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Abstract
Reward information is represented by many subcortical areas and neuron types, which constitute a
complex network. Its output is usually mediated by the basal ganglia where behaviors leading to
rewards are disinhibited and behaviors leading to no reward are suppressed. Midbrain dopamine
neurons modulate these basal ganglia neurons differentially using signals related to reward-prediction
error. Recent studies suggest that other types of subcortical neurons assist, instruct, or work in parallel
with dopamine neurons. Such reward-related neurons are found in the areas which have been
associated with stress, pain, mood, emotion, memory, and arousal. These results suggest that reward
needs to be understood in a larger framework of animal behavior.

Introduction
Animals can maintain their body states only by actively foraging for food and water and can
ensure the survival of their own species only by actively acquiring appropriate mates. This
suggests that many animals share common neural mechanisms of such reward-directed
behaviors. Over the course of evolution many new brain areas have emerged, notably the
cerebral cortex. However, it is likely that phylogenetically older structures (collectively called
subcortical structures) have retained fundamental mechanisms for reward-directed behavior.
Indeed, lesions in subcortical structures such as the hypothalamus and the basal ganglia render
animals unable to control goal-directed behaviors even when their basic sensory and motor
functions appeared normal. On the other hand, mammals whose cerebral cortex was removed
in infancy could perform many reward-directed behaviors normally. Supporting these earlier
discoveries, recent studies have provided evidence that many subcortical areas represent
reward information. In this review we first characterize the nature of reward representation in
each area and discuss the possible subcortical mechanisms of reward-directed behavior.

Striatum
Neurons in the dorsal part of the striatum are activated both by preparing and executing actions,
and by anticipating and receiving rewards. Thus the dorsal striatum is well-positioned to guide
motivated behavior, since its neural information could be used to select the action whose reward
value is greatest. Indeed, although some striatal neurons act as pure reward predictors, others
anticipate the reward value of specific cues and actions [1–3]. These signals are probably
computed within the dorsal striatum, as they are different from reward representations in
striatum-projecting regions of frontal cortex [4•,5]. Interestingly, some neurons track the value
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of specific actions, regardless of whether the animal chooses to perform them [2]; but other
neurons track values in terms of choice, signaling the ‘chosen value’ or ‘non-chosen
value’ [6•]. Also, although many neurons link actions to their expected rewards, fewer neurons
appear to link actions to their resulting actual rewards [7•]. This is consistent with recent
findings that electrical stimulation of the caudate nucleus can act much like a reinforcer, biasing
animals to prepare actions that were ‘rewarded’ with stimulation [8•,9•], but that stimulation
is equally reinforcing for both contralateral and ipsilateral actions [9•].

Compared to the dorsal striatum, the ventral striatum has been linked more clearly with
stimulus-outcome learning than with action selection. At the level of single cells, however,
neurons in both regions encode a similar mixture of signals, responding to both actions and
rewards [10]. The different functions of dorsal and ventral striatum may emerge more clearly
when viewed at the level of neural populations. Functional imaging studies in humans have
found striatal activity to correlate with an astounding variety of reward-related variables [11–
13]. These studies have led to theories that different parts of the striatum predict rewards at
different timescales [14•]; or preferentially encode predictions vs. deviations from predictions
[15]; or have distinct selectivity for the outcomes of freely chosen actions [16]. Functional
segregation within the striatum has also been investigated in lesion and inactivation studies in
rats, suggesting that different parts of the dorsal striatum have distinct roles in learning
stimulus-action vs. action-outcome associations [17•], and that dorsal and ventral striatum may
make different contributions to skill learning and expression [18•].

Dopamine neurons
A series of pioneering studies by Schultz and colleagues have shown that midbrain dopamine
neurons behave like a ‘reward-prediction error’ signal – they fire a burst of spikes when the
reward value is higher than expected, but are inhibited when the value is lower [19]. These
dopaminergic value signals combine information about several aspects of rewards, including
their probability, magnitude, and delay [20,22••].

Yet if dopamine neurons are to guide decision-making, they must not only signal the value of
individual reward outcomes, but also the value of an opportunity to choose between them. A
recent investigation found that when monkeys are presented with a pair of potential actions,
dopamine neurons signal the value of the monkey’s chosen action, even if it is the less-valuable
option [21••]. However, a second study in rats reported a very different result: that dopamine
neurons initially signal the value of the better action [22••]. One possible reason for this
difference is that the two studies recorded from different populations of dopamine neurons
[22••] – one in the substantia nigra pars compacta (SNc), and the other in the ventral tegmental
area (VTA).

