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SYMPOSIUM

Abstract
Objectives:
The goal of this study was to develop a system model of type 1 diabetes for the purpose of in silico simulation 
for the prediction of long-term glycemic control outcomes.

Methods:
The system model was created and identified on a physiological cohort of virtual type 1 diabetes patients 
(n = 40). Integral-based identification was used to develop (n = 40) insulin sensitivity profiles.

Results:
The n = 40 insulin sensitivity profiles provide a driving input for virtual patient trials using the models 
developed. The identified models have a median (90% range) absolute percentage error of 1.33% (0.08–7.20%). 
The median (90% range) absolute error was 0.12 mmol/liter (0.01–0.56 mmol/liter). The model and integral-
based identification of SI captured all patient dynamics with low error, which would lead to more physiological 
behavior simulation.

Conclusions:
A simulation tool incorporating n = 40 virtual patient data sets to predict long-term glycemic control outcomes 
from clinical interventions was developed based on a physiological type 1 diabetes metabolic system model. 
The overall goal is to utilize this model and insulin sensitivity profiles to develop and optimize self-monitoring 
blood glucose and multiple daily injection therapy.
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Introduction

The control of type 1 diabetes is a widely studied and 
experimented research field. Previously published control 
methods are diverse, using different routes of insulin 
administration and glucose measurement. Since the  
1970s, the closed-loop artificial endocrine pancreas has 
been heralded as the solution (as reviewed in Bequette1). 
While no commercial product currently exists, the 
systems in current clinical use that are likely to constitute 
the components of an extracorporeal artificial pancreas 
are the continuous subcutaneous insulin infusion (CSII) 
pump and a continuous glucose measurement (CGM) 
device. Advanced control algorithms and methods 
to “close the loop” have also been widely studied 
(as reviewed elsewhere2–4), despite early and ongoing 
limitations in sensors and pumps. Currently, the use of 
open-loop CGM and/or CSII has resulted in, at best, a 
modest clinical advantage over conventional methods 
of insulin administration or multiple daily injection 
(MDI) (as reviewed elsewhere5,6). Additionally, these 
systems are only used by a small population of type 1 
diabetic patients because of high upfront costs, costs of 
consumables, complexity, and the extensive health care 
infrastructure and support required. The prevalence of 
CSII use is as low as 2% of the type 1 diabetes population 
in the United Kingdom and up to 15–20% elsewhere  
and in the United States.7 

Hence, there is a more practical and urgent need to address 
the large majority of the type 1 diabetes population using 
conventional glucose measurement, i.e., self-monitoring 
blood glucose (SMBG), and insulin administration, i.e., 
MDI methods, and for whom current conventional or 
intensive therapies are failing to deliver recommended 
levels of glycemic control.8 In the United States, over 
50% of diagnosed diabetics aged 20–64 are deemed “out 
of control.9” The higher accuracy of bedside capillary 
blood glucose meters10,11 and the latest insulin analogues 
for MDI therapy,12 coupled with better control methods,  
have the potential to provide better care to the majority 
of outpatient or ambulatory type 1 diabetics than 
currently observed. Such techniques must necessarily be 
simple to implement to ensure broad clinical uptake by 
the diabetes population.

This study reports the development of a system model 
of the type 1 insulin–glucose regulatory system and its 
identification on a virtual patient cohort. The models 
utilized have several novel and unique features. In 

particular, the insulin model used is unique and captures 
the insulin kinetics of multiple insulin types in a single 
pharmacokinetic model for all shared physiological 
spaces. The pharmacodynamic model used has not been 
reported previously but bears components of a similar 
nature to other such models used in this field due to the 
need to capture similar physiology. This study is the basis 
for a novel model-based application to develop a simple 
and practical adaptive method for clinical glycemic 
control of type 1 diabetes using multiple daily injection 
and self-monitoring blood glucose measurements. In 
addition, the modeling of long-term clinical outcomes 
of glycemic control and their corroboration against 
clinical expectations and studies are explored further 
in a subsequent in silico simulation on a virtual patient 
cohort, which is also reported in this issue. Later, the 
complex interaction of all quantifiable errors in protocol 
application is investigated in a Monte Carlo study to test 
the robustness of the developed protocol in effectiveness 
and safety.13

