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Abstract
Background:  
Hyperglycemia is prevalent in critical care and tight control can save lives. Current ad-hoc clinical protocols require 
significant clinical effort and produce highly variable results. Model-based methods can provide tight, patient specific 
control, while addressing practical clinical difficulties and dynamic patient evolution. However, tight control remains 
elusive as there is not enough understanding of the relationship between control performance and clinical outcome.

Methods:  
The general problem and performance criteria are defined. The clinical studies performed to date using both ad-hoc 
titration and model-based methods are reviewed. Studies reporting mortality outcome are analysed in terms of 
standardized mortality ratio (SMR) and a 95th percentile (±2s) standard error (SE95%) to enable better comparison  
across cohorts.

Results:  
Model-based control trials lower blood glucose into a 72-110 mg/dL band within 10 hours, have target accuracy over 
90%, produce fewer hypoglycemic episodes, and require no additional clinical intervention. Plotting SMR versus SE95% 
shows potentially high correlation (r=0.84) between ICU mortality and tightness of control. 

Summary:  
Model-based methods provide tighter, more adaptable one method fits all solutions, using methods that enable patient-
specific modeling and control. Correlation between tightness of control and clinical outcome suggests that performance 
metrics, such as time in a relevant glycemic band, may provide better guidelines. Overall, compared to the current one 
size fits all sliding scale and ad-hoc regimens, patient-specific pharmacodynamic and pharmacokinetic model-based,  
or one method fits all control, utilizing computational and emerging sensor technologies, offers improved treatment 
and better potential outcomes when treating hyperglycemia in the highly dynamic critically ill patient.
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Introduction

Hyperglycemia is prevalent in critical care.1,4  
Increased counter-regulatory hormone secretion stimulates 
endogenous glucose production and increases effective 
insulin resistance,3,4 elevating equilibrium glucose levels 
and reducing the amount of glucose that the body can utilize 
with a given amount of insulin.  Nutritional regimes with 
high glucose content further exacerbate hyperglycemia.5-10 

Hyperglycemia worsens outcomes, increasing the 
risk of severe infection,11 myocardial infarction,1 and 
polyneuropathy and multiple-organ failure.2,12 Evidence 
also exists of significant reductions in other therapies with 
aggressive glycemic control.2,13-17  Van den Berghe et al 2,16,17  
and Krinsley14, 15 reduced ICU patient mortality 18% to 45% 
for patients with length of stay greater than three days. Both 
studies also showed significant cost savings per patient.18, 19

Thomas et al20 achieved an average glucose reduction of 
approximately 15% using the protocol from van den Berghe 
et al,2 but saw no change in mortality. However, their results 
and report focused primarily on the implementation of a 
web-based glycemic control protocol, rather than on tight 
control per se. Other studies that focus primarily on glucose 
control are limited in duration or patient numbers, and do 
not extend to mortality endpoints.20-22 

All of these studies used ad-hoc sliding scale or titration-
based protocols developed primarily by clinical experience, 
(i.e. expert-based control) a typical one size fits all solution. 
Therefore, they are less optimal when faced with the dynamic 
patient variation typical of critical care. This issue has 
been illustrated in simulation23,24 and clinical analysis.7,24-30  
In contrast, model-based tight glycemic control protocols 
have been successful in producing consistent control.25,31-36 

Next, the more critically ill the cohort, the likelier the 
occurrence of severe stress-induced hyperglycemia 
stemming from higher insulin resistance.16,37-40 This effect is 
illustrated in van den Berghe et al’s two studies. Both used 
limits of 110 mg/dL,2,17  and achieved average glycemia of 
102±18 and 108±26 mg/dL with median APACHE II scores of 
9.0 and 24, respectively. However, the relative ICU mortality 
reduction was a significantly smaller in the more critically 
ill cohort. Thus, cohort severity of illness is a significant 
confounding factor in comparing clinical results.

