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Abstract

Background:

The introduction of continuous glucose monitoring (CGM) devices has dramatically increased the amount of 
information available about each patient. While CGM has become a useful diagnostic tool for the individual 
patient, interpretive issues including noise reduction remain and further analytical work is needed to fully 
utilize the data richness.

Method:

We applied discrete Fourier transform methodology to CGM data to obtain an overall statistical model 
providing the dimension reduction necessary for insightful analyses of the whole function  and explored some 
properties and possible applications of this technology.

Results:

The following example applications are shown. Discrete Fourier transform allows reduction of noise using 
an objective statistical criterion and may, as a first step, possibly enhance the value of various measures of 
variability through this noise reduction. Average functions of groups in a prospective randomized clinical 
are demonstrated and the aggregate function is readily visualized. Second and third harmonic amplitudes 
at baseline correlate with hemoglobin A1c after a 6-month treatment period. The time points of most rapid 
glucose decreases are identified easily with the functional through the second derivative, and its correlation 
with subsequent reported symptomatic hypoglycemia is shown.

Conclusions:

Discrete Fourier transform offers an attractive analytical methodology for CGM data given the achievable 
dimension reduction without loss of essential information as well as its ability to eliminate noise.
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Introduction

Continuous glucose monitoring (CGM)1 has 
become a useful diagnostic tool in the treatment of the 
individual patient,2 and substantial efforts have gone 
into developing derived variables that can be related to 
meaningful clinical outcomes. Because of the importance 
of hypoglycemia prediction, particular attention has 
been given to measures of variability where CGM 
provides dramatically more information than has been 
available previously. Researchers have applied previously 
developed measures of variability—standard deviation,3 
M value,4 mean amplitude of glycemic excursions,5,6 
J value, low glucose risk index,7 and blood glucose (BG) 
rate of change8—and come up with new ones, including 
continuous overall net glycemic action.9 When derived 
directly from raw data, each of these variables contains 
both signal and noise from the measurement technology, 
and inherent in this data reduction to a single number is 
an incorporation of measurement-related variability not 
attributable to the patient’s condition.

We proposed applying the standard data reduction 
methodology of the discrete Fourier transform to 
CGM data that, among other benefits, addresses those 
issues. The Fourier approximation method provides the 
following.

• An overall statistical model for assessing the patient’s 
whole blood glucose profile providing the dimension 
reduction necessary for insightful analyses of the whole 
function.

• The ability to smooth out extraneous variability in CGM 
plots by filtering out the high-frequency noise inherent 
in the CGM measurement process. A useful attribute is 
that the degree of noise reduction is adaptable to any 
particular analysis.

• Partitioning the blood glucose profile into a 24-hour 
mean and component harmonic oscillations about the 
mean.

• Definitions of new parameters based on 24-hour Fourier 
profiles, which may have clinical utility.

While individual parameters from discrete Fourier 
transformation may prove useful as predictors of 
morbidity, such transformation initially may enhance the 
utility of the variables mentioned earlier due to the noise 
elimination it can provide. Furthermore, because the 
function after discrete Fourier transformation still retains 
most of the meaningful information about the individual 
CGM curve, it can be utilized in relation to any clinical 
outcome whether related to average glycemic exposure, 

precipitous glucose decreases, low glucose values, or 
perhaps for oxidative stress, particularly high glucose 
values.10,11 No a priori assumptions about pathogenesis 
have to be made.

In this article, we applied the discrete Fourier transform 
to CGM data and explored some of the possible utilities 
with data primarily from adolescent type 1 diabetes 
patients.

Methods

Model Considerations

Discrete Fourier transformation requires selection of the 
longest possible cycle for which there are data. In this 
article, 24-hour periods were selected as the longest cycle 
because whole function summaries were made based 
on cohorts of patients, many of whom had only one 
continuous 24-hour period of usable data. Also, because 
of the circadian cycle of 24 hours, this cycle time made 
physiologic sense. When CGM devices with longer sample 
times become available, a 7-day cycle due to changed 
food and exercise behavior during the weekend or even 
a monthly cycle to account for menstrual cycle impact on 
glycemic control may yield additional information.

