
348

Glycemia Prediction in Critically Ill Patients Using  
an Adaptive Modeling Approach

 Tom Van Herpe, M.Sc.,1 Marcelo Espinoza, Ph.D.,1 Niels Haverbeke, M.Sc.,1 
Bart De Moor, Ph.D., Professor of Engineering,1 

and Greet Van den Berghe, M.D., Ph.D., Professor of Medicine2

Author Affiliations: 1Department of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven, B-3001 Heverlee (Leuven), Belgium, and 
2Department of Intensive Care Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

Abbreviations: (BIT) back-in-time, (ICU) intensive care unit, (ICU-MM) intensive care unit–minimal model, (IVGTT) intravenous glucose tolerance test, 
(MPE) mean percentage error, (MSE) mean squared error, (N-LSQ) nonlinear least squares

Keywords: glycemia prediction, intensive care unit, minimal model, parameter estimation, physical models

Corresponding Author: Tom Van Herpe, SCD Research Division, Electrical Engineering Department (ESAT), Katholieke Universiteit Leuven, 
Kasteelpark Arenberg 10, B-3000 Leuven-Heverlee, Belgium; email address tom.vanherpe@esat.kuleuven.be

SYMPOSIUM Journal of Diabetes Science and Technology
 Volume 1, Issue 3, May 2007 
 © Diabetes Technology Society

Abstract
Background:
Strict blood glucose control by applying nurse-driven protocols is common nowadays in intensive care units (ICUs). 
Implementation of a predictive control system can potentially reduce the workload for medical staff but requires 
a model for accurately predicting the glycemia signal within a certain time horizon.

Methods:
GlucoDay (A. Menarini Diagnostics, Italy) data coming from 19 critically ill patients (from a surgical ICU) are used 
to estimate the initial ICU “minimal” model (based on data of the first 24 hours) and to reestimate the model as new 
measurements are obtained. The reestimation is performed every hour or every 4 hours. For both approaches the 
optimal size of the data set for each reestimation is determined.

Results:
The prediction error that is obtained when applying the 1-hour reestimation strategy is significantly smaller than 
when the model is reestimated only every 4 hours (p < 0.001). The optimal size of the data set to be considered in 
each reestimation process of the ICU minimal model is found to be 4 hours. The obtained average “mean percentage 
error” is 7.6% (SD 3.1%) and 14.6% (SD 7.0%) when the model is reestimated every hour and 4 hours, respectively.

Conclusions:
Implementation of the ICU minimal model in the appropriate reestimation process results in clinically acceptable 
prediction errors. Therefore, the model is able to predict glycemia trends of patients admitted to the surgical ICU 
and can potentially be used in a predictive control system.
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Introduction

Hyperglycemia and insulin resistance are common 
in critically ill patients (even those without diabetes 
mellitus) and are associated with adverse outcomes. Tight 
glycemia control (with 80–110 mg/dl as target range) by 
applying intensive insulin therapy in patients admitted 
to the medical and the surgical intensive care unit 
(ICU) results in a spectacular reduction in mortality and 
morbidity.1,2 Currently, ICU patients are treated through 
a manual and rigorous administration of insulin.3 In the 
available literature several physical models that describe 
the glucose dynamics and the insulin kinetics of healthy 
and diabetic subjects are used for glycemia control 
simulations in “mathematical” diabetic (type I) patients.4,5 
A (semi-)automated predictive control system can be 
developed for glycemia control in the ICU.6 This system 
has the potential to further reduce mortality and 
morbidity in the ICU and to restrict the workload for 
medical staff. Because patients who are admitted to the 
ICU show a significantly different clinical behavior than 
patients with diabetes,6 a model specifically developed for 
describing the glucose and the insulin dynamics of ICU 
patients is required. In this study an existing ICU model 
structure is estimated based on a real-life ICU data set 
and a reestimation strategy to improve the performance 
of predicting glycemia in the ICU is proposed. 