All protocols are challenged by the significantly elevated 
insulin resistance encountered in broad critical care 
cohorts. In addition, insulin effect saturates at high 
concentrations.32,41,42 Hence, glycemic reductions using 
insulin alone can be limited depending on the patients 
level of stress-induced insulin resistance,43 leading to larger 
variability in performance. This effect might be particularly 
true for those protocols commanding up to limits of 20-50 
U/hour of insulin.

However, glycemic control is also possible by controlling the 
nutritional inputs exacerbating the problem.5-10, 23, 24 Research 
that specifically lowered caloric intake of carbohydrates 
significantly reduced blood glucose levels.5,8,10,45-47   
In particular, feeding only sb 33% to 66% of the ACCP 
guidelines48 minimized mortality and hyperglycemia versus 
the other two tertiles.10  Hence, this approach provides an 
additional effective pathway for glycemic control.

Finally, some studies find intensive insulin therapy “taxing”, 49-51  
noting that van den Berghe et al2,16 used additional staff. 
Hence, despite the potential, many intensive care units do 
not use fixed protocols.4,13,50-52 There is also little agreement 
on what constitutes desirable glycemic performance,50,52,53  
particularly with regard to how tight control affects outcome.

Overall, any glycemic control protocol must reduce 
elevated blood glucose levels, while accounting for inter-
patient variability, conflicting therapies and dynamically 
evolving physiological condition. Hence, it must be adaptive 
and/or able to identify changes in patient metabolic status, 
particularly with respect to insulin sensitivity. More 
specifically, it must accurately match therapeutic insulin 
and nutrition inputs, or demand, with the ability to utilize 
these inputs, a very difficult task in the highly dynamic 
critical care patient. 

This paper reviews current clinical studies of tight glycemic 
control in critical care. A series of basic performance criteria 
is presented. Analysis focuses on how glycemic performance 
may be linked to clinical outcome.
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Methods

Glucose-Insulin Models and Control
Model-based control is attractive for its potential to 
aggregate clinical measurements into a direct assessment 
of glycemic status to provide patient-specific intervention; 
matching demand and utilization in a way that is beyond 
typical sliding scale protocols. Thus, they can adapt to the 
highly dynamic critical care patient. However, adequate 
models of a complex and non-linear metabolic system are 
required. While outside the scope of this paper, a current, 
comprehensive review is given in.54 

There are currently three main model-based glycemic 
control results:

• Model Predictive Control (MPC)35 

• PID and Sliding Mode Control25,33,55 

• Targeted Insulin+Nutrition Control and SPRINT23,32,44,56,57 

The model and control methods differ significantly for each 
case. However, they all offer the ability to fit a patient specific 
model and determine a patient-specific intervention – 
thus determining the demand and finding the optimal 
intervention. 

MPC uses a complex metabolic model and an adaptive 
filter that determines control interventions, focusing on 
adaptation to changing patient response.35 The PID and 
sliding mode control results are based on simple linear 
models and primarily focused on applying continuous 
glucose sensors.25,33,55 The Insulin+Nutrition approach uses 
a model of relatively moderate complexity to fit patient 
specific parameters and determine the optimal intervention 
to achieve a pre-determined target glucose level.57 SPRINT 
is a table-based version for easy large-scale clinical testing.23,44 

Hence, while their technical approach is different, they all 
share a similar one method fits all approach. Specifically, 
each approach adapts its model to each patient using their 
specific fitting method. They then use that model and a 
control method to determine a control intervention of 
insulin and/or nutrition. In contrast, fixed clinical protocols 
and titration-based sliding scales are not this adaptable and 
report the need for significant modification by clinicians 
to get better patient-specific control,2,15 increasing clinical 
burden50,51 and glycemic variability,23,24 due to their one 
size fits all approach. Readers are directed to the review 
in reference 58 and other references for further details on 
the modeling.

Glycemic Control Problem and Performance Criteria
Glycemic control should reduce glucose levels to a 
safe glycemic band, minimize variability, and provide 
safety from hypoglycemia. Hence, basic performance 
requirements include:

1. Maintaining set maximum glycemic levels; 
2. Minimizing variability and/or maximize time in band;
3. Provide safety from hypoglycemia; and
4. Reducing mortality and other outcomes.