Indeed, there is evidence that the SNc and VTA have distinct roles in reward learning. For
example, rats learn and perform orienting to reward-predictive cues via a pathway from the
central amygdala to the SNc to the dorsolateral striatum [23]. A similar circuit may exist in
monkeys, where reward-motivated orienting depends on striatal dopamine transmission, with
distinct contributions from different dopamine receptors [24••,25]. In contrast to the SNc, the
VTA is not a part of this pathway, but VTA lesions reduce the potency of reward-associated
cues to drive reward-seeking actions [26,23].

Lateral habenula
The lateral habenula has been implicated in many emotional and cognitive functions including
anxiety, stress, pain, learning and attention [27]. In addition, recent studies reported that the
lateral habenula also plays a crucial role in reward processing, especially in relation to midbrain
dopamine neurons. Matsumoto and Hikosaka [28••] found that lateral habenula neurons in
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monkeys responded to rewards and reward-predicting sensory stimuli. They were excited by
non-reward-predicting stimuli and inhibited by reward-predicting stimuli. In addition, lateral
habenula neurons were excited when the expected reward was omitted, and inhibited when a
reward was given unexpectedly. All of these responses were opposite to those of dopamine
neurons.

The opposite response pattern led to the hypothesis that the response of lateral habenula neurons
are causally related with the response of dopamine neurons. On unrewarded trials, the
excitation of lateral habenula neurons started earlier than the inhibition of dopamine neurons
[28••]. Electrical stimulation of the lateral habenula inhibits dopamine neurons [28••,29•].
These observations suggest that the excitation of lateral habenula neurons can trigger the
inhibition of dopamine neurons. Thus, the lateral habenula is likely to be a major source of
negative reward-related signals in dopamine neurons, and perhaps in other subcortical areas
as well.

Hypothalamus
Damage to the hypothalamus, especially the lateral hypothalamus and the mediodorsal
hypothalamus, disrupts feeding behavior. Earlier studies showed that neurons in the lateral
hypothalamus become active in anticipation of food rewards, responding to the sight of foods
or the arbitrary sensory cues that predict the upcoming food rewards. It was subsequently
discovered that a group of lateral hypothalamic neurons contain orexin (hypocretin) and serve
both to maintain arousal level and to promote feeding [30]. Recent studies have revealed that
reward-seeking behavior is, at least partly, mediated by the orexin neuron-induced activation
of VTA dopamine neurons projecting to the nucleus accumbens [31,32•]. Mice lacking the
orexin precursor gene showed no morphine-induced place preference [32•]. Orexin also
mediates rewarding effects of sexual behavior. In rats orexin neurons were activated during
copulation, which in turn increased the dopamine level in the nucleus accumbens [33•].

Amygdala
Although previous research on the amygdala tended to focus on the influence of emotions on
perception and cognition, recent studies by Salzman and his colleagues highlighted the value
representation of the amygdala. Paton et al. [34••] examined the value representation while
monkeys were conditioned in a Pavlovian procedure in which the monkeys formed associations
between conditioned stimuli and reward or aversive-airpuffs. They found that separate
populations of neurons in the amygdala represent the positive and negative values assigned
with the conditioned stimuli. Belova et al. [35•] examined the response of amygdala neurons
to reward and airpuffs themselves under two conditions: one in which the outcomes occurred
predictably, the other in which the outcomes occurred unpredictably. They found that many
amygdala neurons responded differently to reward and airpuffs, and that these responses were
frequently modulated by the prediction. The reward representation in the amygdala may serve
to consolidate memory formation [36]. Paz et al. [37••] demonstrated that reward-dependent
activation of baso-lateral amygdala neurons facilitates impulse transmission from perirhinal to
entorhinal neurons. Because the rhinal cortices constitute the main route for impulse traffic
into and out of the hippocampus, the perirhinal and entorhinal interaction seems likely to be
linked to memory formation. Indeed, the strength of the interaction was tightly correlated with
animals’ associative learning. This finding may explain how animals form more vivid
memories of emotionally charged events.

Serotonin neurons
Serotonin is involved in many functions, ranging from the development of the brain [38] to
social behaviors [39]. There is no consensus so far on the exact roles and mechanisms of
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serotonin function. Some of the recognized theories include, (1) defense mechanisms [40], (2)
temporal discounting of reward value [41], and (3) negative reward signal as an opponent of
dopamine signals [42]. The last theory postulates that the phasic discharge of serotonin acts as
a negative prediction-error signal. However, pure opponency seems too simple, considering
the fact that serotonin and dopamine systems interact in various levels [41]. Recent studies
seem to support the temporal discounting theory [14].

Despite these many experiments and theories, it was unclear whether serotonin neurons carried
reward information. Using reward-biased saccade tasks Nakamura et al. [43••] clarified that
neurons in the monkey dorsal raphe, presumably including serotonin neurons, changed their
activity differentially depending on the value of the expected reward, as well as the received
reward. In striking contrast to dopamine neurons, the response to the reward was invariant
whether or not it was expected.

