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 Primary open angle glaucoma (POAG; OMIM 137760)
is the most common form of glaucoma, affecting over 33 mil-
lion people worldwide. It is a progressive optic neuropathy
characterized by a specific pattern of cupping of the optic disc
with correspondent visual field loss and is potentially blind-
ing [1]. There are two types of POAG: juvenile-onset POAG
(JOAG) and adult-onset POAG. By definition, JOAG devel-
ops before 35 years of age [2,3] and is typically inherited as
an autosomal-dominant trait, whereas adult-onset POAG is
inherited as a complex trait [4]. Elevated intraocular pressure
(IOP; greater than or equal to 22 mmHg) is the most common
known risk factor for POAG [5]. However, approximately 25%
of patients have an IOP level lower than this reference level

and are considered to have normal-tension glaucoma (NTG)
[6] or low-tension glaucoma [7].

POAG is genetically heterogeneous, with links to at least
22 genetic loci [8,9]. Among them, 14 loci designated GLC1A
to GLC1N have been defined for POAG using family-based
linkage studies. So far, three genes have been identified for
POAG from the reported genetic loci: myocilin (MYOC,
OMIM 601652) [10,11], optineurin (OPTN, OMIM 602432)
[12], and WD repeat-domain 36 (WDR36, OMIM 609669)
[13]. Only MYOC has been established as directly causative
of glaucoma [14-19], while the role of OPTN is still unclear
due to conflicting evidence [19-23] and WDR36 is considered
to be a modifier gene for glaucoma [24-27]. Mutations in these
three genes account for no more than 10% of POAG cases
[8]. Moreover, at least 16 POAG-associated genes have been
reported from association studies [8]. There is discrepancy in
the reported roles of these genes in the etiology of POAG. It is
therefore evident that additional loci or genes are involved in
the development of POAG.

Recently, we mapped a novel JOAG locus to 5q22.1-q32
in a large autosomal-dominant JOAG family from the Philip-
pines [24]. This five-generation family had a total of 95 mem-
bers, 22 of whom were affected with JOAG. Complete oph-

©2007 Molecular Vision

Fine mapping of new glaucoma locus GLC1M and exclusion of
neuregulin 2 as the causative gene

Bao Jian Fan,1 Wendy Charles Ko,1 Dan Yi Wang,1 Oscar Canlas,2 Robert Ritch,3 Dennis S. C. Lam,1 Chi Pui
Pang1

(The first two authors contributed equally to this publication)

1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; 2Jose B. Lingad
Memorial Regional Hospital, City of San Fernando, Philippines; 3Departments of Ophthalmology, the New York Eye and Ear
Infirmary, New York, and the New York Medical College, Valhalla, NY

Purpose: We recently identified a novel glaucoma locus on 5q22.1-q32, designated as GLC1M, in a family from the
Philippines with autosomal dominant juvenile-onset primary open angle glaucoma (JOAG). No mutations in myocilin
(MYOC), optineurin (OPTN), and WD-repeat protein 36 (WDR36) were found. Neuregulin 2 (NRG2) is an excellent
potential functional as well as positional candidate at GLC1M. The goal of the present study was to evaluate the role of the
NRG2 gene in this JOAG family and unrelated JOAG patients and to refine the critical interval for GLC1M.
Methods: Genomic DNA was obtained from 27 family members. All coding exons and splicing sites of NRG2 were
screened for sequence alterations by polymerase chain reaction (PCR) and DNA sequencing. A cohort of 92 unrelated
JOAG patients and 92 control subjects were genotyped for the three single nucleotide polymorphisms (SNPs) of NRG2 by
PCR and DNA sequencing. Haplotype and segregation analyses were performed in the family. Fisher’s exact test was used
to compare the frequencies of the NRG2 polymorphisms between affected and unaffected subjects in the family and
between unrelated JOAG patients and control subjects.
Results: Three SNPs were identified: c.98G>A (S33N), IVS3+13A>G (rs889022), and c.1976A>G (G659G). None of
them segregated with the JOAG phenotype in this family. No association was found between NRG2 and JOAG in the
case-control study (p>0.12). However, further inspection of the haplotypes in the family localized the NRG2 gene telomeric
to the disease locus. The critical interval of GLC1M was therefore refined to a region of 28 Mb between D5S2051 and
NRG2.
Conclusions: The linkage interval for GLC1M was refined to a smaller region. The NRG2 gene was excluded as the
causative gene for JOAG.