The start/end time of a 24-hour cycle can be designated 
at any time since the CGM monitor continues. It is 
convenient to select the start/end time of the 24-hour 
cycle to be midnight so that the horizontal scale begins 
at midnight (hour 0) and ends at midnight (hour 24 = 
hour 0). Hence, the date of the 24-hour session becomes 
the key identification in data analysis. Patients with more 
than one contiguous 24-hour session would then have, in 
effect, more than one data “point” (i.e., whole 24-hour 
function) for the analysis. These can be averaged so that 
each patient contributes one “point” per specified visit, 
or the sampling unit can be identified as each individual 
24-hour session and patient effects can be accounted for 
in mixed models.

Fourier Model

Suppose the function obtained from the CGM monitor 
has the form

G = f(t),                            (1)

where t is in hours from 0 (midnight) to 24 (midnight) 
and G is the observed CGM BG sensor reading at time 
t. Here it is convenient to assume that G is observed 
for every time t even though in reality it is generally 
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observed every 5 minutes. The Fourier approximation to 
this function has the form

G = fh(t) = m + Si cyclei(t),                (2)

where cyclei(t) is a periodic function that runs through 
exactly i complete cycles in 24 hours.12 In other words, 
its frequency of oscillation is i and the time required to 
complete one cycle is 24/i hours, which is called the 
period. The function cyclei(t) is called the ith harmonic 
component of the overall function, and two parameters 
are needed to completely define the ith harmonic, the 
amplitude and phase shift.

Index i runs from 1 to the number of cycles used for 
the approximation, hence the Fourier model is a linear 
combination of a constant m and several harmonic curves 
where each component curve oscillates at a regular 
integral number of cycles per 24 hours.

It turns out that the intercept term, m, equals the 24-hour 
mean of blood glucose readings from the 24-hour CGM 
profile and can be expressed as

m = AUC/24.

The constant m is also the mean of the Fourier 
approximating function fh because the 24-hour mean 
of each of the harmonic functions is zero. This is an 
important characteristic of the Fourier approximation, 
namely apart from the overall mean m the rest of 
the approximating function is modeling only the BG 
variability and is decomposing this variability into 
harmonic components.

There is another important characteristic of the cycles 
cyclei(t). These cycles are mutually orthogonal in the 
sense that they are uncorrelated, that is, the integral or 
sum of the product of any two of them over 24 hours 
is zero (provided all CGM readings are present over 
24 hours and spaced equally). The very important 
consequence of this is that the fitted coefficients for an 
individual cycle do not depend on other cycles within 
the multiple regressions. Each individual estimated cycle 
remains unchanged regardless of the number of cycles 
chosen for the model.

The full definition of the harmonic function cyclei(t) is

cyclei(t) = Ai cos(2π i (t – PHSi )/24),          (3)

where Ai is the amplitude and PHSi is the phase shift; 
both are determined based on obtaining the best 
approximation to the observed CGM BG function f.

Amplitude Ai is the maximum value that the harmonic 
cyclei(t) will ever achieve over 24 hours. If the amplitude 
of a harmonic is zero, then that frequency of oscillation 
does not exist in the BG curve, and if all harmonic 
amplitudes were zero, then the curve would be flat, 
namely the constant m for all times t.

For CGM sessions yielding 288 readings per 24 hours, 
if the amplitudes from all 144 harmonics are squared 
and summed, the result is proportional to the ordinary 
sample variance of the 288 CGM BG readings [the sum 
of the squared amplitudes multiplied by 1/(144*287) 
equals the sample variance]. Hence, Ai values represent 
a decomposition of the total variation of the BG curve 
across the oscillation harmonics of the curve.

The phase shift PHSi moves the cosine curve to the right 
or left in order to locate the maximum and minimum 
values of the harmonic to best represent the overall BG 
curve.

The harmonic determined by cycle i(t) is linear in 
amplitude Ai but not linear in the phase shift-PHS i. 
This would appear to eliminate the standard multiple 
regression statistical software for estimating the 
parameters of the harmonic functions. However, the 
cosine function is converted readily to another form 
that is linear in the unknown parameters that must be 
estimated. Hence, the ith harmonic can be written as

cyclei(t) = Ci cos(2π i t/24) + Si sin(2π i t/24),    (4)

which is an equivalent expression for the ith harmonic 
function, with

Ai = (Ci
2  + Si

2 )1/2                           (5)

                   PHSi  = tan-1(Si /Ci).