Model Development
The system model shown in Equation (1) is an evolution 
of the model of Chase et al.14 and Wong et al.15

 (1)

where G(t) is plasma glucose concentration (mmol/liter),  
CNS is central nervous system glucose uptake (mmol/
liter·min), EGP0-G is endogenous glucose production 
extrapolated to zero plasma glucose concentration (mmol/
liter·min), pG is glucose effectiveness (min-1), SI is insulin 
sensitivity (liter/min·mU), Q(t) is interstitial (effective) 
insulin concentration (mU/liter), RGC(t) is renal glucose 
clearance (mmol/liter·min), and P(t) is meal plasma 
glucose rate of appearance (mmol/liter·min).

This glucose model differs mathematically from the 
model developed by Chase et al.14 and Wong et al.15 in 
removal of insulin effect saturation and addition of the 
renal glucose clearance rate, RGC(t). These two studies 
were done on highly dynamic, critically ill patients 
with high effective insulin resistance who were treated 
with intravenous insulin doses. Removal of the insulin 
effect saturation was deemed suitable for modeling more 
compliant, insulin-sensitive and stable type 1 diabetes 
patients treated with subcutaneously administered 
insulin.
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             (2)

where RGC(t) is renal glucose clearance (mmol/liter·min), 
GFR is glomerular filtration rate (liter/min), G(t) is  
plasma glucose concentration (mmol/liter), RGT is renal 
glucose threshold (mmol/liter), Vp is glucose distribution 
volume (liter/kg), and mb is body mass (kg).

Referring to Equation (2), the renal glucose clearance rate, 
RGC(t), models glucose removal by the kidney above the 
renal glucose threshold, RGT, using a linear relationship 
proportional to the glucose concentration above RGT and 
the glomerular filtration rate, GFR. From the study by 
Johansen and colleagues,16 this linear approximation is 
acceptable. Linear models have also been used in AIDA17 
by Lehmann et al.18 and by Arleth et al.19 

Insulin absorption from subcutaneous injection or 
infusion has been widely studied since Binder.20 A novel, 
compartmental model of subcutaneous insulin absorption 
kinetics specifically developed for diabetes decision 
support has been presented.21,22 The model accounts for 
the volume and concentration dependence of regular 
human insulin absorption and models the absorption 
kinetics of six insulin types, including monomeric 
insulin and insulin glargine. Additionally, insulin 
injected or infused subcutaneously or intravenously can 
also be modeled. A schematic of the model adapted from 
Wong and colleagues22 is shown in Figure 1. This model 
is used in this study, which is the first application of  
the developed model in the control of type 1 diabetes.

Modeling of the meal glucose rate of appearance (Ra), 
including digestion, absorption, and transport of glucose, 
is a complex process not widely studied.23 Meal 
carbohydrate amount and type are the main factors 
affecting meal glucose Ra or P(t) in Equations (1) and 
(6).24,25 However, clinical models of glucose Ra almost 
universally accept input of meal glucose amount 
only.18,26 Glucose equivalent carbohydrate introduced by 
Yates and Fletcher23 to express carbohydrate values as 
monosaccharide equivalents necessarily depends on an a 
priori known content of the carbohydrate type within 
the meal to be consumed, which is typically unavailable. 
Carbohydrate counting is a technique27–29 commonly 
taught by diabetes care providers to improve glycemic 
management. Glycemic index, a measure of the effect 
of carbohydrate type, is not easily calculable for mixed 
meals30 nor as readily available as carbohydrate content. 