Subjects and Methods

Subjects
The GlucoDay system (A. Menarini Diagnostics, Italy), 
which is a portable instrument provided with a micropump 
and a biosensor coupled to a microdialysis system, was 
used to measure the glucose concentration that was 
(manually) controlled by nurses using a standard protocol.3 
After informed consent from the next of kin, a microfiber 
was implanted in 19 ventilated adult patients admitted to 
the surgical ICU of the University Hospital K.U. Leuven 
(Belgium) for a variety of reasons (see Table 1). After 
implantation of the fiber in the periumbilical subcutaneous 
tissue, near-continuous subcutaneous glucose levels were 
recorded for 48 hours. Every 3 minutes the mean value of 
the last 3 minutes was exported. 

The use of near-continuous glucose measurement devices 
has the potential to improve glycemia control in patients 
with diabetes. The introduction of these sensors in 
a (future) predictive control system for normalizing 
glycemia of critically ill patients also reveals interesting 
opportunities. Unfortunately, accurately measuring near-

continuous sensor devices are not yet available.7,8 Therefore, 
it was required to retrospectively calibrate this near-
continuous GlucoDay signal with arterial blood glucose 
values measured concomitantly every hour using the ABL 
machine (Radiometer, Copenhagen, Denmark) during the 
first 24 hours. During the next 24 hours, arterial blood 
glucose was measured every 4 hours. The administered 
flows of carbohydrate calories and insulin were also stored. 
The study protocol was approved by the Institutional 
Ethical Review Board (ML2637). 

The ICU “Minimal” Model
The presented model structure originates from the known 
“minimal” model developed by Bergman and colleagues.9 
This model consists of a single glucose compartment. 
Plasma insulin is assumed to act through a so-called 
remote compartment to influence net glucose uptake.10 The 
model reliably describes plasma glucose disappearance11 
and insulin kinetics12 during an intravenous glucose 
tolerance test (IVGTT) in a healthy person. In this 
test, 300 mg glucose/kg body weight is administered 
intravenously to a person after which the plasma glucose 
and insulin concentration are measured with a high 
sampling frequency.

Table 1.  
Patient Population (Coming from a Surgical Intensive 
Care Unit)

Variable Value

Male sex—no (%) 13 (68.4)

Age  (years) (SD) 61.7 (13.8)

Body mass index (kg/m2) (SD) 26.9 (4.7)

Reason for intensive care—no (%)

Cardiac surgery 8 (42.1)

Noncardiac indication 11 (57.9)

Neurologic disease, cerebral trauma, or brain 
surgery

3 (15.8)

Thoracic surgery, respiratory insufficiency, or 
both

2 (10.5)

Abdominal surgery or peritonitis 3 (15.8)

Vascular surgery 2 (10.5)

Other 1 (5.3)

APACHE II score (first 24 hours) (SD) 17.5 (5.6)

Mean glycemia (mg/dl) (SD) 111 (26)

Minimal glycemia (mg/dl) 50

Maximal glycemia (mg/dl) 223
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In Van Herpe et al.13 the original minimal model was 
extended to the ICU “minimal” model (ICU-MM) by taking 
into consideration some features typical of ICU patients. 
First of all, the ICU-MM contains an endogenous and an 
exogenous insulin section, whereas the exogenous part 
is not included in the original Bergman model. Because 
the majority of critically ill patients are nondiabetic, the 
endogenous insulin section is still active. Due to the 
increased insulin resistance and the insufficient activity 
of the pancreas, some exogenously administered insulin 
flow is required for most of the patients. Second, the 
endogenous insulin section in the original Bergman model 
is transformed mathematically into a set of two equations 
with the goal of the model to not be an explicit function 
of time. Indeed, the original minimal model is considered 
to describe the glucose and insulin dynamics only during 
a single IVGTT (taken into account the time related to the 
start of the glucose shot). The ICU-MM is developed for 
use in a predictive control system with a continuous flow 
(i.e., a series of single shots) of delivered carbohydrates 
(and other input variables6). Consequently, resetting time 
to 0 at each administered glucose shot is not feasible, 
explaining the need for the mathematical manipulation. 
The ICU-MM is presented as

