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Abstract

Background:
Current continuous glucose monitors have limited accuracy mainly in the low range of glucose measurements. 
This lack of accuracy is a limiting factor in their clinical use and in the development of the so-called artificial 
pancreas. The ability to detect incorrect readings provided by continuous glucose monitors from raw data 
and other information supplied by the monitor itself is of utmost clinical importance. In this study, support 
vector machines (SVMs), a powerful statistical learning technique, were used to detect therapeutically incorrect 
measurements made by the Medtronic MiniMed CGMS®.

Methods:
Twenty patients were monitored for three days (first day at the hospital and two days at home) using the 
MiniMed CGMS. After the third day, the monitor data were downloaded to the physician’s computer.  
During the first 12 hours, the patients stayed in the hospital, and blood samples were taken every 15 minutes 
for two hours after meals and every 30 minutes otherwise. Plasma glucose measurements were interpolated 
using a cubic method for time synchronization with simultaneous MiniMed CGMS measurements every five 
minutes, obtaining a total of 2281 samples. A Gaussian SVM classifier trained on the monitor’s electrical signal 
and glucose estimation was tuned and validated using multiple runs of k-fold cross-validation. The classes 
considered were Clarke error grid zones A+B and C+D+E.

Results:
After ten runs of ten-fold cross-validation, an average specificity and sensitivity of 92.74% and 75.49%, 
respectively, were obtained (see Figure 4). The average correct rate was 91.67%.

Conclusions:
Overall, the SVM performed well, in spite of the somewhat low sensitivity. The classifier was able to detect the 
time intervals when the monitor’s glucose profile could not be trusted due to incorrect measurements. As a 
result, hypoglycemic episodes missed by the monitor were detected.
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Introduction

Current continuous glucose monitors (CGMs) have 
limited accuracy mainly in the low range of glucose 
measurements. This lack of accuracy is a limiting factor 
in their clinical use and in the development of the 
so-called artificial pancreas, i.e., a closed-loop glucose 
control device that includes insulin pumps and CGMs.1,2

Several grid-based methods for assessing the accuracy 
of glucose meters have appeared in the literature 
and improve upon the classical methods of assessing 
accuracy (e.g., correlation, linear regression, mean 
absolute difference, etc.).3 These grid-based methods 
include the Clarke error grid (CEG),4 the Bland-Altman 
plot,5 the consensus grid6 and the continuous glucose 
error-grid analysis.7,8 These methods are based on a grid 
in error space representing error significance in terms 
of therapeutic criteria. Although none of these methods 
can be considered as the best, the CEG is the one most 
commonly accepted by the community. The ability to 
detect incorrect measurements from a CGM, from the 
information supplied by the monitor itself, is of utmost 
importance in clinical applications. This detection of 
errors would facilitate the interpretation of continuous 
glucose profiles, indicate hypoglycemic states missed by 
the monitor, and highlight other important discrepancies 
between the monitor’s readings and actual glycemia.

In this study, support vector machines (SVMs), a 
powerful classification technique, were used to detect 
therapeutically incorrect measurements made by the 
MiniMed CGMS® (Medtronic; Natick, MA). Therapeutically 
incorrect readings were defined as readings belonging 
to zones C, D, or E in the CEG, i.e., readings that may 
induce therapeutically inadequate responses. Henceforth, 
we will refer to these simply as incorrect measurements. 
Readings classified in zones A or B in the CEG will be 
denoted correct measurements. To distinguish between 
correct and incorrect measurements, an SVM classifier 
is trained on information provided by the measuring 
device, such as the monitor’s glucose estimation, input 
signal for glucose (ISIG), and voltage counter transfer 
ratio (VCTR). While the MiniMed CGMS was used in 
this proof-of-concept work, the technique itself could be 
applied to other monitors after adequate training.

