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Abstract
Background:
Hypoglycemia presents a significant risk for patients with insulin-dependent diabetes mellitus. We propose a 
predictive hypoglycemia detection algorithm that uses continuous glucose monitor (CGM) data with explicit 
certainty measures to enable early corrective action.

Method:
The algorithm uses multiple statistical linear predictions with regression windows between 5 and 75 minutes 
and prediction horizons of 0 to 20 minutes. The regressions provide standard deviations, which are mapped 
to predictive error distributions using their averaged statistical correlation. These error distributions give 
confidence levels that the CGM reading will drop below a hypoglycemic threshold. An alarm is generated if 
the resultant probability of hypoglycemia from our predictions rises above an appropriate, user-settable value. 
This level trades off the positive predictive value against lead time and missed events.

Results:
The algorithm was evaluated using data from 26 inpatient admissions of Navigator® 1-minute readings obtained 
as part of a DirecNet study. CGM readings were postprocessed to remove dropouts and calibrate against finger 
stick measurements. With a confidence threshold set to provide alarms that correspond to hypoglycemic events 
60% of the time, our results were (1) a 23-minute mean lead time, (2) false positives averaging a lowest blood 
glucose value of 97 mg/dl, and (3) no missed hypoglycemic events, as defined by CGM readings. Using linearly 
interpolated FreeStyle capillary glucose readings to define hypoglycemic events provided (1) the lead time was 
17 minutes, (2) the lowest mean glucose with false alarms was 100 mg/dl, and (3) no hypoglycemic events were 
missed.

Conclusion:
Statistical linear prediction gives significant lead time before hypoglycemic events with an explicit, tunable 
trade-off between longer lead times and fewer missed events versus fewer false alarms.
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Introduction

The Diabetes Control and Complications Trial1 showed 
that glycemic control is critical in decreasing the severity 
of diabetic retinopathy, nephropathy, and neuropathy. 
However, the intensively treated group had a much 
higher incidence of severe hypoglycemia. Gabriely and 
Shamoon2 concluded that improper insulin doses leading 
to hypoglycemic episodes increase the risk of severe 
morbidity or even death and may lead to the degradation 
of hypoglycemic awareness and responsiveness to 
future hypoglycemic episodes. Insulin therapy trades 
off the chronic high blood glucose consequences for the 
immediate dangers of hypoglycemia.

The dangers of hypoglycemia and the advent of continuous 
glucose monitors (CGMs) allow prediction/detection of 
hypoglycemia through CGM trend analysis, which could 
reduce the duration and severity of hypoglycemic 
episodes.

Biology-based patient models of diabetes can facilitate 
prediction by enabling simulation of blood glucose 
behavior from components such as insulin absorption, 
food ingestion, exercise, and patient-specific parameters.3–7  
We instead focus on simple statistical methods using 
only CGM data to predict/detect hypoglycemia. These 
methods require minimal sensors and patient input, 
making them more robust and potentially easier to 
implement commercially. 

Early work on hypoglycemia prediction/detection analyzed 
daily patterns to identify high-risk times for hypo-
glycemia.8 Nguyen9 and Iaione and Marques10 detected 
hypoglycemia using an electrocardiogram and skin 
impedance. Palerm et al.11 and DirecNet12 not only 
detected but also predicted hypoglycemia from CGM 
data using optimal estimation and CGM built-in alarms, 
respectively. Choleau and colleagues13 took this further 
and implemented a simple prediction algorithm and 
food intervention to prevent hypoglycemia in rats. More 
recently, Sparacino et al.14 adapted this work to real 
blood glucose sensor data and used both linear and 
autoregressive models to state that hypoglycemia can be 
predicted 20–25 minutes in advance.

In this work, we extended the efforts of Sparacino et al.14 
through the use of 1-minute data and by generating a 
hypoglycemic event-based predictive alarm. This alarm 
is intended to automatically shut off the insulin pump, 
thereby alleviating or avoiding the hypoglycemic event. 

The use of statistical methods provides explicit certainty 
measures and enables a trade-off between lead time 
and positive predictive value. For example, when the 
alarm was set for an average of 26 minutes of lead time 
for hypoglycemic events, it missed no hypoglycemic 
events and generated false alarms only 30% of the time. 
Research by Buckingham and associates15 indicated that 
about 30 minutes of lead time is required to completely 
avert hypoglycemia. Less warning is less desirable, but 
still beneficial.