The minimal models of meal glucose Ra by Worthington31 
and Lehmann et al.17,18 form the basis of the model used 
in this study. Referring to Figure 2 and Equations (3)–(5), 
the model consists of two compartments for the stomach 
and gut, with linear gastric emptying and gut-absorption 
rates to describe the plasma glucose Ra in Equation (6).
Another simplification is the expression of meal carbo-
hydrate content (in grams) as equivalent to the same 
mass of glucose monosaccharide regardless of the meal 
carbohydrate type.23 Again, such meal data are typically 
unavailable in a clinical setting. As such, the complex 
digestion processes, such as the hydrolysis of poly-
saccharides, are assumed linear and lumped into the 
simplified processes given earlier.

      (3)

      (4)

    (5)

    (6)

where STO(t) is mass of carbohydrate/glucose in the 
stomach (g), GUT(t) is mass of carbohydrate/glucose in the 
gut (g), GABS is gut carbohydrate/glucose absorption rate 
(g/min), GABSmax is maximum gut carbohydrate/glucose 
absorption rate (g/min), k6 is carbohydrate/glucose 
gastric emptying rate (min‑1), k7 is carbohydrate/glucose 
gut-absorption rate (min-1), uCHO(t) is meal carbohydrate/
glucose input (g/min), P(t) is meal plasma glucose rate 
of appearance (mmol/liter·min), Vp is glucose plasma 
distribution volume (liter/kg), and mb is body mass (kg).

Worthington31 found that the one-compartment model  
with time delay had the smallest fitting error. However, 
this result was obtained with a model fit to plasma 
glucose data and is dependent on the model of glucose 
kinetics used. Lehmann and colleagues18 used a “complex” 
function to describe the gastric emptying rate from 
the stomach compartment. This study used a linear 
transport rate, k6 , while the glucose input into the 
stomach compartment, uCHO(t), is described by a delta 
function. Similar to the saturable gastric emptying rate 
of Lehmann et al.,18 this study incorporated a saturable 
gut-absorption rate, GABSmax. Saturable gut absorption 
has been postulated by Korach-Andre and colleagues32  
in experiments using relatively large starch meals. 
However, this difference is likely to be small considering 
the minimal nature of both models. Referring to Figure 3, 
the effective gut-absorption rate is shown as a function 
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Figure 1. Structure of the subcutaneous insulin absorption kinetic model. The model is characterized by a common hexameric state compartment for 
regular insulin (RI), neutral protamine Hagedorn (NPH) insulin, and lente insulin (xh), whereas those for insulins glargine and ultralente (xh,ulen and 
xh,gla) are separate. A crystalline state compartment for NPH (cNPH), lente (clen), and ultralente (culen) insulins and a precipitate compartment for insulin 
glargine (pgla) model these protraction mechanisms. All insulin flows through a common a dimeric–monomeric state compartment (xdm), interstitium 
compartment (xi), and finally into the plasma (I). Adapted from Wong et al.22

of the mass of carbohydrate/glucose in the GUT 
compartment. Addition of the saturable term GABSmax 
effectively makes the gut absorption rate nonlinear 
as a function of the amount of carbohydrate in the 
gut. This dynamic is similar to that of the nonlinear 
three-compartment model of Dalla Man et al.,26 which 
consists of dual stomach compartments with a nonlinear 
gastric emptying rate with four identified parameters. 
The nonlinear gastric emptying term is described by a 

hyperbolic tangent function as a function of the proportion 
of the consumed carbohydrate remaining in the stomach. 
There is no saturation term considered for large, absolute 
meals.

Referring to Table 1, the values of patient-independent 
model population constants are a priori identified 
from literature. The renal glucose threshold, RGT, has 
been shown to vary considerably in type 1 diabetes,16 

u
c,NPH

(t)c
NPH u

total,NPH
(t)

u
total,RH

(t)

u
h,NPH

(t)k
crys,NPH

k
crys,len

u
h,len

(t)

u
h,RH

(t)

u
m,NPH

(t)

u
m,RH

(t)

u
mono

(t)

x
ix

dm
Ik

3
/V

i
m

b

k
di

k
d

n

k
2

k
d

k
l,ulenx

h,ulen

u
total,ulen

(t)u
c,ulen

(t)