Efficacy is thus determined by a controller’s ability to provide 
these results across diverse cohorts in a one method fits all 
approach that does not increase clinical burden, yielding:

5. Adaptation to cohort; and
6. Clinically ease to use (low burden for results)

Criteria 1, 3 and 4 are reported by most studies. Criteria 
2 and 5 have only been addressed in some model-based 
studies. 

Comparing Clinical Results and Control Efficacy
Results are presented for the model-based glycemic clinical 
control studies. In addition, van den Berghe et al’s two 
studies,2,17 Krinsley,14,15 Thomas,20 and Chase et al59 are 
presented as they reported mortality endpoints. The latter 
study is currently the only model-based control design to 
report mortality. 

To account for confounding differences in cohort and 
glycemic control, two metrics are proposed. Standardized 
mortality ratios (SMR) link mortality and cohort using the 
ratio of ICU mortality and the average reported APACHE II 
score risk of death. In this analysis, reported ICU mortality 
for those patients in the intensive treatment arm and with 
length of stay greater than 3 days is used.  

Similarly, glycemic control and variability can be assessed 
by the unit-less standard error ratio of the reported values 
for 95th percentile (±2s) blood glucose range and average 
blood glucose, SE95%, where tighter control provides a 
lower value. Specifically, taking the blood glucose range 
that encompasses 95% of measurements in mg/dL and 
dividing by the mean glucose value in mg/dL yields a 
fractional percentage relating the independent metrics of 
blood glucose variation and mean value. In simple terms, 
it is a percentage variation of the range between the 2.5th 
and 97.5th percentile measurements, and the blood glucose 
mean value, denoted SE95% in this paper. Note that dividing 
by 4 would yield the traditional standard error. Finally, 
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using the blood glucose 95th percentile range allows 
the use of non-parametric counted range values if the 
distribution is not normal, as is often the case with positive 
valued concentrations, as seen in the results of Krinsley.  
 
Hence, these two metrics (SMR, SE95%) aggregate 4 criteria 
into 2, providing a potentially more useful insight into the 
interaction between control approach and clinical outcomes. 
The four criteria are: mortality rate achieved, APACHE II score, 
mean blood glucose achieved and the 95th percentile range 
of blood glucose values. These metrics capture performance 
in terms of mortality, mean glucose, and range of variability, 
along with differences in cohort via the APACHE II score 
risk of death (ROD). Thus, mortality and APACHE II ROD 
are combined to create a single cohort dependent metric 
for performance with respect to mortality. Similarly, blood 
glucose 95th percentile range and mean value are combined to 
obtain an equally unit-less measure of glycemic performance 
and tightness of glycemic control.

Results

Model-based Control Results
Plank et al35 used MPC in 48-hour trials for post-cardiac 
surgery patients (mean APACHE II=10-12), achieving 
average glycemic levels of 110-123 mg/dL across three 
centres with 42-56% of time spent in a target band of 80-110 
mg/dL, indicating a standard deviation of approximately 
±18 mg/dL. Chee et al25, 33,55 averaged 207±(18-54) mg/dL 
for 5 to 9 patients in sub-48 hour trials focused primarily on 
full automation using CGMS. Finally, while not explicitly 
model-based, the GRIP decision support system,60 used 
a computerized estimator-predictor for 179 surgical ICU 
patients (average APACHE II=14), averaging 124 mg/dL  
with 78% in a 72-135 mg/dL target range. All of these 
methods used only insulin for glycemic control and left the 
provision of nutrition to local clinical standards.

Computerized Insulin+Nutrition control57,61 reported 8 
patient trials of 10-24 hours, which reduced glucose to the 
72-110 mg/dL band within 5-hours and hit 94% of pre-set 
target glucose values. SPRINT mimics this approach23, 44 
and was implemented to enable large scale trials covering 
25,000 patient hours.59 The result was average glucose of 
106±18 mg/dL with a cohort average APACHE II score 
of 21. Percentage time in band was: 72-110 mg/dL = 61%; 
72-126 mg/dL = 82%; 72-140 mg/dL = 90%. Finally, ICU 
mortality was reduced for patients with greater than 3-days 
of stay from 26% to 17% (p=0.04), as compared to a one-year 
retrospective cohort. The study is ongoing.

