series and, moreover, to simultaneously
improve their SNR.

Table 1: Results of validation using artificial time series

SNR μRMSE sRMSE

before multiple correlation analysis 30.57 4.03

after multiple 10: 1 3.67 1.87
correlation analysis 5: 1 3.97 1.50

2.5: 1 3.54 1.65
2: 1 3.81 1.59
1: 1 4.12 1.64
0.5: 1 4.39 1.32
0.25: 1 5.28 1.24

Mean μ and standard deviation s of the RMSE of the known phase-shift
parameters before correction and the remaining phase-shift after
multiple correlation analysis.

10. 5. 2.5 2. 1. 0.5 0.25

5

10

15

20

25

30

35

40

SNR
R

M
SE

after multiple correlation analysis

before multiple correlation analysis

Figure 2
Validation using artificial time series. Box-and-whisker
plot of the RMSE of the phase-shift parameters before
(left-most item) and after applying the multiple
correlation analysis
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Latency adjustment averaging techniques related to the
introduced multiple correlation method were already
used to estimate evoked potentials [22]. In this method a
template of the expected evoked potential is fitted to the
single time trials. A traditional stimulus-locked evoked

potential is used as template and cross-correlation is
applied as similarity measure. Single trials which do not
pass a criterion level are excluded from further analysis.
In the next step the single trials are realigned at the
latency point which correlates best to the template, and

Figure 3
Application to EEG data. Time-frequency representation of the phase-locked and non-phase-locked activities in the
EEG channel O1. The black dashed line marks the alpha rhythm estimated for the subject (10.7 Hz), the white dashed line
the stimulation frequency (11.63 Hz). The black and white solid lines are the harmonics and sub-harmonics. The offset of the
stimulation happens at t = 0. Figure 3a shows the phase-locked activity. Figure 3b shows the non-phase-locked activity
calculated using equation (6). In Figure 3c the non-phase-locked activity estimated using the multiple correlation method is
presented. The non hatched time segment is used for the correlation analysis. In Figure 3d the signal power of the oscillatory
activities around the stimulation offset at the individual alpha rhythm of 10.7 Hz and at the stimulation frequency of 11.63 Hz
is shown. Note the different color maps in the figures.
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the evoked potentials are estimated by these latency
adjusted trials. This method can not be applied to detect
induced activity, however. After removing the phase-locked
components from the single trials they have zero mean. A
template can thus not be determined. In our multiple
correlation method a criterion similar to the criterion level
in the latency adjustment averaging technique [22] could be
established. Trials with an estimated shift parameter on the
border of the search space could be treated as noise and
excluded from the averaging.

The application of the multiple correlationmethod requires
a priori information about the frequency band and about the
time segment where non-phase-locked activity is expected
in the investigated time series. Both parameters, the chosen
frequency band and the time segment, also influence the
optimization step which is employed to estimate the phase-
shifts of the trials. The search space for the optimization can
be constrained depending on the chosen frequency band. If
a certain frequency is investigated, the search should be
restricted to ± half of its wavelength. For investigating a
frequency band, ± half the wavelength of the lower cutoff
frequency should be used. The length of the analyzed time
segment should be greater than or equal to the wavelength
of the observed frequency. On the other hand, it should be
short enough to keep the phase constant in the time
segment of each trial.

Most notably, the SNR of the estimated non-phase-locked
signal components can be improved simultaneously by

m similar to the estimation of evoked activities. This
could not be achieved by traditional methods so far.

For a comprehensive analysis of the common EEG
frequency bands, the time series can be bandpass-
filtered. Afterwards, the multiple correlation method
can be applied to the separated frequency bands.

Note that the computational costs of the procedure
increase exponentially with the number of examined
trials. Therefore, the procedure is suitable only for the
evaluation of experiments with few time series. The
optimization step of the method is particularly time-
consuming. Endeavors to reduce the computing time
should thus focus on this part of the procedure. One
approach could be the use of evolution strategies [23]. At
present the multiple correlation method is programed in
a sequential manner. Some steps, e. g. the calculation of
the correlation matrix and the optimization step, offer
the potential for parallelization which again could
decrease computation time.
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