This article is organized as follows. First, the clinical, 
experimental setup for the data acquisition phase and 
the data conditioning are described. The fault detection 
problem is transformed into a classification problem and 
the SVM is motivated. A general introduction about SVMs 

is given for the unfamiliar reader and the configuration 
of the classifier used in this work is presented. Next, 
the experimental results are described. Finally, the most 
relevant results are highlighted and some conclusions on 
the applicability of the proposed method are provided.

Methods
Experimental setup
Twenty-two patients with type 1 diabetes mellitus were 
selected for the study (mean age 27 years with a standard 
deviation of 5 years; the mean BMI was 24.4 kg/m2  
with a standard deviation of 2.9 kg/m2; 40% female 
and 60% male; all patients had diabetes for more than 
ten years). They also had non-optimal metabolic control, 
with a hemoglobin A1c greater than 6.5%. Patients 
were monitored for three days (the first day in the 
hospital and two days at home) using the  MiniMed 
CGMS MMT-7102. After the third day, monitor data 
were downloaded to a computer. During the stay in the 
hospital (12 hours), blood samples were taken every 15 
minutes for two hours after meals and every 30 minutes 
otherwise. Plasma glucose was measured in duplicate by 
the glucose oxidase method, using a Glucose Analyzer II  
(Beckman Instruments, Brea, CA), with a coefficient 
of variation less than 2%. Only monitor data obtained 
during these 12 hours were used in the analysis. For the 
other data, no gold standard measurement was available. 
The subject’s usual insulin dosage, including the amount 
and the administration site, was maintained throughout 
the study. In addition, food ingestion was maintained 
with normal meals, although food preparation was 
supervised by nutrition experts.

Before the start of the study, the patients participated 
in a training seminar about the MiniMed CGMS and 
the clinicians assessed their knowledge regarding the 
functions and use of the device.

During the study, patient 5 met the exclusion criteria 
defined in the protocol and was withdrawn (anemic 
state was detected). Data collected from patient 6 was 
also disregarded because of the detection of a calibration 
point introduced erroneously in the monitor. Thus, a 
total of 20 patients were included in the study.

Data conditioning
For each of the 20 patients who finished the experiment, 
40 plasma glucose readings were obtained. Six 
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measurements were dismissed due to measurement 
problems, resulting in a total of 794 samples: 97 
samples were in the hypoglycemic range (≤70 mg/dl), 
352 in hyperglycemic range (>180 mg/dl) and 345 in 
the euglycemic range. Plasma glucose measurements 
were interpolated using a cubic method for time 
synchronization with the simultaneous MiniMed CGMS 
measurements every five minutes. MATLAB® release 
2006b (The MathWorks, Natick, MA) was used for this 
purpose. A total of 2281 valid data pairs were obtained. 
As an example of the data conditioning procedure, the 
resulting valid data pairs for patient 12 are shown in 
Figure 1. Application of the CEG to the 2281 data pairs 
revealed that 94% were located in zone A+B, while 6% 
were in zone C+D+E.

In the context of this paper, this corresponds to incorrect 
and correct measurements made by the monitor. If a line 
(i.e., a hyperplane) can be defined separating class A and 
B data points, then it is a linear classification problem. 
However, in complex problems, the boundary separating 
the two classes is nonlinear. SVMs are capable of 
tackling nonlinear classification very efficiently. This is 
carried out by transforming the input space, x, into a 
new higher-dimensional space (the feature space) using 
nonlinear mapping, y = θ(x), where a linear classification 
is carried out. Thus, SVMs calculate linear boundaries in 
an extended space to represent nonlinear boundaries in 
the original space (see Figure 2).

Figure 1. Time synchronization of a continuous glucose monitoring 
system and plasma glucose values by cubic interpolation for patient 
12. Blue circles correspond to the MiniMed CGMS® measurements 
every five minutes; green circles correspond to plasma measurements 
obtained every 15 minutes for two hours after a meal and every 30 
minutes otherwise; red circles correspond to interpolated plasma 
glucose values synchronized with the CGMS measurements. Time zero 
represents the instant at which the monitor started supplying readings 
(approximately two hours after the start-up of the monitor). A gap in 
the data supplied by the monitor happened approximately between 
hours seven and eight.