c
ulen k

crys,ulen

u
h,ulen

(t)

u
m,ulen

(t)

x
h

k
d

u
m,len

(t)

k1

c
len

u
c,len

(t)

u
total,len

(t)

k
l,gla

k
d

u
m,gla

(t)

x
h,gla

u
h,gla

(t)

min(k
prep,gla 

p
gla 

, r
dis,max

)

u
total,gla

(t)u
p,gla

(t)

p
gla

NPH

Lente
RI

MI

Interstitium-Plasma

Glargine

Ultralente



428

Development of a Clinical Type 1 Diabetes Metabolic System Model and in Silico Simulation Tool Wong

www.journalofdst.orgJ Diabetes Sci Technol Vol 2, Issue 3, May 2008

but median values of 10 mmol/liter have been widely 
reported. The glucose distribution volume, Vp , is taken to 
be 0.22 liter/kg, the same value used by Lehmann et al.18 
The glomerular filtration rate, GFR, is taken as 0.12 liter/
min or 120 ml/min, which reflects the average adult GFR 
of 125 ml/min.33

In a study by Dalla Man et al.,34 the maximum meal Ra 
(Ra meal) was ~8–9 mg/kg·min after an oral dose of 1 g/kg 
glucose. In the study by Korach-Andre et al.,32 the exogenous 
meal Ra (Ra exo) was approximately 7–9 mg/kg·min for a 
meal of 4 g/kg of starch (~4.4 g/kg glucose). Despite 

the fourfold increase in glucose load, the maximum Ra 
remains at ~9 mg/kg·min or ~0.72 g/min for an average 
adult. In a study by Noah et al.,35 a higher figure still 
of 11 mg/kg·min was reported in a porcine model. The 
maximum value of the rate of gut absorption is taken 
as 1.1 g/min using the Noah et al.35 study as a basis, 
assuming a 100-kg body weight.

The proportion of glucose lost to first-pass splanchic 
uptake is still being debated, with proportions from 
negligible36,37 to as high as 30% reported in some studies.38 
As there will be no tracer data in the intended application 
of the model, negligible losses from first-pass splanchnic 
sequestration and complete absorption are assumed for 
simplicity39 with complete absorption of meal glucose. 
The values of k6 and k7 are optimized using nonlinear 
least squares to model-independent, mixed-meal tracer 
glucose Ra data34 (results not shown). 

The values of CNS, EGP0-G, and pG are derived from 
results of studies done by Del Prato et al.40,41 Like the 
minimal model of Bergman and colleagues,42 the model 
is unable to differentiate noninsulin-mediated glucose 
uptake from production, which is lumped into a linear 
relationship with glucose. Referring to Figures 4 and 5, 
total body glucose uptake (TBGU) and hepatic glucose 
production (HGP) data described elsewhere40,41 are 
used to identify CNS, EGP0-G, and pG. Data at glucose 
exceeding the approximate RGT of 10 mmol/liter are 
ignored to eliminate the need to evaluate renal glucose 
clearance, RGC, and associated errors. Under fasting and 
insulinopenic conditions, the P(t) and SIG(t)Q(t) terms 
of Equation (1) can be further eliminated. By the linear 

Table 1.
A Priori Identified Model Constants Obtained from 
the Literature Except Linear Gastric Emptying and Gut 
Absorption Rates (k6 and k7 , Respectively), Which Were 
Optimized Using Nonlinear Least Squares to Model-
Independent, Mixed-Meal Tracer Glucose Ra Data34

Model constants Values (units)

GABSmax 1.1 (g/min)

pG 0.0060 (min-1)

CNS 1.7 (mg/kg·min)

EGP0-G 3.0 (mg/kg·min)

GFR 0.12 (liter/min)

RGT 10 (mmol/liter)

VP 0.22 (liter/kg)

k6 0.0388 (min-1)

k7 0.0097 (min-1)