Hence, the Fourier approximation to G = f(t) starts with

G = fh(t) = m + Si {Ci cos(2π i t/24) + Si sin(2π i t/24)},  (6)

which is a multiple linear regression in the terms 
cos(2π i t/24) and sin(2π i t/24).

Statistical Test for Zero Amplitude

After a Fourier transformation of individual CGM data 
sets, it is useful to aggregate data across patients to a 
group function when assessing the impact, for example, 
of a treatment intervention within a clinical trial. This is 
done simply by calculating the means of the individual 
patient C and S values for each cycle. A critical 
consideration is whether this sample size is adequate to 
detect the given cycles.
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Let Cbar and Sbar be sample means of cosine and sine 
regression coefficients for cycle i from a sample of n 
patients’ 24-hour CGM system profiles, as in Equation 
(6). Let Cvar, Svar, and COV be sample variances and 
covariance of patient C and S values for cycle i. Then the 
statistic

Fstat ={(n – 2)/2} {(Svar) Cbar2 + (Cvar) Sbar2 –   (7)

2(COV)Cbar Sbar} / {Cvar Svar – COV2}     

has an F distribution with 2 df, n – 2 df assuming that 
the population amplitude = 0 for this cycle (the null 
hypothesis that both C and S are zero in the population 
for this cycle). In other words, Fstat is a test statistic that 
can be applied to each cycle for determining whether 
there is sufficient precision or sufficient sample size for 
detecting the presence of a particular harmonic cycle. 
This statistic is Hotelling’s T2 test.13

The resulting p value should be adjusted to take into 
account the multiple tests, one for each cycle. There are 
many ways this can be done, and one procedure utilizes 
a standard multiple comparison method at each cycle, the 
idea being that if cycle k is being tested, then this must 
be the kth test so that significance at the p = 0.05 level 
should take this into account. This yields a procedure 
where higher cycles are subjected to a successively more 
stringent criterion. This adjustment is given by

Adjusted p value = cycle × p,                (8)

where p is obtained from the Hotelling T2 test. This 
adjustment uses the Bonferonni method.14

Use of Derivatives to Identify Maxima for Rate of 
Change

One advantage of representing the 24-hour CGM with 
defined mathematical functions is the ability to obtain 
stable estimates of rates of change at specific times. One 
such parameter, termed average steepest descent, can 
be defined only after the raw CGM curve has been 
approximated by a smooth function. The average steepest 
descent is defined in the following two-step process 
using a smooth (Fourier) approximation to a patient’s 
24-hour CGM function.

Solve for the relative minima of the first derivative of 
the CGM approximation (find the times at which the 
curve has its greatest local descent).

Average the resulting steepest descents (the first 
derivative values at these times).

1.

2.

Because the Fourier approximation involves only sines 
and cosines, it is relatively easy to perform step 1 and 
hence step 2 using the Newton–Raphson method.15 
Applications where descents of relatively long duration 
are desired require a Fourier approximation of no more 
than five cycles.

Results
Illustrative Example of Individual CGM Trace 
Transformation
Figures 1A and 1B illustrate a 24-hour CGM curve from 
a patient with type 2 diabetes treated with a combination 
of metformin, glipizide, and insulin glargine at bedtime. 
Superimposed on the curve is graphic representation of 
the functions derived by Fourier transformation with 
5 and 20 cycles, respectively. The higher frequency 
residuals, or differences from the approximation and the 
actual BG readings, are also depicted.

Figure 1. Individual CGM midnight to midnight tracing (red line) from 
a patient with type 2 diabetes treated with metformin, glipizide, and 
bedtime insulin glargine with superimposed discrete Fourier transform 
function (blue line) and residual error (black line) with 5 (A) and 20 (B) 
cycles, respectively.