Support Vector Machines
Support Vector Machines are a well-established technique 
in statistical learning theory used for classification and 
regression,9 offering excellent performance especially 
when applied to complex real-world problems that may 
be difficult to analyze theoretically. Classification of the 
problem consists of assigning a class label to data points 
in input space (e.g., class A and B). All data points in 
the same class express the same pattern to be learned. 

Figure 2. Illustration of the support vector machine (SVM), a nonlinear 
classification technique. The original input space (A) is extended 
through a non-linear mapping [indirectly defined by the selection of 
the kernel function; (B)]. Then, linear classification is carried out (C). 
The linear boundary in the extended space induces the non-linear 
boundary in the original space.

Linear classification is carried out by computing the 
maximum margin hyperplane (MMH) in the feature 
space. This hyperplane is calculated so that the maximum 
possible margin is left between elements of the different 
classes. This corresponds to a quadratic programming 
problem, with a unique solution corresponding to a 
linear combination of a subset of the training data points, 
called support vectors.10,11

The information required to compute the MMH is the 
inner product of the transformed data K(x,x’): = θ(x) · θ(x’). 
In some cases, the kernel K can be computed directly 
from the input data, without explicit knowledge of the 
nonlinear transformation θ. The selection of the kernel 
function will indirectly define the feature space. This 
makes these kernel functions efficient, so that they are 
widely used. Typical kernel functions are:

Degree d polynomial: K(x,x’) = (x · x’ + 1)d

Gaussian radial basis function: K(x,x’) = exp(   )x · x’ 2

- 2σ2

Sigmoidal: K(x,x’) = tanh(κx · x’ + δ)

•

•

•
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The kernel selected also determines the shape of the 
nonlinear boundary, which is a weighted sum of kernel 
function evaluations. These weights have to be learned 
through training data. SVM training involves minimizing 
training errors (empirical risk) and the probability of 
incorrectly classifying unknown data (structural risk). 
SVMs have been successfully applied in biomedical 
engineering to support diagnostics and therapeutics 
with excellent results in cancer diagnosis12 or idiopathic 
scoliosis.13

In this study, an SVM classifier with a Gaussian radial 
basis kernel was tuned and validated using k-fold cross-
validation (k = 10) ten times (a total of 100 problems 
solved). At each ten-fold cross-validation, the data were 
randomly partitioned into ten approximately equal, 
disjointed sets using the Bioinformatics Toolbox™ in 
MATLAB release 2006b.

The classes considered in the classification problem were 
the CEG zones A+B (correct measurements) and C+D+E 
(incorrect measurements).

The features vector X = (ISIG, 
dISIG

dt , VCTR, GCGMS) 
represented the electrical characteristics of the measured 
signal and the MiniMed CGMS estimation algorithm. 
This features vector was considered and normalized by 
its Euclidean norm √XTX . ISIG represents the sensor 
current, dISIG/dt its derivative with respect to time, 
VCTR the registered voltage, and GCGMS the glucose 
estimation provided as output from the MiniMed CGMS 
monitor. Finally, to avoid high dimensionality and reduce 
computational time, the projection onto the ISIG and 
VCTR dimensions was used as the input data set.

Classification of training data was performed using the 
CEG with interpolated plasma glucose values as the gold 
standard. It is important to provide the classifier with 
incorrect measurements during the training phase so 
that their patterns can be learned. As stated earlier, data 
from the first day (inpatient period) were used in the 
study because only during that time were gold standard 
measurements available for validation. This corresponds 
to the time of the poorest performance of the monitor 
and thus more errors are expected. Once trained, the 
classifier will detect incorrect measurements, regardless 
of the day.