Figure 2. Structure of the meal glucose rate of the appearance model. 
The model is characterized by a delta function to describe meal glucose 
input [uCHO(t)], linear gastric emptying (k6), and gut absorption (k7) rates 
and saturable gut absorption (GABSmax).
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definition of the effect of hyperglycemia on TBGU, CNS 
can then be derived as the “virtual” y intercept of the 
linear TBGU curve. The term “virtual” is used, as no 
glucose uptake is theoretically possible at zero glucose. 
The central nervous system glucose uptake CNS is 
saturated at 3.3 mmol/liter and is relatively insensitive  
to insulin and glucose.43,44 At euglycemia, CNS accounts 
for ~70% of all noninsulin-mediated glucose uptake,45 and 
this proportion is likely to increase with hypoglycemia. 
Hence, use of the term CNS for the virtual y intercept  
of the linear TBGU curve is justified.

Similarly, by the linear definition of the effect of 
hyperglycemia on HGP, EGP0-G is the y intercept of the 
linear HGP curve and pG is the slope of the combined 
TBGU and HGP curve. Hence, pG is similar to the 
minimal model glucose effectiveness, SG , but is defined 
under conditions of insulinopenia or subbasal insulin 
rather than basal insulin.46

Unlike the minimal model, the insulin model in this study 
models the absolute insulin concentration, not insulin 
concentration above basal. In type 1 diabetes, conditions 
of basal insulin are not necessarily met all the time. Using 
data from Del Prato and colleagues41 for an insulinopenic 
normal cohort (Figure 4), values of CNS = 1.4 mg/kg·min, 
EGP0-G = 2.6 mg/kg·min, and pG = 0.006 min‑1 are obtained 
compared to CNS = 1.3 mg/kg·min, EGP0-G = 3.0 mg/kg·min, 
and pG=0.009 min‑1 under basal insulin conditions  

Figure 4. Using HGP and TBGU data from Del Prato and colleagues41 
for an insulinopenic normal cohort, values of CNS = 1.4 mg/kg·min, 
EGP0-G = 2.6 mg/kg·min, and pG = 0.006 min-1 can be calculated by linear 
regression.
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kg
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Figure 5. Using HGP and TBGU data of Del Prato and colleagues40 for 
an IDDM cohort under basal insulin, values of CNS = 1.7 mg/kg·min, 
EGP0-G = 3.0 mg/kg·min, and pG = 0.006 min-1 can be calculated by linear 
regression.
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(figure not shown). Compared to insulinopenia, the 
presence of basal insulin results in overestimation of pG , 
although this value is still approximately half that of 
published values of the minimal model SG for a normal 
cohort ~0.024 min‑1.46 

Using data of Del Prato et al.40 for an insulin-dependent 
diabetes mellitus (IDDM) cohort under basal insulin 
(Figure 5), values of CNS = 1.7 mg/kg·min, EGP0‑G =  
3.0 mg/kg·min, and pG = 0.006 min‑1 were obtained. 
Hence, pG of the normal, insulinopenic cohort41 is similar 
to the IDDM cohort under basal insulin.40 This result 
is logical, as SG is decreased in IDDM,46 whereas basal 
insulin increases SG , either by increased glucose uptake44 
or by suppression of endogenous glucose production.41 
In IDDM, the pG obtained is also approximately half that 
of published SG values of ~0.013 min‑1.46 One explanation 
is the elimination of data at high glucose concentrations 
from the pG analysis, which, if unaccounted for, would 
include the effect of urinary glucose excretion, thereby 
increasing the “effective” glucose uptake. From this 
investigation, it can be deduced that for an IDDM cohort 
under conditions of insulinopenia, pG must have an 
upper bound of 0.006 min‑1, which is assumed in this 
study. The values of CNS obtained are in agreement 
with other results,45,47,48 and the assumption that CNS 
is approximately equal to the virtual y intercept of the 
linear TBGU curve is valid. A summary of the values of 
the model constants is shown in Table 1. 