where G and I1 are the glucose and the insulin 
concentrations in the blood plasma. The variable X describes 
the effect of insulin on net glucose disappearance and is 
proportional to insulin in the remote compartment. The 
variable I2, which is introduced for mathematical reasons, 
does not have a strictly defined clinical interpretation but 
can be approached by the fraction of insulin concentration 
derived from the endogenous insulin secretion. The 
parameters Gb and Ib denote the basal value of plasma 
glucose and plasma insulin, respectively. The model 
consists of two input variables: the exogenous insulin 
flow (FI) and the carbohydrate (glucose) calories flow (FG), 
both administered intravenously. The glucose distribution 
space and the insulin distribution volume are denoted 
as VG and VI, respectively. The coefficient P1 represents 
the glucose effectiveness (i.e., the fractional clearance of 
glucose) when insulin remains at the basal level; P2 and P3 
are the fractional rates of net remote insulin disappearance 
and insulin-dependent increase, respectively. Endogenous 

insulin is represented as the insulin flow that is released 
in proportion (by γ) to the degree by which glycemia 
exceeds a glucose threshold level h. The time constant for 
insulin disappearance is denoted as n. In case glycemia 
does not surpass the glucose threshold level h, the first 
part of the I1 equation (that represents the endogenous 
insulin production) equals 0. In order to keep the correct 
units, an additional model coefficient, β = 1 min, is added. 
Finally, the coefficient α is a scaling factor for the second 
insulin variable I2. Table 2 gives an overview of the 
variables, patient features, and coefficients used in the 
ICU-MM. Figure 1 illustrates the ICU-MM structure.

Table 2. 
Variables, Patient Features, and Coefficient Values 
Applicable in the ICU-MM

Variable Unit Variable Unit

G mg/dl I2 μU/ml

X 1/min FI μU/min

I1 μU/ml FG mg/min

Patient 
feature

Unit Value

BM kg Body mass

VG
dl 1.6 BM  5

VI ml 120 BM   5

Gb mg/dl Basal glycemia

Ib μU/ml Basal insulin

Coefficient Unit Value

P1 1/min -1.31 × 10-2a

P2 1/min -1.35 × 10-2a

P3
ml/(min2 μU) 2.90 × 10-6a

h mg/dl 136a

n 1/min 0.13a

α 1/min 3.11

β min 1

γ 5.36 × 10-3a

aAs initial value for the model estimation process, mean model coefficient 
values for the obese–low glucose tolerance patient group, described in 
Bergman et al.,9 are used.

Adaptive Modeling Approach: Study Design
In this study the model structure described earlier (ICU-
MM) is estimated on a real-life ICU data set. Because of 
the large inter- and intrapatient variability that exists in 
the ICU (e.g., patient-specific initial and dynamical known 
input variables, reaction on medical treatment, time-varying 

mU
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insulin resistance), it is required to reestimate the ICU-MM 
at frequent time intervals to capture dynamic features as 
much as possible.6 The main contribution of this study 
is the performance improvement of this reestimation 
process. In general, the adaptive modeling approach can 
be described as follows.

First of all, the ICU-MM is used as a general template, 
which is estimated for each individual patient (based on 
data belonging to the first 24 hours of each patient’s data 
set and leading to the “initial” model for that patient) 
such that the model parameters P1, P2, P3, n, α, and γ are 
patient specific. The parameter estimation is solved as a 
nonlinear least-squares (N-LSQ) program in Matlab®. The 
least-squares objective function arrives from penalizing 
deviations between simulated and observed glycemia 
trajectories using the nonlinear ICU-MM. For the reason 
of online use in a control scheme the N-LSQ program 
is solved by means of local optimization. In particular, 
Nelder-Mead’s method is used. Consequently, the optimal 
model parameters are found to be those that give the best 
possible representation for true patient behavior during 
the first 24 hours (i.e., 1440 minutes) given glycemia 
measurements, input observations, and ICU-MM.13 To solve 
this problem, the starting parameters are taken from the 
obese–low glucose tolerance patient group coming from 
Bergman and co-workers9 (see Table 2) whose patient 
characteristics are comparable to ICU patients.