Pallidum
The pallidum is divided into the dorsal pallidum (internal and external globus pallidus) and the
ventral pallidum. A series of studies from Berridge and colleagues have suggested that reward
information is strongly represented in the ventral pallidum. Their recent work has teased apart
the ‘liking’ (hedonic fillings) and ‘wanting’ (motivation) systems in the limbic part of the basal
ganglia [44•,45]. They concluded that while nucleus accumbens and ventral pallidum acted
together to represent ‘liking’, nucleus accumbens alone could represent ‘wanting’, independent
of the ventral pallidum. One tempting conclusion drawn from recent experiments is that the
opioid system is necessary for hedonic experience, ‘liking’, whereas the dopamine system is
important for motivation, ‘wanting’ [46].

While less well known, reward signals also infiltrate into the dorsal pallidum. The dorsal
pallidal neurons may inherit reward information from the dorsal striatum where neurons are
known to be modulated quite strongly by expected rewards [1,15]. It should be noted that a
portion of neurons in the internal segment of the globus pallidus (GPi) project to the lateral
habenula [47]. A recent study has shown that the lateral habenula-projecting GPi neurons
encode strong reward prediction signals similar to the lateral habenula neurons (S Hong and
O Hikosaka, abstract in Soc Neurosci Abstr 2007, 749.25). Moreover the latency of this reward-
related modulation was shorter for these neurons compared to the lateral habenula neurons
indicating excitatory connection. These results suggest that GPi may initiate reward-related
signals through its effects on the lateral habenula, which then influences the dopaminergic and
serotonergic systems.

Conclusions
Recent studies suggest that a number of subcortical areas and neuron types represent reward
information and constitute complex networks (Figure 1). As theoretical studies have suggested
[48], different types of neurons appear to contribute to different aspects of reward-based
learning and decision-making. Unlike dopamine neurons and lateral habenula neurons, dorsal
raphe neurons (including serotonin neurons) do not represent reward-prediction error, and
amygdala neurons do so only partially. Unlike neurons in the striatum and the amygdala,
dopamine and serotonin neurons as well as lateral habenula neurons do not encode specific
sensorimotor signals, such as target direction. Unique among subcortical areas (as tested so
far), dorsal striatal neurons have activity related to the value of specific actions, goal positions
or object identities [1–3]. These signals would create a bias in the basal ganglia network so
that the action preferred by the striatal neurons is more likely to occur [49]. This may be the
ultimate mechanism of action for subcortical reward-directed activity.
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Interestingly, the new players in the subcortical reward network have traditionally been
associated with other functions: serotonin neurons for mood, stress, and sleep; amygdala for
emotion and memory; lateral habenula for circadian rhythm, pain, and stress; orexin neurons
for arousal. This implies that reward needs to be understood in a larger framework of animal
behaviors. For example, omission of expected reward is similar to punishment [50] which
animals would want to avoid. Arousal is the state where motor behaviors are activated in
general, while reward-seeking behaviors largely involve a large part of motor behaviors
including locomotion and orienting. It is thus feasible that the reward network and the arousal
(or circadian) network have evolved by sharing the same mechanism.
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Figure 1.
Subcortical areas and their connections that can control reward-directed behavior. Central to
the subcortical network is the basal ganglia which are capable of disinhibiting actions that lead
to rewarding outcomes and suppressing actions that lead to non-rewarding or punishing
outcomes. The basal ganglia mechanism becomes functional owing to signals mediated by
neuromodulators (e.g. dopamine, serotonin, orexin, acetylcholine) and signals originating
outside the basal ganglia (e.g. amygdala, lateral habenula), in addition to the inputs from the
cerebral cortical areas. The target of the SNr-GPi, denoted as ‘Motor Areas’, may be subcortical
motor areas, such as the superior colliculus, or ventral thalamic nuclei which are connected
with motor cortical areas. Direct pathway neurons in D-St express dopamine D1 receptors (red
square); indirect pathway neurons express D2 receptors (blue square). V-St may include
striosomes (or patches) in the D-St. For clarity, many connections and neuron types are omitted.
BLA: basalateral amygdala, CeA: central amygdala, DR: dorsal raphe, D-St: dorsal striatum,
GPe: external segment of globus pallidus, GPi: internal segment of globus pallidus, LH: lateral
hypothalamus, LHb: lateral habenula, MR: medial raphe, SNc: substantia nigra pars reticulata,
SNr: substantia nigra pars reticulata, STN: subthalamic nucleus, V-St: ventral striatum, VTA:
ventral tegmental area. Filled circles indicate inhibitory neurons; open circles indicate
excitatory neurons. LHb neurons inhibit SNc-VTA and DR-MR neurons, but their action is
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mediated by inhibitory interneurons. SNc-VTA contains dopamine neurons, DR-MR contains
serotonin neurons, and LH contains orexin neurons, all of which exert modulatory effects on
their target neurons.
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