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Abstract
Background:
A major difficulty in the management of diabetes is the optimization of insulin therapies to avoid occurrences 
of hypoglycemia and hyperglycemia. Many factors impact glucose fluctuations in diabetes patients, such 
as insulin dosage, nutritional intake, daily activities and lifestyle (e.g., sleep-wake cycles and exercise), and 
emotional states (e.g., stress). The overall effect of these factors has not been fully quantified to determine the 
impact on subsequent glycemic trends. Recent advances in diabetes technology such as continuous glucose 
monitoring (CGM) provides significant sources of data, such that quantification may be possible. Depending 
on the CGM technology utilized, the sampling frequency ranges from 1–5 min. In this study, an intensive 
electronic diary documenting the factors previously described was created. This diary was utilized by 18 patients 
with insulin-dependent diabetes mellitus in conjunction with CGM. Utilizing this dataset, various neural 
network models were constructed to predict glucose in these diabetes patients while varying the predictive 
window from 50–180 min. The predictive capability of each neural network within the fully trained dataset 
was analyzed as well as the predictive capabilities of the neural networks on unseen data.

Methods:
Neural network models were created using NeuroSolutions® software with variable predictive windows of 50, 
75, 100, 120, 150, and 180 min. Neural network models were trained using patient datasets ranging from 11–17 
patients and evaluated on patient data not included in the neural network formulation. Performance analysis 
was completed for the neural network models using MATLAB®. Performance measures include the calculation 
of the mean absolute difference percent overall and at hypoglycemic and hyperglycemic extremes, and the 
percentage of hypoglycemic and hyperglycemic occurrences were predicted.

continued  
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Introduction

Type 1 diabetes is an autoimmune disease in which the 
beta-cells of the body are destroyed, thus resulting in a 
lack of insulin production. This leads to an inability to 
control blood glucose concentration as insulin facilitates 
the cellular uptake of glucose. If levels of blood glucose 
concentration remain high for extended periods of time, 
long-term complications such as neuropathy, nephropathy, 
and vision loss can arise.1–3 Due to the lack of insulin 
production, type 1 diabetes patients are required to 
take insulin subcutaneously as their primary method of 
therapy. 

The major difficulty involving the successful treatment of 
diabetes is the appropriate dosing of insulin, such that a 
normal physiologic glucose concentration is maintained. 
There are a multitude of factors that influence subsequent 
glucose concentrations in diabetes patients, including, 
but not limited to, insulin dosage, carbohydrate and 
nutritional intake, lifestyle (e.g., sleep–wake cycles 
and sleep quality, and exercise), and emotional states  

(e.g., stress, depression, and contentment).4–14 The effect 
of these various factors on subsequent glucose levels 
is not fully understood and may be patient specific or 
similar across all diabetes patients. In order to optimize 
control in diabetes patients, there needs to be some 
method for quantifying or predicting future occurrences 
of dysglycemia (i.e., high and low blood glucose 
concentration, also referred to as hyperglycemia and 
hypoglycemia, respectively).

Scientific Background 
Fluctuations in glucose concentration experienced on 
an everyday basis appear to be chaotic; however, prior 
research does elude to possible patterns that may exist.14–20  
Circadian rhythms in sleep and subsequent glucose 
regulation have been identified in previous research.14 
Other patterns in insulin activity, insulin sensitivity, and 
their subsequent effect on glucose concentration have 
been identified in previous research.15–20 The existence of 

Abstract cont.

Results:
Overall, the neural network models perform adequately at predicting at normal (>70 and <180 mg/dl) and 
hyperglycemic ranges (≥180 mg/dl); however, glucose concentrations in areas of hypoglycemia were commonly 
overestimated. One potential reason for the “high” predictions in areas of hypoglycemia is due to the minimal 
occurrences of hypoglycemic events within the training data. The entire 18-patient dataset (consisting of 
18,400 glucose values) had a relatively low incidence of hypoglycemia (1460 CGM values ≤70 mg/dl), which 
corresponds to approximately 7.9% of the dataset. On the contrary, hyperglycemia comprised approximately 
35.7% of the dataset (6560 CGM values ≥180 mg/dl), and euglycemic values allotted for 56.4% of the dataset 
(10,380 CGM values >70 and <180 mg/dl). Results further indicate that an increase in predictive window leads 
to a decrease in predictive accuracy of the neural network model. It is hypothesized that the underestimation 
of hyperglycemic extremes is due to the extension of the predictive window and the associated inability of the 
neural network to determine oscillations and trends in glycemia as well as the occurrence of other relevant 
input events such as lifestyle, emotional states, insulin dosages, and meals, which may occur within the 
predicted time window and may impact or change neural network weights.