430

Development of a Clinical Type 1 Diabetes Metabolic System Model and in Silico Simulation Tool Wong

www.journalofdst.orgJ Diabetes Sci Technol Vol 2, Issue 3, May 2008

Methods

Patient Cohort
Patient data used in this study were obtained from AIDA 
on-line2, the Web-based version of the AIDA educational 
diabetes program.49 AIDA on-line2 incorporates the 
physiological model developed by Lehmann et al.18 and 
can simulate glycemic levels for any insulin or meal 
stimuli over a period of 1 day. Patient data (n = 40) for 
this study were obtained from sample diabetes case 
scenarios available with AIDA on-line2. Referring to 
Table 2, each patient case is unique in body weight, 
meals/carbohydrates consumed, and insulin treatment. 
Each patient also has unique clinical variables of hepatic 
and peripheral insulin sensitivity, glucose renal threshold, 
and glomerular filtration rate. Hence, the AIDA on-line2 
cohort represents a broad range of patients and possible 
clinical behavior. To retrieve blood glucose, plasma 
insulin, and meal glucose absorption rates from AIDA 
on-line2, the “Advanced” display is selected to output 
data in text format. A sample of these data is shown in 
Figure 6.

Simulation Method
For in silico simulation, the virtual patient method is 
used.50,51 This method has been utilized to develop 
effective glycemic control protocols by simulating the 
physiological glycemic response to glucose and insulin 
stimuli.50–52 The glycemic responses are generated with 
patient-specific SI(t) profiles derived from retrospective 
data. This clinically validated method50 enables extensive 
simulations to be performed in a short time for rapid 
development and testing of any control methodology.  

In silico simulation was performed using MATLAB®  
(The Mathworks, Natick, MA) implemented on a personal 
computer notebook (Pentium M 1.7 GHz).

To obtain the retrospective SI(t) patient data profiles, 
the model is first fitted to data using the linear and 
convex, integral-based parameter identification method.53 
Equation (1) can be expressed in a generic integral form 
[Equation (7)] for period ti-1 to ti , which can then be 
rearranged into a set of linear equations as shown in 
Equation (9). All quantities in Equation (7) are modeled 
and, as such, are known except for G(t). 

(7)

 (8)

AIDA on-line2 uses a first-order Euler integration method 
with a 15-minute step size to solve the plasma glucose 
model equation.54 To determine G(t) to solve Equation (7), 
AIDA on-line2 glucose data are interpolated linearly to 
obtain a piecewise linear G(t) function [Equation (8)].

The ti – ti-1 time interval for the optimization of SI(t) is 
chosen arbitrarily as 10 minutes. Equation (8) is solved 
using a proprietary MATLAB linear solver. Referring to 
Figure 7 and Equations (9) and (10), a stepwise, time-
variant SI(t) with a 10-minute step interval is obtained.

 (9)

where

Figure 6. Sample raw blood glucose, plasma insulin level, and glucose 
absorption rate data from AIDA on-line2.49
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Table 2. 
Details of Patient Cohort (n = 40) from AIDA2 On-line Showing Body Weight, Total Carbohydrate Consumed,  
Total Prandial Insulin Dose, Total Basal Insulin Dose, and Unique Clinical Variables of Hepatic and Peripheral 
Insulin Sensitivity, Glucose Renal Threshold, and Glomerular Filtration Rate

Case 
number

Body 
weight (kg)

Total carbohydrate 
consumed (g)

Total prandial 
insulin dose (U)

Total basal 
insulin dose (U)