Correspondence to: Dr. Bao Jian Fan, Department of Ophthalmol-
ogy, Harvard Medical School, Massachusetts Eye and Ear Infirmary,
243 Charles Street, Boston, MA, 02114; Phone: (617) 573-6447; FAX:
(617) 573-6439; email: baojian_fan@meei.harvard.edu

Drs. B.J. Fan and D.Y. Wang are now at the Department of Ophthal-
mology, Harvard Medical School, Massachusetts Eye and Ear Infir-
mary, Boston, MA. Ms. W.C. Ko is now at the Faculty of Medicine,
Dentistry & Health Sciences, The University of Melbourne,
Melbourne, Australia.

779



thalmic examination was given to 27 family members, in which
nine were confirmed JOAG patients [28]. After exclusion of
MYOC and OPTN as disease-causing genes in this family, a
genome-wide search was carried out using 382 microsatellite
markers with average spacing of 10 cM. Fine mapping and
haplotype analysis identified a new JOAG locus at 5q22.1-
q32 within a region of 36 Mb flanked by D5S2051 and
D5S2090, designated as GLC1M (OMIM 610535) by the
HUGO gene nomenclature committee. This JOAG locus did
not overlap with the GLC1G minimal interval between
D5S1466 and D5S2051 [13]. However, discrepancy between
the genetic and physical maps may still position the WDR36
gene, located at GLC1G, within our disease interval. We there-
fore screened WDR36 for mutations in affected family mem-
bers. No sequence variations in the coding exons or splicing
junctions of WDR36 were found to be associated with glau-
coma. Although we could not rule out possible variations
within the introns or the promoter of WDR36, our data strongly
suggested the presence of an independent JOAG gene on 5q.
Further search for the causative gene at GLC1M is warranted.

A candidate gene, neuregulin 2 (NRG2, OMIM 603818),
located at 5q23-q33, was within the critical region of GLC1M
[29]. NRG2 is a member of neuregulins that are a family of
growth and differentiation factors related to epidermal growth
factor. Through interaction with the ErbB receptors,
neuregulins induce the growth and differentiation of epithe-
lial, neuronal, glial, and other types of cells [30]. In particular,
it has been demonstrated that neuregulin-ErbB signaling path-
ways play crucial roles in regulating the proliferation and dif-
ferentiation of Schwann cells, which are the myelin-forming
cells in the peripheral nervous system. NRG2 has been identi-
fied as a factor capable of promoting the subventricular zone
proliferation, leading to the formation of new neurons [31].
NRG2 promotes GFAP+ cell proliferation and polysialylated
neural cell adhesion molecule (PSA-NCAM+) neuroblast gen-
eration [31]. Although the fundamental pathophysiology of
glaucoma is largely unknown, it is believed that retinal gan-
glion cell death is the ultimate pathway. Glaucoma is thus con-
sidered a disorder of optic nerve degeneration. NRG2 is there-
fore an excellent potential functional as well as positional can-
didate gene for glaucoma at GLC1M. In the present study, we
evaluated the role of the NRG2 gene in the JOAG family from
whom the GLC1M locus was originally identified and unre-
lated JOAG patients, and further refined the linkage interval
for GLC1M.