A

B
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The use of just 5 cycles (11 degrees of freedom) in Figure 1A 
captures the essence of this particular patient’s glucose 
curve with apparent nighttime hypoglycemia and 
relatively early breakfast and lunch with relatively steep 
decreases after those two meals. However, the 5 cycles 
are not sufficient to catch the extremes of the peaks 
and valleys with deviations from the original curve of 
up to 40 mg/dl, and the error plot reveals some regular 
oscillations remaining, suggesting that higher frequency 
harmonics may be required.

When using 20 harmonic functions (41 degrees of 
freedom) the model curve, except for some minor spikes, 
essentially retraces the original curve and the error plot 
no longer reveals a periodic pattern, possibly indicating it 
is now reduced to random noise. Furthermore, note that 
the approximating Fourier model converges uniformly 
to the observed CGM curve over all times within the 
24-hour period (except at times 0 and 24). This uniform 
convergence is a well-known and useful property of 
Fourier approximations.

Example of Test for Zero Amplitude

The following examples are drawn from a prospective 
clinical trial of girls and boys between 9 and 17 years 
of age with a Tanner stage of ≥2 who had a diagnosis of 
type 1 diabetes mellitus for at least 1 year for which they 
were treated with neutral protamine Hagedorn (NPH) as 
the basal insulin. They had a C-peptide concentration ≤0.5 
nmol/liter and 7.0% ≤ hemoglobin A1c (HbA1c) ≤ 9.5% at 
screening and were randomized to either continue on 
their previous insulin regimen or be treated with insulin 
glargine in combination with insulin lispro in a typical 
multiple daily injection regimen.

The test for zero amplitude on the baseline sample of 
90 patients with CGM recordings is shown in Table 1. 
According to the adjusted p values, there is strong evidence 
for detecting nonzero amplitudes for cycles 1 through 
5. However, because the unadjusted p value for cycle 9 
was under 0.05, there may be some evidence of higher 
frequencies, which perhaps would be detected readily 
with larger sample sizes.

Group Comparison Example: Individual Harmonic 
Components and Graphical Representation

Table 2 shows baseline estimates and estimates of changes 
from baseline for the treatment group randomized 
to glargine in combination with lispro multiple daily 
injection therapy of the five cycles demonstrated earlier 
to be adequately supported by the amount of data 

Table 1.
Test for Existence on Cycles in a Sample of 90        
Type 1 Adolescents with Type 1 Diabetes Treated 
with Insulin NPH in Combination with Fast-Acting 
Insulina

Cycle Sample 
Size

Mean 
cosine

Mean 
sine

Hotelling’s 
T2 p value Adjusted 

p value

1 90 -149.029 -52.813 4.3226 0.01619 0.01619

2 90 75.418 -185.775 11.7284 0.00003 0.00006

3 90 118.59 57.466 12.1072 0.00002 0.00007

4 90 -60.136 -10.945 4.8573 0.00998 0.03991

5 90 42.096 -76.279 11.5319 0.00004 0.00018

6 90 -14.069 12.592 1.2102 0.30304 1.0

7 90 -1.651 -6.43 0.2022 0.81728 1.0

8 90 -12.575 -15.433 2.8423 0.06366 0.50925

9 90 10.762 15.935 3.2471 0.04359 0.39235

10 90 -5.792 -1.066 0.4786 0.62125 1.0

aThe longest cycle time (cycle 1) is set to 24 hours. Determined 
parameter estimates for each cycle are shown along with Hotelling’s 
T2 test statistic value, the unadjusted p value, and the p value after 
Bonferonni adjustment for multiple tests.

available. The estimates were not sample means, but 
were generated from a mixed repeated measures model 
of the 11 Fourier parameters.

There was a nonsignificant reduction of 18 mg/dl in the 
24-hour mean BG level. While it may be surprising that 
this apparently substantial change is not statistically 
significant, it should be kept in mind that the standard 
measure of average glycemic control HbA1c is inherently 
an average over time and therefore can be suspected to 
be much more stable than a single or a couple of days 
worth of CGM. Regarding the harmonic amplitudes, 
the amplitudes decline with increasing frequency. 
A numerical decrease in the largest amplitude and 
significant reductions in the amplitudes for harmonics 2, 
3, and 4 were observed, and surprisingly the estimated 
reductions for harmonics 2 and 3 were larger than for 
harmonic 1. The phase shifts for each harmonic are 
approximately half of the harmonic period and are not 
changed much.