Second, the model is reestimated at certain time periods P 
for the rest of each patient’s data set. Two different settings 
are proposed: reestimations every hour and every 4 hours. 

The number of recent data considered in each reestimation 
process is called the back-in-time (BIT) number and may 
influence the performance of the model. Therefore, BIT is 
varied in each setting. In the reestimation procedure the 
same nonlinear estimation technique as described earlier 
is applied. The starting parameters in each optimization 
process are the end values of the previous period P. The 
model performance for each patient p is measured by 
computing the mean squared error,

and the mean percentage error,

where  and  are the actual and predicted glycemia 
values for patient p. The size of each data set is denoted as 
N. The overall methodology for optimizing the reestimation 
process is explained next.

1.	Estimate the initial model (ICU-MM) based on the first 
data set (first 24 hours, see earlier discussion). 

2.	For a reestimation period P = 1 hour and P = 4 hours. 

a.	 For BIT = 20-18-16-14-12-10-8-6-5-4-3-2-1-0.5 hours,

i.	 Reestimate the ICU-MM based on every last 
section (i.e., BIT) of the (moving) data set 
with the starting set of coefficients the values 
corresponding to the last period P (or the set of 
coefficients from the initial model for the first 
reestimation).

ii.	 Predict the glycemic course for the next period 
P (which is the validation set of the reestimated 
model in this case).

iii.	Compute the MSE and MPE for all validation 
sets per patient.

b.	 Compare the MSEs and/or MPEs that are generated 
for the different BITs. The BIT that belongs to 
the smallest (average) MSE and/or MPE is called 

“optimal” and is ideally used in the reestimation 
process,

3.	Compare the optimal BIT and the computed MSEs and 
MPEs for the P = 1-hour and P = 4-hour settings.

The Wilcoxon signed rank test is used to test significant 
differences (significance level 5%).

Figure 1. Representation of the ICU-MM. The state variables of the model 
(G, X, I1, and I2) and the body segments (liver and periphery) are denoted 
as squares and ellipses, respectively. The exogenous input variables 
(FI and FG, administered intravenously to the patient) are illustrated 
as rhombi. The model parameters (P1, P2, P3, n, α, and γ) are related to 
the respective variables. A direct physical relation is represented by a 
solid arrow, whereas a rather mathematical relationship is denoted as a 
dashed arrow.
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Results
Figures 2 and 3 give an overview of the computed MSEs 
and MPEs as a function of BIT and P. The prediction 
performance of the model is higher (i.e., smaller MSEs 
and MPEs) when the model is reestimated every hour 
(P = 1 hour) in comparison with model reestimations 
every 4 hours (p < 0.001). The optimal BIT, with respect 
to the smallest prediction errors, is found to be 4 hours. 
Significant differences (p < 0.05) with regard to other 
selected BITs are marked with asterisks in Figures 
2 and 3. The average MSE (SD) and average MPE (SD) 
obtained when applying this optimal reestimation strategy 
(P = 1 hour, BIT = 4 hours) to present data are 131.9 mg2/dl2  
(99.9 mg2/dl2) and 7.6% (3.1%), respectively. When model 
reestimations every 4 hours are preferred (P = 4 hours, 
BIT = 4 hours), the average MSE (SD) and average MPE (SD) 
are equal to 578.0 mg2/dl2 (1010.3 mg2/dl2) and 14.6% (7.0%), 
respectively.

Figures 4 and 5 illustrate the performance of the ICU-MM 
for predicting glycemia of two patients. Glycemic evolution 
is shown in the top panels. The solid line represents 
glycemia measured by the GlucoDay system. Data of the 
first 24 hours are used to estimate the initial model. The 
simulation of this initial model on the first part of the data 
set (i.e, in-sample data) is indicated by the dotted line. 
The reestimation strategy is started after the first 24 hours. 