METHODS
Description of family with JOAG:  As previously reported, a
large family was recruited from the Ibanez region of the Phil-
ippines [28]. Two ophthalmologists (Drs. Canlas O. and Ritch
R.) examined the family members and evaluated the whole
family. The study protocol was approved by the Ethics Com-
mittee for Human Research, the Chinese University of Hong
Kong. In accordance with the tenets of the Declaration of
Helsinki, informed consent was obtained from all participants
after explanation of the nature and possible consequences of
the study. This five-generation family had a total of 95 mem-

bers, in which 22 were affected with JOAG. Complete oph-
thalmic examination was given to 27 family members, nine of
whom were confirmed JOAG patients. Peripheral venous
whole blood from these subjects was collected for genomic
DNA extraction. The other family members did not agree to
participate in this study. Their clinical information was ob-
tained through previous medical records. A definition of JOAG
was based on the following criteria: exclusion of secondary
causes (e.g., trauma, uveitis, or steroid-induced glaucoma),
Shaffer grade III or IV open iridocorneal angle on gonios-
copy, IOP greater than or equal to 22 mmHg in both eyes by
applanation tonometry, characteristic optic disc damage or
typical visual field loss by Humphrey automated perimeter
with the Glaucoma Hemifield test, and diagnosis before age
35. For the affected subjects, age at diagnosis ranged from 12
to 33 years (mean±SD: 19±4.2 years), the highest IOP from
24 to 44 mmHg (mean±SD: 32±6.3 mm Hg), vertical cup-
disc ratio from 0.7 to 0.9 (mean±SD: 0.8±0.04), and visual
field loss was compatible with glaucoma in two consecutive
Humphrey testing. For the unaffected subjects, age at inclu-
sion ranged from 3 to 73 years (mean±SD: 25±19.9 years),
IOP<22 mmHg, vertical cup-disc ratio from 0.2 to 0.5
(mean±SD: 0.3±0.06), and visual field was in normal range.

Unrelated juvenile open angle glaucoma patients and con-
trols:  A cohort of 92 unrelated patients with JOAG and 92
unrelated control subjects without glaucoma were genotyped
for the 3 NRG2 polymorphisms identified from the JOAG fam-
ily. The unrelated JOAG group was comprised of 54 males
and 40 females. Their age at diagnosis ranged 8-34 years
(mean±SD: 25±5.4 years), the highest IOP was 23-50 mmHg
(mean±SD: 29±5.9 mm Hg), vertical cup-disc ratio was 0.7-
0.9 (mean±SD: 0.8±0.05), and their visual field loss was com-
patible with glaucoma in two consecutive Humphrey testing.
The control group had 51 males and 43 females, whose age at
inclusion ranged 60-83 years (mean±SD: 73±3.8 years),
IOP<22 mmHg, and whose vertical cup-disc ratio was 0.1-
0.5 (mean±SD: 0.3±0.07), visual fields within normal range,
and had no family history of glaucoma.

Mutation screening:  Genomic DNA was extracted from
200 µl of blood using a commercial kit (Qiamp Blood Kit;
Qiagen, Hilden, Germany). Quantification of extracted DNA
was performed using NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE). The coding ex-
ons and splicing sites of NRG2 were amplified by polymerase
chain reaction (PCR), followed by DNA sequencing. Primers
used to obtain the initial amplicons are given in Table 1. Ini-
tial PCRs were performed on a thermal cycler (model 9700;
Applied Biosystems [ABI], Foster City, CA) in a total volume
of 25 µl containing 200 ng of genomic DNA, 0.4 µM of each
primer, 200 µM dNTPs, 20 mM Tris-HCl (pH 8.0), 50 mM
KCl, 1.5 to 3.0 mM MgCl

2
, and 1 U of Taq DNA polymerase

(AmpliTaq Gold; ABI). Cycling conditions were as follows:
first denaturation step of 12 min at 94 °C, 35 cycles of dena-
turation (94 °C for 40 s), annealing (primer-specific anneal-
ing temperature for 60 s), elongation (72 °C for 40 s), and a
final single elongation step of 7 min. The PCR products were
electrophoresed on 2% agarose gel and visualized using a video

©2007 Molecular VisionMolecular Vision 2007; 13:779-84 <http://www.molvis.org/molvis/v13/a85/>