Renal 
threshold

Renal 
function

Hepatic insulin 
sensitivity

Peripheral 
insulin sensitivity

1 70 130 7 30 Normal Normal Reduced Reduced

2 68 180 13 10 High Normal Increased Increased

3 70 120 9 13 Normal Normal Normal Increased

4 60 180 13 12 Normal Normal Increased Increased

5 98 180 12 12 Normal Normal Normal Normal

6 76 120 8 28 Normal Normal Reduced Increased

7 70 90 7 24 Normal Normal Increased Reduced

8 70 120 10 20 Normal Normal Reduced Increased

9 70 180 12 12 High Normal Normal Increased

10 70 120 15 8 Normal Normal Normal Increased

11 70 205 16 22 Normal Normal Normal Increased

12 70 185 24 20 Normal Normal Reduced Increased

13 76 100 8 26 Normal Normal Normal Increased

14 65 70 5 20 Normal Normal Reduced Normal

15 99 115 6 42 Normal Normal Reduced Normal

16 70 180 9 32 Normal Normal Reduced Increased

17 70 110 10 24 Normal Normal Reduced Increased

18 60 165 18 36 High Normal Reduced Increased

19 60 180 12 12 Normal Normal Normal Increased

20 70 105 8 36 Normal Normal Normal Increased

21 98 295 34 40 Normal Normal Reduced Reduced

22 75 70 Biphasic 40 Normal Normal Reduced Reduced

23 87 177 38 12 Normal Normal Reduced Increased

24 76 95 7 24 Normal Normal Normal Increased

25 70 120 18 28 Normal Normal Reduced Normal

26 80 170 Biphasic 20 Normal Normal Normal Increased

27 70 120 9 13 Low Normal Normal Normal

28 75 85 5 40 Normal Normal Normal Increased

29 83 60 12 25 Normal Normal Reduced Normal

30 80 165 16 36 Normal Normal Reduced Increased

31 99 220 29 14 Low Normal Normal Increased

32 90 70 0 28 Normal Normal Reduced Reduced

33 98 180 0 18 Normal Normal Normal Increased

34 60 175 17 13 High Normal Normal Increased

35 60 170 22 10 Normal Normal Normal Increased

36 70 100 8 32 Normal Normal Reduced Increased

37 70 105 9 36 High Normal Reduced Reduced

38 70 95 Biphasic 26 Normal Normal Normal Reduced

39 70 110 12 35 High Normal Reduced Increased

40 76 100 7 30 Normal Normal Normal Normal
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A proprietary MATLAB numerical ODE solver is used 
to solve the model equations with a 1-minute time step. 
Biphasic insulin preparations are treated as in AIDA 
with the insulin response assumed to be a superposition 
of the individual components of the preparation.18 This 
is an acknowledged simplification considering the large 
variety and lack of data on such preparations. 

The numerical solution to the model equations forms 
the in silico simulation tool. With the set of 40 virtual 

patient SI(t) profiles, any meal or subcutaneous insulin 
input and its effect on glycemia can be simulated with 
the assumption that SI is independent of the inputs 
administered, i.e., the virtual patient. This opens the 
possibility of simulating any glycemic control protocol, 
even current clinical methods.55–57 An initial validation 
would be to replicate long-term glycemic control outcomes, 
e.g., hemoglobin A1c.

Results
To gauge the model fit to data, absolute and absolute 
percentage errors of the G(t) model fit to the AIDA on-
line2 patient data cohort are shown in Tables 3 and 4. 
In Table 3, per patient errors are shown, whereas total 
errors over the entire cohort are shown in Table 4.  
A sample G(t) fit is also shown in Figure 8.

From Table 3, the per patient median (95% range) 
absolute percentage error in G(t) is 1.24% (0.09–4.85%), 
which translates into a per patient absolute error in G(t) 
of 0.11 mmol/liter (0.01–0.43 mmol/liter). Over the entire 
cohort the figures are 1.33% (0.08–7.20%) and 0.12 mmol/
liter (0.01–0.56 mmol/liter), which are similar. The errors 
reported are extremely low and within the measurement 
errors of clinical methods of glucose measurement in 
current use. This shows that the model and SI 
identification method is capable of capturing all patient 
G(t) dynamics, which will produce a more physiologically 
accurate simulation.

Conclusions
An in silico simulation tool was presented that utilizes 
an extended model of glucose kinetics, a simple glucose 
rate of appearance model, and the novel application of 
a subcutaneous insulin pharmacokinetic model. Models 
are identified to a physiological cohort of type 1 diabetes 
virtual patients. To corroborate the approach initially, 
an in silico simulation with data from the patient cohort 
using the virtual patient simulation method is planned.