Continuous Glucose Monitor Data
Observational data comprise 26 data sets of 24 hours 
of 1‑minute CGM readings from children with type 1 
diabetes between 3 and 18 years old participating in a 
DirecNet study.16 Unfiltered, temperature-compensated, 
Navigator® data are accompanied by FreeStyle measure-
ments, event logs, meal times, and carbohydrate content. 
Patients were admitted to clinical research centers after 
signing an informed consent. Some patients exercised 
for an hour on a treadmill in the afternoon and/or 
had their breakfast insulin bolus delayed for an hour.  
Data included 38,300 CGM measurements and 1347 finger 
stick measurements. It showed 21 hypoglycemic events 
(one or more successive glucose readings below 70 mg/dl) 
determined by the sensor and 27 as determined by 
capillary glucose. Because the 1-minute readings of 
the Navigator are not calibrated, we calibrated the raw  
1-minute sensor readings in each data set using a 
noncausal affine fit to the finger stick values.

Figure 1 shows an example patient data set that illustrates 
the quality of data available and of calibration.

Figure 1. Sample 24-hour patient data set. CHO, carbohydrate.
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Metrics
We define our metrics in this section to explain how we 
quantify the performance of hypoglycemia prediction/
detection algorithms.

Different definitions of hypoglycemia have been proposed: 
Palerm et al.11 use a threshold of 70 mg/dl; Nguyen9 uses 
a threshold of 60 mg/dl; Gabriely and Shamoon2 define 
mild hypoglycemia as an episode that the patient can 
self‑treat or a reading below 60 mg/dl; Miller et al.17include 
cases where the patients reported typical symptoms; and 
the American Diabetes Association (ADA) working group 
on hypoglycemia in 2005 recommended a threshold of 
70 mg/dl.18 We adhere to the ADA recommendations 
and declare readings below 70 mg/dl as hypoglycemic.  
CGM data and interpolated finger stick values provide 
two different reference measures of hypoglycemia.

Researchers assess predictive accuracy in different ways: 
Palerm and colleagues11 use sensitivity and specificity 
on a minute-by-minute basis, whereas the DirecNet 
study group19 defines an alarm to be accurate if it occurs 
within ± 30 minutes of hypoglycemia. Because the blood 
glucose readings and the effects of corrective actions are 
interdependent on a minute-by-minute basis, we follow 
DirecNet19 using event-based metrics.

Event Definitions
Corresponding to the predictive accuracy assessment of 
DirecNet, we define a hypoglycemic event as successive 
hypoglycemic reference measure readings below the 
hypoglycemic threshold (70 mg/dl). To prevent spurious 
hypoglycemic events, we require the reference value to 
rise above 75 mg/dl before we consider any subsequent 
events.

We define an alarm event as an alarm raised by a 
hypoglycemic prediction algorithm and the subsequent 
120 minutes. This duration acknowledges the intended 
corrective action of turning the insulin infusion pump 
off for 90 to 120 minutes. Note that Buckingham 
and associates tested this strategy in a clinical trial.15 
Additional alarms during the 120 minutes are ignored 
since they would be ignored in our proposed closed loop 
system.

Alarm Classification
Figure 2 shows how we classify alarm events as true, 
mitigated, or false by when they occur relative to events. 
True alarm events occur during or up to 60 minutes 
before a hypoglycemic event.

These metrics ignore nontrue alarm events when there 
is one of three types of mitigating factors. False alarm 
events within 80 minutes of the start of the data set, or 
within 60 minutes of the end of the data set, are ignored. 
If the minimum glucose level is above the hypoglycemic 
threshold but within 5 mg/dl of the hypoglycemic 
threshold, then we do not consider this a true event or 
a false event since it is within the glucose measurement 
error (this has been labeled as a type A mitigation in 
Figure 2). Alarm events where food intake or sensor 
failure occurred up to 60 minutes before or 20 minutes 
after the start of the alarm event are also considered 
inconclusive, labeled as type B mitigation in Figure 2.

False alarm events are all alarm events that are neither 
true nor mitigated.

Measured Quantities
The “true positive (TP) ratio” is the ratio of true alarm 
events to the total number of nonmitigated alarm 
events. The TP ratio refers to how often it was correct in 
predicting hypoglycemic events it alarmed for.