780



gel documentation system (Gel-Doc 2000; BioRad Laborato-
ries, Hercules, CA) to check for the quality. The PCR prod-
ucts were then purified with ExoI-SAP kit (USB Corp., Cleve-
land, OH) to remove unconsumed dNTPs and primers. A sec-
ond PCR was performed using the sequencing primers as de-
scribed in Table 1 on a thermal cycler (model 9700; ABI) to
incorporate the sequencing dyes (BigDye® Terminator v3.1
cycle sequencing kit; ABI) using a protocol of 25 cycles of
denaturation (96 °C for 10 s), annealing (50 °C for 5 s), and
elongation (60 °C for 4 min). Sequence data were then aligned
using Sequence Navigator analysis software (version 1.0.1;
ABI) and compared with the published NRG2 gene sequence
(GenBank AH009107).

Statistical analyses were performed using SAS statistical
software (version 9.1.3; SAS Institute, Cary, NC). Fisher’s
exact test was used to compare the frequencies of the NRG2
polymorphisms between affected and unaffected subjects in
the family and between unrelated JOAG patients and controls.

RESULTS
Evaluation of NRG2 as a candidate gene in GLC1M for juve-
nile open angle glaucoma: As previously reported [28], the
five generations of vertical inheritance of the JOAG pheno-

©2007 Molecular VisionMolecular Vision 2007; 13:779-84 <http://www.molvis.org/molvis/v13/a85/>

TABLE 1. POLYMERASE CHAIN REACTION PRIMERS AND CONDITIONS

FOR NRG2 MUTATION SCREENING

Primers used to obtain the initial PCR amplicons and for subsequent
sequencing of the NRG2 gene are listed in this table. Exon 1 was
split into three amplicons for PCR and sequencing. Exon 12 was
initially amplified by PCR using primers 12AF and 12AR and sub-
sequently sequenced using primers 12AF and 12BF.

TABLE 2. NRG2 POLYMORPHISMS IDENTIFIED IN A FAMILY WITH

JUVENILE OPEN ANGLE GLAUCOMA

Fisher’s exact test was used to compare the frequencies of the NRG2
polymorphisms between affected and unaffected subjects. The aster-
isk indicates a p<0.05. However, no polymorphism was segregated
with the juvenile open angle glaucoma phenotype in the family.

Figure 1. Haplotypes of markers flanking GLC1M.  Based on the
published pedigree structure [24], only seven family members who
are informative for refinement of the critical region of GLC1M were
included in this figure. Squares denote male family members while
circles indicate females. Shaded shapes are family members with
juvenile open angle glaucoma. Markers S33N, rs889022, and G659G
are single nucleotide polymorphisms of NRG2.A rectangle encases
segregating haplotypes. The haplotype for subject III:9 was inferred
by using known genotypes from her offspring and husband.
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type displayed a direct male-to-male transmission with simi-
lar numbers of affected males and females. It was consistent
with an autosomal-dominant pattern of inheritance. We
screened a total of 27 subjects (nine with JOAG) for sequence
alterations in the coding regions and splicing sites of NRG2.
No disease-causing mutation was identified in NRG2 in the
JOAG family. Instead, three single nucleotide polymorphisms
(SNPs) were found: one nonsynonymous SNP c.98G>A
(S33N), one noncoding SNP IVS3+13A>G (rs889022), and
one synonymous SNP c.1976A>G (G659G). S33N was found
in 25.9% (7/27) of the subjects in the family, rs889022 in 40.7%
(11/27) of the subjects, and G659G in 11.1% (3/27) of the
subjects (Table 2). However, none of these SNPs segregated
with the JOAG phenotype in this family (Figure 1).

To evaluate the role of NRG2 on unrelated patients with
JOAG, we genotyped the three SNPs (S33N, rs889022, and
G659G) in a cohort of 92 unrelated patients with JOAG and
92 unrelated control subjects without glaucoma. S33N and
G659G were found to be wild-type in all subjects. rs889022
was found in 13.0% (12/92) of the JOAG patients and in 22.8%
(21/92) of the control subjects (p=0.12). No association was
found between NRG2 and JOAG (p>0.12; Table 3).