Table 4.
Total Absolute and Absolute Percentage G(t) Model Fit Errors to Patient Cohort Data (n = 40) from AIDA On-line2

Absolute % G(t) fit error Absolute G(t) fit error (mmol/liter)

Median 5th percentile 95th percentile Median 5th percentile 95th percentile

1.33 0.08 7.20 0.12 0.01 0.56

Figure 7. Sample patient SI(t) profile as obtained from model fit. Note 
the 10-minute interval for fitting the stepwise, time-variant SI(t).
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Figure 8. G(t) model fit to glucose measurement data for Patient 1 
shown with glucose measurement data from AIDA on-line2.
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Table 3.
Per Patient Absolute and Absolute Percentage G(t) Model Fit Errors to Patient Cohort Data (n = 40) from AIDA On-line2

Case number
Absolute % G(t) fit error Absolute G(t) fit error (mmol/liter)

Median
5th 

percentile
95th percentile Median

5th 
percentile

95th percentile

1 0.84 0.08 2.87 0.10 0.01 0.43

2 1.28 0.05 7.14 0.10 0.00 0.50

3 1.19 0.02 3.56 0.12 0.00 0.37

4 1.72 0.05 7.84 0.12 0.00 0.42

5 0.94 0.11 3.24 0.11 0.01 0.36

6 1.25 0.04 4.89 0.13 0.00 0.53

7 1.93 0.11 4.52 0.07 0.00 0.20

8 0.96 0.05 4.46 0.09 0.00 0.49

9 1.03 0.10 2.94 0.12 0.01 0.39

10 1.92 0.28 4.27 0.17 0.02 0.39

11 3.09 0.20 14.04 0.20 0.01 2.39

12 1.23 0.05 8.78 0.13 0.00 0.70

13 1.08 0.09 4.80 0.07 0.00 0.26

14 0.47 0.04 3.43 0.05 0.00 0.47

15 1.00 0.12 3.84 0.08 0.01 0.29

16 1.61 0.11 5.84 0.18 0.01 0.59

17 1.31 0.06 4.38 0.13 0.00 0.38

18 3.34 0.32 7.84 0.21 0.03 0.80

19 1.23 0.09 4.14 0.16 0.01 0.52

20 2.89 0.17 21.39 0.13 0.00 0.89

21 2.73 0.49 7.17 0.32 0.06 0.93

22 0.88 0.11 3.95 0.09 0.01 0.50

23 1.50 0.03 4.96 0.11 0.00 0.33

24 1.98 0.21 6.67 0.14 0.01 0.43

25 1.37 0.02 7.44 0.09 0.00 0.59

26 0.67 0.09 2.48 0.07 0.01 0.31

27 0.69 0.08 2.74 0.06 0.01 0.27

28 0.81 0.09 6.27 0.05 0.00 0.36

29 0.81 0.15 4.48 0.07 0.01 0.40

30 9.36 0.98 37.10 0.72 0.06 2.56

31 1.16 0.11 8.67 0.08 0.01 0.44

32 0.60 0.06 2.36 0.06 0.01 0.28

33 0.93 0.13 2.72 0.10 0.01 0.29

34 1.84 0.01 5.93 0.15 0.00 0.44

35 3.30 0.18 11.70 0.26 0.01 1.06

36 1.36 0.19 5.05 0.12 0.01 0.39

37 0.94 0.03 3.38 0.12 0.00 0.46

38 0.73 0.08 3.07 0.08 0.01 0.40

39 1.29 0.04 5.53 0.11 0.00 0.51

40 1.70 0.20 7.20 0.10 0.01 0.31

Median 1.24 0.09 4.85 0.11 0.01 0.43

Range 0.47–9.36 0.01–0.98 2.36–37.10 0.05–0.72 0.00–0.06 0.20–2.56
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