Clinical Glycemic Control Studies  
with Mortality Endpoint
Table 1 summarizes the results of all reviewed studies with 
a mortality endpoint, where, for example, SMR for vdB 
2001 is simply the 4.6% final ICU mortality rate divided 
by the average APACHE II ROD of 8%, yielding SMR = 4.6/8 
= 0.58 in column eight. Figure 1 plots SMR versus SE95% 
where the correlation line (r = 0.84) excludes the outlying 
result of,20 as it focused primarily on a web-based protocol 
implementation and failed to achieve a significant (>18mg/
dL) change in average glucose levels over 500 patients. 
Potential variation due to errors in determining APACHE 
II score,62 or unreported glucose measurements leading to 
different glucose variation or average, are shown by ±15% 
error bars for mortality and additional reported points 
connected by dashed lines for ±5% glucose variation. These 
additional points and error bars are included primarily to 
visually illustrate the impact of potential variations on the 
overall trend seen. Finally, SMR < 0.85-1.0, as shown in the 
shaded area, represents an improvement over predicted 
values given the over-estimation of ROD reported in some 
studies for the APACHE II score.63, 64

Average
APACHE II

(ROD%)

ICU
Mortality

Change (%)

Blood
Glucose
(mg/dL)

95th Percentile 
±2s Range
 (mg/dL)

Hypo
Rate (%) SMR Tightness

vdB, 2001 [2] 9 (8%) 8  4.6 102±20 80 5.2 0.58 0.77
vdB, 2006 [17] 24 (40%) 38.1  31.3 108±26 104 25.0 0.78 0.97
Thomas [20] 14.5 (20%)a 26  26b,d 112±23.5 94 4.0 1.30 0.84
Krinsley [14] 16 (25%) 20.9  14.8b 131±56c 128c ~0 0.6 0.96
SPRINT [59] 21 (40%) 26  17b 106±18 72 1.5 0.43 0.68

a =  Average ROD as APACHE II score sits on boundary of two levels in original definition.78

b =  Mortality change from a retrospective cohort rather than randomised trial
c =  Calculated directly from data in Figure 2 of Krinsley14 as it was not normally distributed and the normal standard deviation significantly over 

estimates the true 95% range of data.
d =  Mortality was not necessarily a main focus of the Thomas et al20 study.

Table 1: Clinical results for clinical studies that report ICU mortality for patients with length of stay greater than 3 days, including standardized 
mortality ratio (SMR) using end of study mortality and tightness metric SE95%. Where vdb stands for van den Berghe et al and Thomas for Thomas et al.
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Figure 1: Standardised mortality ratio (SMR) versus tightness of control 
represented as SE95%. All values are based on published results2,14,17,20,59 
where vdb stands for van den Berghe et al and Thomas for Thomas et al. 
The line is fit excluding the outlying data from Thomas et al. The vertical 
error bars show 15% potential variation in reporting or determining average 
APACHE II scores.62 The average glucose variation due to not including all 
measurements is estimated at 5% and additional error bars are generated 
for van den Berghe et al and Thomas et al at these values with their center 
points connected by a dashed line, thus accounting for potential variation in 
the average glucose or glucose variation determined. 

Discussion
There is a great deal of glycemic variability in all the clinical 
results due to a combination of differences in: glycemic limit, 
cohort, control method, and implementation effectiveness. 
For example, van den Berghe et al and Thomas et al use the 
same protocol and similar glycemic limits, yet still obtained 
significantly different results in mortality and glycemic 
variability. In particular, the more critically ill the cohort, 
the more dynamic the patient evolution may be, and thus 
the more dynamic the changes in stress-induced insulin 
resistance and control. This issue can be further exacerbated 
in ad-hoc titration-based protocols by significant patient-
specific clinical modification to improve control.2,14,17 Hence, 
direct performance comparisons for optimising treatment 
strategy are, at best, qualitative.