Refinement of the GLC1M locus using intronic polymor-
phisms of NRG2: Haplotype analysis of the three SNPs of
NRG2 in the family with JOAG confirmed the recombination
event in two affected individuals (IV:10 and IV:11, Figure 1).
The NRG2 gene was therefore placed telomeric to the disease
locus. The critical interval of GLC1M was further refined to a
region of 28 Mb between D5S2051 and NRG2 (Figure 1 and
Figure 2).

DISCUSSION
 In the present study, we identified three SNPs in NRG2. The
SNP rs889022 has been previously reported as a common
polymorphism [29], while S33N and G659G are novel. None
of these SNPs segregated with the JOAG phenotype in the
family. No association was found between NRG2 and JOAG
in the case-control association study involving unrelated JOAG
patients and controls. The NRG2 gene was therefore excluded
as the causative gene for JOAG. It indicates that an unidenti-
fied gene is associated with glaucoma in this family. Further
inspection of the haplotypes of these SNPs in the family lo-

calized the NRG2 gene telomeric to the disease locus. When
we reanalyzed the original genotype data, we clarified the
genotypes with respect to two markers, D5S2011 and D5S638,
for individuals IV:10 and IV:11 (Figure 1). With the correct
haplotypes of these two markers together with the haplotypes
of 3 SNPs in NRG2, we redefined the critical region of GLC1M
between D5S2051 and NRG2 (Figure 2). The linkage interval
of GLC1M was therefore refined to a smaller region of 28 Mb
compared to the originally reported interval of 36 Mb [24].

As the revised candidate interval of GLC1M still covers a
large distance of 28 Mb, the region can be further refined by
recruiting more family members and genotyping more genetic
markers. This, in turn, will be helpful in discovering the dis-
ease-causative gene. Besides NRG2, we also screened the se-
creted protein acidic and rich in cysteine gene (SPARC, OMIM
182120) but found no mutations in this JOAG family (data
not shown). Although both genes are considered excellent
potential functional as well as positional candidates at GLC1M,
our work demonstrated that the candidate gene screening pro-
cess is inefficient and is limited in its ability to identify dis-
ease-causative genes. We therefore attempted an alternative
approach to better identify the disease-causative genes in link-
age loci. We learned the principle from genome-wide associa-
tion study [32], although our intention was not to investigate
the whole genome, but instead a limited region of the genome,
e.g., 15q22-q24 (GLC1N), where another JOAG locus was
recently mapped within a genetic distance of 16.6 Mb [9]. To
do that, we selected more than 100 gene-based SNPs within
GLC1N, roughly one SNP for one gene. We genotyped these
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Figure 2. Recombination mapping of GLC1M.  Solid rectangles in-
dicate the nonrecombinant region for each individual. Horizontal lines
mark the critical recombination event. The juvenile open angle glau-
coma locus at GLC1M was revised centromerically at D5S2051 and
telomerically at NRG2, within a region of 28 Mb. The revised GLC1M
locus, while close to the GLC1G minimal interval, does not overlap
it.

TABLE 3. NRG2 POLYMORPHISMS IN UNRELATED PATIENTS WITH

JUVENILE OPEN ANGLE GLAUCOMA AND CONTROLS

Fisher’s exact test was used to compare the frequencies of the NRG2
polymorphisms between patients with juvenile open angle glaucoma
(JOAG) and controls. No association was found between NRG2 and
JOAG. A p>0.12 was obtained for all three polymorphisms.

782



SNPs in a cohort of 100 unrelated JOAG patients and 100
control subjects. Several genes demonstrated significant as-
sociation with JOAG in this case-control regional association
study. These genes will be a priority in the search for the dis-
ease causative gene at GLC1N [33]. This new approach should
enable us to exhaustively search for disease-associated genes
in genetic loci.
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