Henceforth, a “negative” result will refer to a data point 
falling in zones A or B while a “positive” result will 
refer to data points falling in zones C, D or E. Figure 3 
shows the classification of the whole data set. As can be 

observed, both positive and negative data points are not 
linearly separable in the VCTR-ISIG space. However, some 
grouping is observed. Thus, an SVM is ideal for solving 
the complex problem of separating the classes through a 
nonlinear transformation into a higher dimensional space 
where then, finally, the classes can be separated.

Tuning of the Gaussian SVM was performed iteratively 
until satisfactory results were obtained using the 
Bioinformatics Toolbox in MATLAB release 2006b.

Figure 3. Projected normalized data set. Positive class (in red) 
corresponds to CEG zones C+D+E and negative class (in blue) to zones 
A+B.

Results
After ten runs of ten-fold cross-validation, an average 
specificity and sensitivity of 92.74% and 75.49%, 
respectively, were obtained (see Figure 4). The average 
correct rate was 91.67%. Thus, the classifier exhibited 
an excellent specificity, which implies that correct 
measurements from the monitor are captured well by 
the system. A wider range of sensitivities was observed 
among the different runs during cross-validation. 
Although in some cases the value obtained was low 
(i.e. there were a significant number of false positives), 
performance should be evaluated from the perspective of 
glucose profiles rather than individual samples. Such an 
analysis is presented in the Discussion section.

To illustrate the expected performance, one sample 
classifier was selected out of the set of 100. This classifier 
had a 92.49% specificity, 73.33% sensitivity, and 91.23% 
correct rate, similar to the average performance of the 
whole set. Figure 5 shows the regions obtained in this 
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located in zones A, B, and D. On the other hand, Figure 6B  
presents all misclassified points, including incorrect 
(false positive) and correct (false negative) measurements. 
In this case, misclassified points appear in zones A, B, D, 
and E.

From Figure 6 it can be observed that the percentage 
of misclassifications is low. For this specific trial, 91.23% 

Figure 4. Performance of the classifiers obtained in the validation 
process (ten runs of ten-fold cross-validation) shown on an ROC 
graph. The average specificity and sensitivity were 92.74% and 75.49%, 
respectively. TPR, true positive rate; FPR, false positive rate; ROC, 
receiver operating characteristic.

Figure 5. Classification regions obtained for classes A+B and C+D+E 
for an average classifier.

case for the C+D+E class (closed filled regions) and A+B 
class (the complementary set). Incorrect measurements 
are concentrated in three principal areas and a small set 
of dispersed areas.

Classification results for the test data (228 samples) from 
this sample classifier are shown in Figure 6. In Figure 6A 
the correctly classified data pairs are shown on the CEG. 
They comprise both incorrect (true positive) and correct 
(true negative) measurements. Incorrect measurements 
only appear in CEG zone D, while no point is located in 
zones C and E. Correctly classified data points are thus 

Figure 6. Classifications carried out by the sample (average) classifier 
for the test data. (A) True positives are shown with red Xs and true 
negatives with blue Xs. (B) False negatives are shown with red Xs and 
false positives with blue Xs.
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of the test points were classified correctly. From a total 
of 15 incorrect measurements by the monitor, four were 
misclassified and thus undetected by the system; thus 
73.33% of the incorrect measurements were detected. 
Sixteen of 213 (7.5%) correct measurements were 
misclassified and reported as incorrect measurements.

Discussion
The results of this study indicate that, on average, the 
classifier exhibits a very good specificity (92.74%), which 
implies that correct measurements from the monitor will 
be captured accurately. A wider range of sensitivities 
was observed among the different runs carried out 
during cross-validation, with an average of 75.49%. A 
sensitivity value that is too low implies that a significant 
number of false negatives may appear. This was seen in 
the performance of the sample classifier described earlier. 
With this classifier 26.67% of the incorrect measurements 
in the validation data set remained undetected.

To determine the extent to which sensitivity and 
specificity influence global performance, an analysis 
must be performed in terms of glucose profiles rather 
than individual samples. The performance may be 
considered good if the system is able to detect the time 
intervals when the profile should not be trusted because 
of incorrect measurements with clinical consequences, 
such as untreated hypoglycemic episodes.