Figure 2. Example of true/false and mitigated temporal regions and 
alarm events. True alarm events start either during or up to 60 minutes 
before a hypoglycemic event. Type A-mitigated alarm events start 
where the lowest blood glucose reading in the next 60 minutes is above 
the hypoglycemic threshold but within 5 mg/dl. Type B-mitigated 
alarm events start up to 60 minutes before or 20 minutes after a meal. 
All alarm events that are not true or mitigated are false alarm events. 
The alarm events shown consist of a series of hypoglycemic alarms 
(vertical black lines) and a stretch of continuous alarming (thick, solid 
blue line) that links the hypoglycemic alarms. The continuous alarming 
connects consecutive hypoglycemic alarms that have no gaps larger 
than 15 minutes. The lead time for the true alarm event is the time 
difference between the start of continuous alarming and the start of the 
hypoglycemic event. The FP minimum for the false alarm event is the 
lowest reference glucose value within 60 minutes of the start of the false 
alarm event.
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The “false positive (FP) minimum” measures the lowest 
glucose values up to 60 minutes after each false alarm 
event, i.e., how close the alarm was to being valid.

The “missed alarm ratio” is the percentage of 
hypoglycemic events that have no alarm events that 
overlap with them. 

These metrics also report the “average lead time” 
between the start of continuous alarming and the start 
of hypoglycemic events. Here, continuous alarming refers 
to a stream of alarms where the maximum gap between 
alarms is less than 15 minutes (Table 1).

Methods and Equations
Figure 3 shows the steps in the statistical hypoglycemia 
algorithm. The steps are divided into three distinct 
sections. The online prediction steps transform real-time 
data into predictions of the future blood glucose values 
and estimates of the predictive accuracy. The online 
alarming steps convert the results of online prediction 
into a hypoglycemic alarm. The off-line prediction steps 
generate the empirical, statistical information used in the 
online steps from training data. We implemented this 
algorithm with discrete 1-minute time steps.

The following equations and methodology are used for 
the steps just outlined.

Online Prediction
Input to the online prediction step is a history of real-
time blood glucose data and empirical, statistical data 
from off-line training. Looking back several distances in 
time, we use lines fitted to real-time blood glucose data 
to generate one prediction of the future blood glucose 
trajectory for each distance. The distances we look back at 
are referred to as observational window lengths (OWLs, 
denoted mathematically as w); the distances forward that 
we predict are called prediction lengths (PLs, denoted 
mathematically as h) (Figure 4).

Table 1.
Definitions Summary

Events

Hypoglycemic event Consecutive reference measure readings below 70 mg/dl

Alarm event
The time at which an alarm is raised by a hypoglycemic prediction algorithm and 
the next 120 minutes. The starting alarm must not be in the 120-minute extension 
of a previous alarm event 

Alarm event
classification 

regions

True The start is during or up to 60 minutes before a hypoglycemic event

Mitigated

Not true, but the start is up to 60 minutes before a reading below 75 mg/dl (type A)
or up to 60 minutes before or 20 minutes after a mitigating event (type B)
or in the first 80 minutes of a data set
or in the last 60 minutes of a data set

False All nontrue, nonmitigated regions

Metrics

True positive ratio Number of true alarm events over number of nonmitigated alarm events

False positive average 
minimum

Minimum value within 60 minutes of a false alarm event

Lead time
Time between the threshold crossing and the start of the continuous alarming 
that overlap with a hypoglycemic event 

Missed event ratio
Number of hypoglycemic events with no associated true or false alarm events 
relative to the number of hypoglycemic events

Figure 3. Flowchart for statistical hypoglycemia algorithm. The process 
is divided into three sections. Online prediction steps are performed 
on real-time data to get predictions of the future blood glucose values 
and estimates of the predictive accuracy. Online alarming steps convert 
the results of online prediction into a hypoglycemic alarm. Off-line 
prediction training data are used to generate the empirical, statistical 
information used in the online steps.
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The remaining steps use empirical, statistical data from 
the off-line prediction steps to remove prediction bias and 
harness extra information. Step 2 in Figure 3 improves 
the accuracy of all predictions for each PL and OWL, 
first by removing prediction bias against PL, OWL, and 
the standard deviation (SD) of the regression residuals 
and second, by harnessing the correlation between past, 
known residuals and the future, unknown prediction. 
Step 3 estimates the predictive accuracy for each PL 
and OWL using the PL, OWL, and SD of the regression 
residuals. Step 4 removes prediction bias versus OWL and 
PL, combines the predictions from different OWLs into 
one prediction per PL, and then removes any remaining 
prediction bias versus PL.