Results are easily plotted in Figure 2 to facilitate 
comprehension for nonmathematicians. Dotted line curves 
represent one standard error of the week 12 baseline 
difference at each time t, and it is evident that the curve 
separation is small when judged by the precision at each 
individual time point. Summaries of the curves, such as 
the 24-hour means or individual harmonic amplitudes, 
utilize the whole curve and hence carry more precision 



635

Use of Fourier Models for Analysis and Interpretation of Continuous Glucose Monitoring Glucose Profiles Miller

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 5, September 2007

so that some differences between 12 weeks and baseline 
do achieve statistical significance. However, it is clear that 
more than 45 patients are required to separate the curves. 
Even with this sample size limitation, it is clear that the 
observed reductions in harmonics 2 through 4 reflect a 
diminished postbreakfast glycemic surge. Despite similar 
average trough glucose during the night of about 170 mg/
dl, the peak postbreakfast glucose is diminished from 
about 235 to 205 mg/dl.

Clinical Results: Effect of Harmonics 2 and 3 on HbA1c

Each of the patients in the aforementioned study had 
HbA1c values determined at baseline and at week 24. 
It was therefore possible to determine whether any of 
the Fourier parameters had additional prognostic value 
for predicting the mean week 24 HbA1c after taking 
into account the effects of the usual baseline predictors, 
particularly baseline HbA1c. The patient’s postbaseline 
randomized study arm was also taken into account in 
the model, with 45 patients in the glargine arm and 45 
patients in the intermediate-acting insulin arm.

Cycle 2 and cycle 3 amplitudes at baseline each had a 
statistically significant association with the week 24 
HbA1c, after accounting for baseline HbA1c. Further 
investigation revealed that this associat ion was 
particularly strong when cycle 2 and cycle 3 harmonic 
functions were combined, and the amplitude of the 
resulting sum was used as one prognostic factor. This 
amplitude was

Amp23 = sqrt {(A2)
2 + (A3)

2}               (9)

The multiple linear regression of the 90 patients had week 
24 HbA1c as the dependent variable and the following 
terms as independent variables: baseline HbA1c, baseline 
mean 24-hour BG (from the CGM records), the amplitude 
of the first cycle (A1), the combined amplitudes of cycles 
4 and 5, patient age, and study arm (which had little 
effect for these patients). Results of this model indicated 
that larger values of Amp23 at baseline yielded larger 
mean week 24 HbA1c levels for the same baseline HbA1c 

Table 2.
Fourier Coefficients for Five Cycles with Longest Cycle Time Set to 24 Hours in a Sample of Type 1 Adolescents 
Treated with Insulin Glargine in Combination with Insulin Lispro at Week 12a

Summary Cycles / 
24 hours

Combined baseline estimate 
(SE) (N = 90)

Week 12 glargine estimate 
(SE) (N = 45)

Week 12 glargine - baseline 
estimate (SE) (N = 45) p value

Mean sensor BG (mg/dl) 193.91 (4.61) 176.38 (7.61) -17.53 (8.88)   NS: 0.05 < p < 0.1

Amplitude (mg/dl) 1 44.11 (1.94) 38.96 (2.96) -5.15 (3.50)   NS: p > 0.1

2 34.09 (1.49) 26.77 (2.27) -7.32 (2.69)   p = 0.007

3 26.07 (1.04) 20.73 (1.58) -5.34 (1.88)   p = 0.005

4 19.03 (0.75) 15.75 (1.14) -3.28 (1.36)   p = 0.017

5 14.82 (0.65) 13.25 (0.98) -1.58 (1.17)   NS: p > 0.1

Phase (hours) 1 12.02 (0.50) 10.85 (0.75) -1.16 (0.90)   NS: p > 0.1

2 6.91 (0.27) 6.71 (0.41) -0.21 (0.49)   NS: p > 0.1

3 3.58 (0.18) 4.08 (0.28) 0.49 (0.34)   NS: p > 0.1

4 2.91 (0.13) 3.02 (0.19) 0.11 (0.23)   NS: p > 0.1

5 2.79 (0.11) 2.79 (0.17) -0.00 (0.20)   NS: p > 0.1
aThe baseline, week 12, and difference as well as p value for that difference are shown. Note changes in the cycle times 12, 8, and 6 hours roughly 
corresponding to the prolonged postprandial glucose in these patients and compare with Figure 2.