Thus, to determine the influence of sensitivity and 
specificity, individual glucose-time profiles given by 
the monitor were classified using the sample classifier 
described earlier. Figure 7 shows the results for one 
patient when missed hypoglycemic episodes occurred. 
Magenta diamonds represent the gold standard and 
green diamonds the measurements of the MiniMed 
CGMS. Within the green diamonds, a blue marker 
indicates a correctly classified sample (an “X” stands 
for a sample classified as A+B and a circle represents 
a sample classified as C+D+E); a red color indicates a 
misclassified sample.  Figure 7 shows that hypoglycemia 
remained undetected by the monitor from approximately 
hour 4 onward. This fact is correctly detected by the 
classifier (denoted by the blue circles). Although some 
false negatives appear (red circles), they do not interfere 
with the general conclusions drawn from the graph.

Figure 8 shows the results for the rest of the patients 
when hypoglycemic episodes remained undetected by 
CGMS®. In most cases, hypoglycemia occurred around 
5:00 p.m. (approximately six hours after the monitor 
started supplying data). In Spain, lunch is usually eaten 
at approximately 2:00 p.m., so 5:00 p.m. falls between 
lunch and dinner, when most patients are prone to 
hypoglycemia. No specific calibration was done at 
that time. In all cases, the classifier detected these 
episodes from the electrical signal and MiniMed CGMS 
glucose estimations. Although a significant number of 
misclassifications occurred in some patients (see Figure 8D,  
for example), these misclassifications did not have a 
significant impact on the analysis of the profiles, except 
in overestimating the duration of the hypoglycemic 
episodes.

This analysis concluded that SVM classifiers can be 
used to detect therapeutically incorrect measurements 
provided by the MiniMed CGMS. For all patients, missed 
hypoglycemic states and other incorrect measurements, 
as defined by the CEG, were detected. The presence of 
false positives did not alter the conclusions drawn from 
the analysis of time profiles.

The SVM can thus support the clinician in the 
interpretation of readings from CGMs. While this 
study focused on the MiniMed CGMS, which is a 
retrospective monitor, the method could also be applied, 
with appropriate training, to real-time monitors. These 
alternative applications would require data only on the 
corresponding monitor’s electrical signal and glucose 
estimation. However, further research is needed to 
confirm the general applicability of the SVM to glucose 
monitors.

Figure 7. Detection of missed hypoglycemia. In patient 12, incorrect 
measurements (encircled in black) from the MiniMed CGMS® were 
detected from approximately hour four onward, by the electrical signal 
of the monitor and its glucose estimation. Glucose measurements 
performed on collected plasma indicated that the patient was in 
a hypoglycemic state while the monitor reported a value in the 
euglycemic range. No error was raised by the monitor, except during 
the displayed data gap, where a calibration error (CalErr) was 
recorded.
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Figure 8. Examples of detection of missed hypoglycemic episodes (encircled in black) in four patients. (A) In patient 21, missed hypoglycemia 
was detected, however, the classifier overestimated its duration. (B) In patient 9, missed hypoglycemia was correctly detected. Appearance of 
false negatives was negligible, except during a short period in the final downward trend in glycemia, where consecutive misclassifications appeared.  
(C) In patient 11, missed hypoglycemia (in this case due to the lag between plasma and interstitial glucose) was correctly detected by the classifier. 
Misclassifications did not interfere with the main conclusions. (D) In patient 8, the number of misclassifications was higher than in the other 
patients, however, the missed hypoglycemia between the hours of three and four was detected by the classifier. The same happened with the 
episode of mild hypoglycemia near hour six.

Future research might include the investigation of 
other tests, such as the consensus grid and continuous 
glucose error-grid analysis for the definition of classes 
and the reconstruction of glucose profiles once incorrect 
estimations have been detected. Applications to real-time 
monitors may also be investigated.
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