In particular, Table 1 shows van den Berghe et al achieved 
average morning glycemia of 103-108 mg/dL using insulin 
alone, with cohorts ranging from 9 to 24 in APACHE 
II score. However, the higher APACHE II score, the 
potentially more dynamic the cohort, as seen in the larger 
variation in reported glucose values in both,17,20 as well as 
the 25% incidence of hypoglycemia17 compared to 5% for 

the less ill cohort.2,20 It might be said that the two results of 
van den Berghe et al show the impact of cohort, while the 
outlying result of Thomas et al indicates a lack of effective 
control implementation, as their study only achieved 
an insignificant, <18 mg/dL change in average glycemia 
compared to their retrospective cohort. 

Similarly, Thomas et al achieved similar average glycemic 
results to van den Berghe et al with a cohort similar to that 
of Krinsley.14 The standard deviation or variability of their 
results were also similar after accounting for Krinsley’s 
lognormal (rather than normal, as reported) glucose 
distribution. However, as noted, the mortality outcome was 
very different, indicating unknown differences in either the 
method used or the efficacy of its application. 

More specifically, the differences behind the outlying 
mortality results of Thomas et al are hard to diagnose 
from the data presented. However, the protocol of van den 
Berghe et al relies on some level of clinical customization 
and intervention for some patients. Thus, their results 
might be very different given different choices. Secondly, 
reporting only morning glucose values may have less 
meaning if tight control is not maintained for any reason 
throughout the day. Finally, the initial average glycemic 
levels in the Thomas et al study were quite low at 131±32 
mg/dL and thus already within the tight control range of 
Krinsley, which extended to 140 mg/dL indicating already 
good glycemic control relative to this study. In addition, 
the decreases to 119±23 mg/dL and then 112±22 mg/dL 
were relatively quite small and are all contained within 
one standard deviation. Hence, and perhaps most likely, it 
is possible that such relatively small glycemic reductions 
in this already relatively low glycemic range might not 
be expected to impact mortality. Therefore, for all these 
reasons, the Thomas et al study was excluded from the 
trend line calculation, as the lower changes in mortality 
for the tightness of control could not be accounted for 
from the published data. However, given more data, 
the more complete proof of the metrics presented will 
be determined. Thus, this approach to comparison is 
primarily put forward as hypothesis generating rather 
than conclusive.

In contrast, model-based methods show much tighter control 
on average in the limited studies to date, when compared 
to the clinically derived protocols of van den Berghe et al 
and Krinsley, as shown in Table 1. Specifically, the MPC 
and Insulin+Nutrition control approaches have effectively 
clamped blood glucose (~108±18 mg/dL) with minimal 
variability. Similarly, the SPRINT protocol delivered a 
standard deviation of ±18 mg/dL, similar to the shorter 
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MPC trial, yet with a cohort that was much more critically 
ill than for those studies reporting similar variability. This 
reduced variability using model-based control is also seen 
in the 0-2% incidence of hypoglycemia for model-based 
methods. Hence, model-based methods appear better able 
to match patient-specific demand and utilization over 
highly dynamic, critically ill patient cohorts, without large 
glycemic variation.

Hence, the question arises: What is the best measure of 
blood glucose control? Van den Berghe et al2,16,17 used 
mean morning glucose, but did not include several daily 
measurements. This limitation hinders assessment of the 
actual glycemic variability and control performance. In 
contrast, several studies14, 15, 21, 22, 35, 60 reported average glucose 
over all treatment, even if the actual distribution was 
lognormal, thus skewing the standard deviation results. 

It is therefore proposed that time in a glucose band, such 
as 72 to 110 mg/dL, provides more complete information. 
In particular, maximizing time in a band tightens control, 
while still allowing variation within the band as patient 
condition evolves. In addition, using multiple bands, such as 
72 to110 and 72 to140 or 72 to126 mg/dL, will also delineate 
the tightness as well as the fundamental distribution in 
terms of clinically relevant glycemic values. Time in band 
also equally weights any values within the band, rather 
than penalizing values small distances away from a specific 
target, thus allowing flexibility in control to within clinically 
acceptable ranges rather than to specific target values, as in 
previous studies. In support of this fundamental proposal, 
Figure 1 indicates that the tighter the control (smaller SE95%), 
the lower SMR obtained. 