Figure 2. Estimated group function of patients randomized to insulin 
glargine in combination with insulin lispro (blue curve) after 3 
months (N = 45) compared with estimated group function at baseline 
(green curve) from all subjects (N = 90) based on a general linear 
model analysis of Fourier coefficients of adolescent type 1 diabetes.  
Plus or minus one SE of the difference in means is depicted from the 
average of the curves at each time. The insulin glargine reduction 
from baseline in the 24-hour mean did not quite achieve statistical 
significance (NS: 0.05 < p < 0.1). However, the reduction from baseline 
in the CGM 24-hour standard deviation was statistically significant 
(p = 0.002).
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(p < 0.001). Baseline HbA1c was a significant predictor of 
week 24 HbA1c (p < 0.05), but the other terms did not 
achieve statistical significance.

To illustrate the effect graphically, patients were 
categorized as having low, medium, or high values of 
Amp23 at baseline, and these categories were entered 
into the model rather than the single linear term. Values 
defining low, medium, and high were chosen to divide 
the cohort of 90 patients into approximately equal groups, 
and patients classified as having a high amplitude for 
their 2nd + 3rd harmonic functions had a significantly 
higher mean HbA1c at week 24 (p = 0.003). Results are 
depicted in Figure 3A. Because the 24-hour mean BG is 
known to be correlated with HbA1c, perhaps either the 
mean BG or HbA1c should have been in the model, but 
not both. However, the result was the same regardless 
of which combination of baseline HbA1c, mean BG was 
used. The scatter plots of week 24 HbA1c versus baseline 
Amp23 (adjusted for the other baseline factors) in Figure 3B 
show that this relationship was generally linear across all 
points, so the original linear model provided a reasonable 
fit. The low, medium, and high values from Figure 3A 
do not apply directly to the x axis of Figure 3B, as both 
the x and the y axes from Figure 3B were obtained by 
adjusting for the other factors in the model.

Clinical Results: Effect Average Steepest Descent on 
Hypoglycemia

A measure of average steepest descent for each 24-hour 
profile obtained at baseline from a cohort of 90 type 1 
pediatric patients was used in conjunction with the 
study arm and other baseline parameters to predict the 
rate of subsequently reported symptomatic hypoglycemia 
confirmed with BG <50 mg/dl occurring between the 
hours of 6 AM and noon during the 24 study weeks. 
The log-linear relationship between the average steepest 
descent and the reported hypoglycemia rate by treatment 
group is depicted in Figure 4. Patients with steeper 
average descents had higher rates of hypoglycemic events 
occurring. This relationship was statistically significant 
for patients in the NPH insulin group with the 
hypoglycemia rate estimate doubled for every decline of 

-9 mg/dl in average steepest descent (p < 0.005), while it 
was in the same direction but not statistically significant 
(p > 0.1) in the insulin glargine group.

Discussion

Studying CGM 24-hour plots for different patients 
suggests characteristics that need to be present for a 
useful functional approximation. First, the glucose rises 
and falls cyclically in relation to a baseline as expected 

with diet and physical activity as well as drug action. 
Second, there appears to be a relatively high-frequency, 
low-amplitude oscillation (up and down) motion in 
the plots. This article considers the latter white noise 
originating from the CGM meter measurement of the 
signal and not from fluctuations in the actual BG. Useful 
functional approximations of BG concentration must 
be able to filter out this high-frequency noise. What 
remains is a curve that still rises, falls, and returns to 
approximately the original starting point as expected. In 
other words, a typical CGM curve is not some linear or 
monotonic function amenable to a low-degree polynomial 
approximation, but something suggesting a combination 
of sine and cosine functions. These considerations make 
the Fourier model a method of choice in developing 
approximating functions for CGM assessments. 