Linear Regression. We extrapolate lines fitted to current 
and past CGM values over the observational windows, 
g(τ) ∀ τ ∈ {t – w...t}, to estimate blood glucose trajectories, 
gt,wˆ (t). The exponents w and t indicate that the estimated 
trajectories are calculated specifically for this time 
step, t, and this observational window length, w.  
(y) denotes that this quantity is a smooth function of 
time and is evaluated at time y. The line is fitted to 
recent glucose values by choosing the least-squares fit of 
an affine function in time:

We then use the time step and OWL-specific slope, at,w, 
to estimate glucose values at PLs, h, in the future:

ĝt,w(t + h) = at,wh + g(t).

The result is a blood glucose prediction for each PL, h, 
OWL, w, and time step, t, where there were no sensor 
dropouts in the observational window.

Accuracy Improvement. The linear assumption does not 
reflect the true complexity of the blood glucose signal. 
For now, we mitigate this in two ways for each prediction. 
First, we use training data to remove the prediction 
residual bias versus PL, OWL, and SD of the regression 
residual. Second, we use known, past residuals and their 
off-line estimated covariance with the future prediction 
residual.

To use the off-line information, we first calculate the SD, 
s t,w, of the regression residuals, , for the current linear 
fits:

ˆ

We previously calculated the SDs for all possible line fits 
on training data. These SDs were sorted and grouped 
into 10 quality levels, ql. The mean SD for each quality 
level is denoted dql,w. For each quality level, we calculated 
the mean prediction residual bias for each PL, mql,w(h), 
as well as the correlation coefficients between past and 
future prediction residuals, cql,w. Using these, we can 
calculate a prediction improvement, Dql,t,w(t + h), based on 
the PL, ql, and OWL: 

The first term removes the prediction residual bias, while 
the second term uses the correlation between the known 
regression residuals and the future prediction residual.

In practice, s t,w will fall between two quality levels, ql-,  
and ql+, such that dql-,w < s t,w < dql+,w. We consider s t,w a 
linear interpolation between the two means, with weights 
rt,w and 1 – rt,w : 

s t,w = rt,w dql-,w + (1 – rt,w) dql+,w.

Figure 4. An example of observational window length and prediction 
length with associated linear regression and linear prediction. The OWL 
is the time horizon back from now over which the regression is formed. 
The PL is the time horizon between now and the prediction.
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The improved prediction, gt,w ̂ imp(t + h), is then the old 
prediction, gt,wˆ (t + h), plus the weighted improvements:

ˆˆ

Should s t,w fall outside the available means, dql,w, we use 
the improvement corresponding to the nearest one.

Error Estimation. For each quality level, we also calculate 
ŝql,t,w(t + h), the estimated SD for each PL, taking into 
account our knowledge of the regression residuals:

ˆ

We use the same weights as in the previous section to 
get the standard deviation estimate for the specific s t,w:

ˆ ˆ ˆ

Prediction Combination + Correction. At this stage, we 
have calculated a prediction, gt,w ̂ imp(t + h) and SD, s t,w ̂ imp(t + h), 
for each PL, time step, and sensor dropout-free OWL. 
We combine these into a single prediction, gt ̂ comb(t + h), 
and estimated SD, s t ̂ comb(t + h), per PL using estimated 
covariance matrices, ctˆ (t + h), and means, mtˆ (t + h), across 
all available OWLs. 