Vertical lines in Figures 4 and 5 indicate the instants 
when the model is reestimated by considering data of the 
previous 4 hours (BIT = 4 hours). This reestimation process 
takes place every 4 hours (top panel) or every hour (second 
panel). The predicted glycemia signal is illustrated by the 
dashed line. Finally, the input variables included in the 
ICU-MM are shown in the third (administered insulin) 
and the last (administered carbohydrate calories) panels 
in Figures 4 and 5.

Discussion
This article presented an optimized adaptive “minimal” 
modeling approach for predicting glycemia of critically 
ill patients. Simulations are performed with respect to a 
real-life surgical ICU data set in which glycemia was near-
continuously monitored. This high sampling frequency is 
assumed to be standard practice in the future.7 For this 
reason, a test near-continuous sensor device (whose signal 
was retrospectively calibrated with a reference sensor) 
was used for this study in order to propose an “optimal” 
model reestimation technique that may be applied in a 
future glycemia predictive control system in the ICU.6 
In that particular setting, data of the first 24 hours after 
admission to the ICU will be used to estimate the initial 
ICU-MM. During this first period, glycemia will be 

Figure 2. Distribution of the MSEs (generated for each patient) as a function of BIT with reestimations every 4 hours (top) or every hour (bottom). The 
line connects the averages of the MSEs. In general, reestimations based on the last 4-hour  data set (BIT = 4) result in the smallest prediction errors. 
Significant differences with respect to the BIT = 4 setting are visualized with an asterisk.
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Figure 3. Distribution of the MPEs (generated for each patient) as a function of BIT with reestimations every 4 hours (top) or every hour (bottom). 
The line connects the averages of the MPEs. Reestimations based on the last 4-hour data set (BIT = 4) give the smallest prediction errors. Significant 
differences with respect to the BIT = 4 setting are visualized with an asterisk.

Figure 4. Example of the reestimation strategy applied to the ICU-MM. The evolution of glycemia of patient No. 3, measured with the GlucoDay 
system, is presented in the first and second panels (solid line). Data of the first 24 hours are used to estimate the initial ICU-MM. The in-sample 
simulation is represented by the dotted line. Glycemia predictions present in the other part of the data are illustrated with the dashed line for both the 
4-hour (top panel) and the 1-hour (second panel) reestimation process. Reestimation time instants are illustrated by vertical lines. The flows of insulin 
and carbohydrate calories are shown in the third and fourth panels, respectively.
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controlled by medical staff using a (manual) nurse-driven 
protocol3 that is applied as a standard nowadays. From 
the second day onward, the predictive control system will 
(semi-)automatically regulate glycemia. A first model-based 
predictive controller that incorporates the ICU-MM and a 
(nonoptimal) reestimation strategy has been described.14 In 
the available literature the use of other glycemia controller 
strategies (both model and nonmodel based) has already 
been reported.7,8,15–17 The frequent reestimation of the 
ICU-MM will incorporate dynamical changes within the 
critically ill patient (e.g., varying insulin resistance). The 
feasibility of the reestimation modeling approach is shown 
in this study.

Reestimating the model every hour results in smaller 
prediction errors than reestimations that take place every 
4 hours. This result is expected, as frequent updates of 
the model lead to smaller time horizons, meaning smaller 
simulation periods and, as a usual result, smaller (absolute 
and relative) prediction errors. As described previously, 
an appropriate model-based predictive controller is 
currently under study with the goal of (semi-)automatic 
glycemia normalization. In a first phase this system will 
only act as an advisory system (“semi”-automatic). This 
means that confirmation (by a nurse) of the insulin rate 
adaptations will be mandatory before administering the 
insulin flow (that is proposed by the controller) to the 
patient. Consequently, the workload for the medical staff 

is expected to increase significantly. For this reason the 
insulin adaptation frequency will be limited to once per 
hour.14 This immediately explains why updating the model 
more frequently than once per hour is futile. Hence, P was 
only set to 1 and 4 hour(s) in this study. Of course, after a 
thorough clinical validation of this semi-automatic system, 
the insulin adaptation frequency may be increased further 
(e.g., P = 15 min) for use in a fully automatic control system 
(i.e., confirmation by a nurse is not required any more), 
which may lead to even smaller prediction errors than 
obtained when P = 1 hour.