Figure 3. (A) Baseline CGM 2nd + 3rd harmonic amplitude relation 
to subsequent HbA1c. HbA1C least-squares means at 24 weeks after 
adjustment for baseline HbA1c (p = 0.03), age (p = 0.06), and study 
arm (p > 0.3) are shown for each tertile of the 2nd + 3rd harmonic 
amplitude (p = 0.003). (B) Baseline CGM 2nd + 3rd harmonic amplitude 
relation to subsequent HbA1c appears linear across all points. Week 
24 HbA1c values and baseline 2nd + 3rd harmonic amplitude values 
have been adjusted by other independent variables in the model. The 
adjusted slope estimate = 0.03% (mg/dl) (SE = 0.009) (p < 0.001).

A

B
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For analysis of groups of patients, this methodology 
has the advantage of making the determination of 
the required number of cycles depend on a standard 
objective statistical criterion. When approximating an 
individual patient trace the number of cycles chosen 
would depend on the error the user is willing to accept 
and therefore is a matter of choice evaluating not only 
the size, but also any possible structure in the residual 
error (compare Figures 1A and 1B).

From a theoretical point of view the discrete Fourier 
transform therefore appears to be a very attractive 
functional description of CGM data, if for nothing else 
as a noise reduction procedure before calculating already 
established measures of variability.

While advocates of transformed data for glucose values 
such as M value and “low blood glucose index”7 may 
be “right” given the skewed distribution of glucose 
concentrations in diabetes patients, transforming raw 
data also transforms the noise. While it may be necessary 
at times to transform the blood glucose signal that can 
vary exponentially because of among-patient variation, 
the white noise component from the measurement itself 
may not require transformation. This again suggests 
that the high-frequency noise be filtered out prior 
to transformation, but more research is required to 
determine whether the Fourier transform for this purpose 
is of benefit for improving prediction clinical outcomes.

For analysis of clinical trial data, dimension reduction 
across groups without loss of essential information is 
of critical importance. In this context, the three chosen 
examples demonstrate a few of the possible applications 
of the discrete Fourier transform. Dimension reduction 
enables a unified comparison of the full group functional 
forms rather than a comparison of isolated derived 
variables that by nature fragment and eliminate critical 
information. The third example shows a particularly 
useful application of the smooth functional expression 
of CGM data because the symptoms of hypoglycemia 
physiologically involve a counterregulatory response that 
may be precipitated as much by the change in glucose as 
by the absolute glucose value itself. While rate of change 
has been used previously to describe glucose curves,8 
it is relevant that reference to the smooth functional 
approximation of the CGM profile was made only after 
failure to demonstrate any hypoglycemia predictive 
value from measures of low glucose at baseline. Smooth 
functional approximation of data permitted identification 
of the time points with the highest velocity downward 
simply by finding the point where the second derivative 
of the function was zero using undergraduate level 
mathematics. Further research will relate the exact time 
point of symptomatic hypoglycemia reported by the 
patient to CGM data. From this and empirical data we 
should be able to determine to what degree reported 
hypoglycemia by patients is related to the absolute blood 
glucose level, to the rate of changing glucose, or even to 
the rapidity with which the rate of change changes or, in 
other words, the acceleration.

This article focused on one data set from a prospective 
randomized comparative trial of adolescent type 1 
diabetes patients. While space prohibits demonstration of 
further data, the discrete Fourier transform as a method 
of analysis has additionally been tested in a database 
of healthy volunteers, two type 2 diabetes prospective 
randomized treatment intervention trials, and finally 
an adult type 1 diabetes study and has shown equal 
promise there reproducing some of the findings from this 
article. Further work is needed to further validate this 
approach, and ultimately only application in morbidity 
and mortality trials will truly define the value of such 
methodology.
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Figure 4. Estimated hypoglycemia rate (symptoms confirmed with 
BG <50 mg/dl) versus baseline average steepest descent (three 
cycles), by study arm, for events occurring from 6 AM to noon. The 
log-linear model is depicted for each treament group as a solid line 
with 95% confidence bounds shown as dashed lines. The estimated 
NPH hypoglycemia rate doubles for every -9 mg/dl-hour decline 
in average steepest descent (p < 0.005). The estimated glargine rate 
doubles for every -28 mg/dl-hour decline in average steepest descent 
(NS, p > 0.15). The difference between study arms was statistically 
significant at p < 0.03.
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