The covariance matrix, c
_

(h), and mean prediction bias,  
m
_

(h), were calculated off line for each PL using prediction 
residuals across OWLs normalized by their corresponding 
s t,w ̂ imp(t + h). To recover ctˆ (t + h) and mtˆ (t + h) for the current 
time, we scale the elements of c

_
(h) and m

_
(h) by the 

current s t,w ̂ imp(t + h) for each corresponding OWL:

ˆ
ˆ

ˆ
ˆ

ˆ

We then remove the prediction bias, mtˆ (t + h), from  
gt,w ̂ imp(t + h) for each OWL and combine the results according 
to ctˆ (t + h) to get gt ̂ comb(t + h):

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

Here,  is a column vector of ones. The resultant 
uncertainty, s t ̂ comb(t + h), becomes

ˆ ˆ

These equations provide more certainty when there are 
more sensor dropout-free OWLs available. Consequently, 
after a single sensor dropout, it takes as long as the 
shortest OWL to start predicting and as long as the 
longest OWL to regain complete predictive power.

Finally, we use training data to remove prediction 
biases for each PL and to calibrate the estimated SDs.  
We calibrate the resultant estimated SDs, s t ̂ corr(t + h), to be 
exact at the 75% confidence level. The 75% confidence 
level is midway between the two singularities of 50 and 
100% confidence. 

Similar to c
_

(h) and m
_

(h), the prediction bias, m
_

corr(h), and 
SD scale factor, k

_
corr(h), were calculated using residuals 

normalized by s t ̂ comb(t + h). The corrected prediction,  
gt ̂ corr(t + h), and estimated SD, s t ̂ corr(t + h), are 

ˆ ˆ
ˆˆˆ

Online Alarming
The alarming steps convert the predictions and error 
bounds into hypoglycemic alarms. We first generate 
probabilities of hypoglycemia, step 5 in Figure 3, and 
then threshold those probabilities and alarm, step 6 in 
Figure 3.

Confidence Finding. To relate the interdependent predictions 
and find an overall probability of hypoglycemia at any 
time during the total prediction horizon, we model the 
blood glucose behavior as a process, adding Gaussian 
noise between PLs:

ˆ ˆ ˆ ˆ
.

The Gaussian noise means and SDs are chosen so that 
the expected mean and SD match the predictions,  
gt ̂ corr(t + h), and estimated SDs, s t ̂ corr(t + h). Using this 
model, we cannot analytically calculate the probability of 
hypoglycemia, so we simulate 500 trajectories. The ratio 
between the number of hypoglycemic trajectories and 
the total number of trajectories is then an estimate of the 
probability that the real trajectory will go hypoglycemic:

ˆ

Confidence Thresholding. We introduce a user-settable 
confidence threshold that allows real-time adjustment of 
the aggressiveness of the alarm. An alarm is triggered if 
the probability of hypoglycemia exceeds the confidence 
threshold. 
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Off-line Training
The algorithm harnesses the statistical properties of 
the various predictions to improve performance. These 
statistical properties are collected off line using training 
data. They are calculated in three distinct steps matching 
the online procedure. From linear regression we model 
the bias of our predictions. From error estimation we 
model the relation between predictions from different 
OWLs. From prediction combination we model the bias 
and error of the whole process.

Bias Modeling. We assess the accuracy of the linear 
regression-based predictions on training data. With this 
information, we first assign each regression to a quality 
level, ql, according to its SD. Here, each quality level has 
a mean SD of dql,w and contains a tenth of the training 
data. 

Second, for the regressions in each quality level we 
calculate the mean, mql,w, and covariance, cql,w, of the past 
and future residuals, :

ˆ

The logical expressions on the right of the first two 
equations simply select cases matching the desired 
quality level.

Observational Window Length Correlation. To facilitate 
combining predictions for different OWLs, we use 
training data to determine the accuracy and correlation 
of results across OWLs. Since we already have estimated 
SDs, s t,w ̂ imp(t + h), we normalize the residuals by them 
before collecting them into covariance matrices, 

_
(h), and 

mean vectors, 
_
(h):

ˆˆ

Output Calibration. As a final correction we use training 
data to remove any remaining bias and misscaling of the 
estimated SDs. To find the prediction bias and corrective 
scale factor for gt ̂ comb(t + h) and s t ̂ comb(t + h), we normalize the 
prediction residuals by s t ̂ comb(t + h). The mean prediction 
bias, mcorr(h), is then 

ˆ ˆ

For the correction factor, kcorr(h), we use the 75th percentile 
of the normalized residual, correcting the 75% confidence 
level: 

ˆ ˆ  in 75% of cases.

Results
The results shown here are trained on 13 of the insertions 
and validated on the other 13 insertions. We have chosen 
a representative split of the data sets.