The optimal size of the data set to be considered in each 
reestimation process of the ICU-MM is found to be 4 
hours (although no statistically significant difference exists 
between the BIT = 4‑hour data set size and the BIT = 5- or 
6-hour data set size when P = 1 hour). This means that 
only relatively recent data (set to the previous 4 hours due 
to the smallest average MSE and average MPE obtained 
when P = 1 hour) need to be taken into account in each 
reestimation process for predicting glycemia trends 
accurately. Figures 2 and 3 clearly illustrate the trade-off 
between overfitting (small BIT) and the restricted modeling 
capacity of fast-changing dynamics (large BIT). Indeed, 
reestimations based on large amounts of previous data 
(e.g., BIT = 18 hours) do not efficiently capture the varying 
patient dynamics typical of critically ill patients. However, 
only considering the most recent data of the specific patient 

Figure 5. Another example of the reestimation strategy applied to the ICU-MM on patient No. 10. Similar codes as used in Figure 4 are used.
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(e.g., BIT = 1 hour) leads to model overfitting and explains 
the poor prediction performance in that case. 

When the ICU-MM is reestimated every hour and 
every 4 hours (based on the previous 4 hours of data, 
BIT = 4 hours), the average MPE is equal to 7.6 and 14.6%, 
respectively. These relative prediction errors are clinically 
acceptable after comparing model prediction behavior 
with sensor measurement behavior. Indeed, the accuracy 
requirements of a test sensor device, which is assessed by 
considering its signal toward the concomitantly measured 
reference (or “gold” standard) values, are comparable to 
the prediction performance requirements of a model. 
Both sensor and model are crucial elements in (future) 
predictive control systems in terms of determining the 
optimal insulin flow to be administered to the patient. The 
International Organization for Standardization criterion, 
which is a standard criterion for the binary assessment 
of the accuracy of glucose sensors, is typically used in 
the evaluation of test sensor devices.18 In this criterion the 
target variability of the test sensor device (with respect 
to the reference sensor) is defined as ±20% for reference 
values >75 mg/dl. For reference values ≤75 mg/dl, the test 
sensor measurements are required to fall within ±15 mg/dl 
limits. The relative prediction errors obtained when 
reestimating the ICU-MM every hour and every 4 hours 
are smaller than the aforementioned 20% target variability, 
indicating clinical acceptance for both approaches 
(assuming the availability of an accurate near-continuous 
glucose sensor device).

Figures 4 and 5 show the predicted glycemia signal 
of patients 3 and 10. The individual MPEs for these 

“average” patients are equal to 5.0 and 6.4%, respectively, 
when P = 1 hour and 8.5 and 14.9%, respectively, when 
P = 4 hours. The ICU-MM approaches the real glucose 
dynamics of critically ill patients. Although only two 
input variables (i.e., the flow of carbohydrate calories and 
insulin) are effectively taken into consideration, the ICU-
MM generally succeeds in predicting glycemia trends for 
both P = 1 hour and P = 4 hours. The rather flat glycemia 
dynamics that appear in some segments in Figures 4 
and 5 are caused directly by the corresponding flat input 
behavior (e.g., Figure 4 top panel; starting at t = 2120 min 
the fluctuating glycemia signal is not predicted accurately 
by the ICU-MM, as its input variables, which play a 
significant role in predicting the glycemia behavior, have a 
constant flow). Updating the model frequently (every hour) 
is advised to compensate for these unavoidable missing 
glycemia dynamics. 

A final feature of the proposed model reestimation strategy 
is the limited computation time. The current study is (off-

line) implemented in Matlab® on Microsoft Windows XP 
(Intel Pentium, 1400-MHz processor). The N-LSQ program 
requires only approximately 1 minute to be solved. 
Accordingly, the online application of this technique is 
no issue in terms of computation time. 

In conclusion, implementation of the ICU-MM that is 
reestimated every 4 hours or (preferably) every hour gives 
promising results in terms of prediction performance and 
indicates its potential use in a predictive control system for 
critically ill patients admitted to the surgical ICU.
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