Further support for limiting glycemic variability to get 
better outcomes is found in studies linking excessive 
pro-inflammatory immune response to observed insulin 
resistance and hyperglycemia, as well as reduced bactericidal 
and immune system effectiveness.12,65,66 In particular, this 
inflammatory cascade has been linked to decreased insulin 
sensitivity, which is a primary cause of hyperglycemia in 
critical care.12,67,68 Other studies indicate that augmenting 
certain proteins can have a positive effect on carbohydrate 
metabolism and insulin sensitivity.69 There are also emerging 
results linking repeated exposure to elevated blood glucose 
to increased cellular level damage.70-73 Note that there are 
some recent studies that indicate that glycemic variability is 
not necessarily associated with increased inflammation and 
potentially related micro-vasculature damage,74 however 
these results are based on the DCCT study data, which may 
not have had frequently enough sampled data to capture 
glycemic variability as it would affect critical care patients. 

However, overall, there is a growing body of evidence to 
support minimizing exposure to elevated blood glucose 
in critical care by minimizing variability under glycemic 
control – at any reasonable average blood glucose level.  
 
However, given the limited data available to create Figure 1 
this result should be taken as hypothesis generating. While 
the metrics in Figure 1 aggregate clinical results and control 
criteria into a more readily visualised format, normalizing 
out differences in cohort or glycemic limit, they do have 
limitations. A particular limitation is the implicit assumption 
of a relatively low, clinically relevant average glucose level 
in analysing the trend. For example, very tight control to 
a high glycemic average of 150 to180 mg/dL would yield 
a low SE95% value, but (potentially) high SMR due to poor 
control not reducing the higher average values and thus not 
affecting mortality. This case would result in a point outside 
the trend of tighter control producing reduced mortality, 
as shown in Figure 1. Hence, given that hyperglycemia  
is strongly correlated with mortality in a variety of  
studies,2, 16, 38 the tightness metric presumes that the clinical 
control protocol being evaluated achieved a clinically relevant 
average glycemic value based on this current evidence.

Other limitations include the use of average APACHE II 
scores, although adjusting for reported distribution did 
not affect the plot. The APACHE II risk of death can also be 
overstated by approximately 15%,62,63 as shown by the grey 
area in Figure 1, where a value below the grey area covering 
the SMR range of 0.85 to 1.0 would indicate an improvement 
over predicted values for that cohort. Additionally, not all 
studies include every glucose measurement, potentially 
understating the glucose variability, particularly if longer 
measurement intervals are used.23,26 For example, these 
same protocols were simulated23,24 with good mean value 
correlation to published results, but significantly larger 
variability, showing the potential impact of reporting all 
the measurements. Hence, significant data is missing for a 
complete picture at this time, as approximated schematically 
by the additional error bars and points in Figure 1 for 
studies that don’t report all glucose measurements, and the 
single error bars in SMR for those that do.

The use of the 95th percentile metric, using either standard 
deviation or non-parametric counted range, is a useful 
measure of the tightness of glycemic control, although 
not necessarily unique. Several other potential measures 
exist already, such as MAGE (mean average glycemic 
excursion)75 or the peak/range of blood glucose.76 
However, both of these metrics require all glucose values 
to be reported, rather than just morning averages as in the 
van den Berghe et al studies or the study by Thomas et al.  
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In addition, the MAGE metric is effectively equivalent to the 
standard deviation metric, and the peak and range of blood 
glucose are highly correlated to the mean glucose value,76 
adding no additional information to the metric used. In 
addition, reporting multiple time in band percentages can 
compactly illustrate both the average glucose levels and 
fundamental distribution of glycemic values. Finally, more 
advanced metrics, such as the risk and Markov-based high 
and low blood glucose indices presented by Kovatchev  
et al,77 introduce significant added information. However, 
this metric is based on continuous sensing not used in 
these studies and requires the full blood glucose data to be 
reported and made available, which was not possible for all 
studies used in this paper.