The alarm signal is generated using PLs of between  
0 and 20 minutes and OWLs between 5 and 75 minutes. 
For PLs of 5, 10, 15, and 20 minutes, the 95% confidence 
bounds all contained 93, 94, 94, and 94%, respectively, of 
the CGM readings.

Interestingly, lead times far exceed the maximum 
prediction length of 20 minutes. This occurs because the 
prediction algorithm is trained over the full range of 
blood glucose values and does not model the autonomic 
response or user interventions that occur at low 
blood glucose values. As a result, predictions during 
descending, low blood sugar are consistently below true 
values. See Figure 5 for examples. This in turn causes 
the hypoglycemic alarm to trigger early. We expect to 
further improve results with more selective training and 
superior models in future research.

Figure 5. Actual CGM readings and 95% confidence bounds on a 
20‑minute prediction for a sample patient admission. For validation 
data, 95% confidence bounds contained 93% of the CGM readings.

m
_ c

_
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This algorithm has a tunable confidence threshold 
that determines how confident we need to be before 
triggering an alarm. We show result plots for two 
different reference glucose values, finger stick and CGM 
measurements (Figure 6 and 7). 

The plots in Figures 6 and 7 show two expected 
trends. First, with an increasing confidence level, there 
is a rise in the TP ratio and missed event ratio, with a 
concomitant drop in lead time, and FP minimum. This is  

consistent with what we expect since the higher the 
required confidence level, the more conservative the 
alarm algorithm. Because the alarm is more conservative, 
it both is less likely to alarm for dips that will not 
actually go hypoglycemic and will wait longer on real 
hypoglycemic events, thereby reducing the lead time. 

Second, by using finger stick instead of CGM data as the 
reference measure, we see more missed alarms and lower 
maximum TP ratios for given lead times. This trend is 
a consequence of the disagreement between finger stick 
and CGM measurements. Finger stick measurements lead 
CGM measurements, causing them to dip further down 
and earlier during hypoglycemia, which both reduces 
lead time and potentially allows hypoglycemia to occur 
according to the finger stick values and not due to the 
CGM measurements. Also, the finger stick readings are 
infrequent and potentially miss hypoglycemic events 
caught by the more frequent CGM measurements. 

The standard deviation of the lead time in Figure 6 is 
nearly as large as the average lead time itself. This is 
because some hypoglycemic events are characterized by 
a slow steady fall in blood glucose that makes them easy 
to predict, whereas others have sharp, quick drops that 
make them hard to predict. The lead times vary according 
to the difficulty of predicting the hypoglycemic event, 
giving a large lead-time variance. The average lead-time 
for the finger stick reference values was omitted because 
the errors in calibration overly distorted this metric.

Table 2 shows a small sample of the results from Figure 6  
and 7 that we believe are representative values.

Conclusion
Predictive alarming has the potential to allow corrective 
actions to mitigate and/or avoid hypoglycemia. We have 
shown a statistical algorithm that uses only blood glucose 
readings to predict and alarm before hypoglycemia 
occurs. Along with the algorithm, we have described a 
set of event-based metrics pertinent to hypoglycemic 
alarming.

The algorithm uses statistical methods to create 
predictions with error and confidence information. 
Statistical information obtained from training data 
improves the accuracy and removes residual bias.  
A user‑settable minimum confidence level for the alarms 
provides a trade-off between true positive ratio vs lead 
time and missed events. This trade-off can be adjusted 
to match changing needs, such as greater lead during 
the day and more confidence during the evening.

Figure 7. Performance metrics vs confidence level threshold using 
capillary glucose values as the reference blood glucose measure for 
determining when hypoglycemic events have occurred.

Figure 6. Performance metrics vs confidence level threshold using CGM 
readings as the reference blood glucose measure for determining when 
hypoglycemic events have occurred. No hypoglycemic events were 
missed.
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Future work may allow for an improved training process 
by incorporating more complete models involving insulin, 
food, or exercise. We also plan to extend the algorithm to 
predict the severity of hypoglycemic events and predict 
more accurately in the presence of sensor dropouts. 
Using the existing model, our algorithm provides about 
a 23-minute lead time prior to a hypoglycemic event 
with a 70% TP ratio. We believe that this lead time 
can significantly benefit people with diabetes and help 
prevent dangerous hypoglycemic episodes.
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