Of note in this discussion is that there was no correlation 
between the average blood glucose achieved and mortality 
(r = .04) or the 95th percentile range (r = .68). In addition, 
similar results are obtained comparing these values to 
SMR (r = .06 and r = .54) respectively. It is only in their 
combination in defining the tightness metric, SE95%, that 
the there is a significant correlation with mortality or SMR 
for the blood glucose mean and variability achieved across 
these independent studies. The specific reason for the lack 
of correlation is that outlying values for at least one study, 
excluding in all cases the results of Thomas et al, result 
in poor correlation. This result further supports the use 
of these two metrics for this type of analysis across very 
different clinical studies.

Finally, one other potential metric which is not commonly 
used is readily available from the reported data. Specifically, 
the rate of hypoglycemic events, shown as a percentage 
of patients in Table 1, is an independent variable, as no 
significant correlation was seen between this metric and the 
95th percentile metric used (r < 0.5) to illustrate variability. 
This result suggests that it could be used as an added metric. 
This value would indicate variability of glucose levels, but 
only accounts for one side of the equation, specifically low 
levels. When plotted versus SMR, this one-sided value 
is correlated to SMR with r = 0.87. If one then assumes 
that more hypoglycemic events might lead to increased 
mortality, and thus reduced SMR, a further derived metric 
can be created. Specifically, correlating the following revised 
metric to SMR:

where Hypo is the fractional representation of the rate 
of hypoglycemic events per patient, gives a correlation 
coefficient of r = 0.98, as shown in Figure 2. This high value, 
excluding the result of Thomas et al, further illustrates 

the hypothesized trend between tightness of control and 
mortality. However, while the fit is tight, the assumption 
of increased hypoglycemia and mortality is not proven 
and more data is required to validate this metric. Overall, 
Figure 2 further illustrates the potential trends and possible 
metrics that might arise on further examination and the 
need to begin developing consensus on this topic.

Figure 2: Correlation of SMR and modified 95th percentile standard error 
metric, where all abbreviations are the same as in Figure 1.

Overall, the results argue for more examination of metrics 
for assessing control effectiveness and allowing useful 
comparison across studies. The metrics presented here are 
only proposed for hypothesis generation and discussion, 
and likely do not represent a conclusive performance 
metric. However, these results do begin to suggest that 
tighter, more perfectly clamped control will provide better 
mortality results, particularly for more critically ill cohorts. 
Hence, metrics such as time in band, using all control 
measurements should be considered in future studies.

Conclusions
Hyperglycemia in critical care has a significant impact 
on patient mortality, outcome, and cost. Tight regulation 
can significantly reduce these negative outcomes, but 
consistently achieving it, as an expected outcome of care, 
remains clinically elusive. In particular, there is no standard 
definition of tight control and what level is necessary for 
optimal outcomes. Therefore, it is very difficult to determine 
the best protocol in terms of results and clinical effort. 
This overview has examined the current performance of 
clinical glycemic control studies in critical care focusing on 
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the differences in emerging model-based approaches that 
utilize a variety of computational and emerging sensor 
technologies, and current ad-hoc clinical methods. With 
limited published studies it is very much an emerging field 
rather than a mature area of research.

Specific examination of clinical results shows that model-
based control can provide tighter, more adaptive control 
than existing clinical protocols – a one method fits all 
approach. A hypothesis generating approach to evaluating 
glycemic control in critical care is proposed utilizing 
standardized mortality ratios and 95th percentile standard 
error to enable better comparison across cohorts and 
control methods. Analysis indicates that tighter control 
may lead to better outcome. Given that tight control can 
be obtained consistently using frequent measurement and 
model-based methods argues for the greater application of 
these technologies in clinical research and practice. More 
specifically, these results all support the eventual use of 
adaptive model-based methods, instead of ad-hoc one size 
fits all approaches, to provide the customized, patient-
specific and eventually automated intervention required to 
treat the highly dynamic, hyperglycemic patients found in 
broad intensive care cohorts.
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