Conclusions:
In this investigation, the feasibility of utilizing neural network models for the prediction of glucose using 
predictive windows ranging from 50–180 min is demonstrated. The predictive windows were chosen arbitrarily 
to cover a wide range; however, longer predictive windows were implemented to gain a predictive view of 
120–180 min, which is very important for diabetes patients, specifically after meals and insulin dosages. Neural 
networks, such as those generated in this investigation, could be utilized in a semiclosed-loop device for 
guiding therapy in diabetes patients. Use of such a device may lead to better glycemic control and subsequent 
avoidance of complications.

J Diabetes Sci Technol 2008;2(5):792-801
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rhythms in insulin activity, and subsequent quantifiable 
patterns in glucose fluctuations, provide a foundation 
and hypothetical construct for the development of the 
neural network models developed in this investigation. 
The advent of continuous glucose monitoring (CGM) 
in the field of diabetes technology provides even more 
insight for the determination of patterns existent in daily 
glucose fluctuations of diabetes patients. The use of CGM 
technology is also advantageous, as it leads to a better 
understanding of gluco-regulatory dynamics.

Physiological systems and diseases, such as diabetes 
mellitus, that affect such systems are extremely complex 
in nature. Attempts to analyze and better understand 
these types of “systems” have utilized methods such as 
control engineering. Based on these methods, there have 
been many attempts aimed at prediction, simulation, and 
fault detection. Although these methods, in part, provide 
insight into biological systems, they are still limited 
due to the inherent complexity of the systems they are 
attempting to model. An artificial neural network (ANN) 
is one approach that is gaining considerable interest.  
In part, this is due to its inherent nature, which would 
seem to be well suited to model complex physiological 
systems. An ANN functions as a brain within a 
nervous system in that it has the ability to distinguish 
and recognize a particular object from a large set of 
objects. Neural networks can be utilized to construct a 
mathematical model of a specific system that is to be 
controlled. Attempts to model blood glucose and insulin 
interactions in individuals with diabetes have been an 
ongoing topic in current research. The complexity of 
the neural networks developed in such studies range 
from simplistic feed-forward neural networks to more 
complex recurrent networks. In most of these studies, in 
an attempt to achieve tight glucose control in the normal 
physiological range, a controller is used to determine the 
required insulin dosage (based on glucose prediction).21–28 
The determination of optimal insulin dosages is likely to 
have considerable error associated with each model, as 
each patient possesses different insulin sensitivities.

In many of the previous endeavors aimed at predicting 
glucose or optimal insulin dosages to maintain normal 
glucose concentration, models were generated using 
inputs, including glucose meter readings, insulin dosages, 
exercise and activity status, and nutritional intake. 
While these factors undoubtedly contribute to changes 
in blood glucose concentration and are quantifiable, 
there are many factors left unrecognized in previous 
models, particularly other lifestyle and emotional factors.  
In terms of the development of neural network models 

and neural network-based algorithms, the incorporation 
of more inputs that could affect such a system may 
result in enhanced predictive abilities. The neural 
network models explained in this paper incorporate 
inputs that have been deemed as effectors of glucose 
concentration but have not been incorporated into many 
models to date. The prediction of glucose concentration 
via such an approach may allow patients to change their 
insulin dosages in response to predicted occurrences 
of hypoglycemia or hyperglycemia. Given predictive 
success, this will likely enhance each patient’s abilities to 
optimize insulin therapy and maintain a normal glucose 
concentration. 

Methods 

Construction of Initial Neural Network Models
Generation of Electronic Diary for Initial Data Collection
The initial step in the development of the neural network 
algorithm was data acquisition. A Pocket PC-based 
electronic diary documenting the patient’s meter blood 
glucose readings, insulin dosages, carbohydrate intake, 
hyperglycemic and hypoglycemic symptoms, lifestyle 
(activities and events), and emotional states was created 
using Visual C#.NET. Emotional and lifestyle states 
were quantified in the electronic diary using Boolean 
indicators. The graphical user interface (GUI) of the 
developed software is illustrated in Figure 1. The Pocket 
PC-based electronic diary was configured to output a file 
containing all data logged from the intensive electronic 
diary, which is used for subsequent integration with 
CGM data and neural network training and formulation.  
CGM data and electronic diary data were integrated 
manually. The electronic diary was programmed to 
automatically update the date and time of each entry 
to facilitate real-time data acquisition and mitigate 
erroneous input.

Patient Training and Data Collection Process
The patient population used for the initial neural network 
algorithm and model development was obtained from 
a private endocrine practice in Warren, OH. The only  
necessary attribute for incorporation into the study 
was that the patients must have insulin-dependent 
diabetes mellitus. Using the developed electronic 
diary, 18 patients were subjected to use of the diary in 
combination with a Medtronic CGM System (CGMS). 
Patients used CGM for a duration between 3 and 9  
days. The electrochemical sensor for the device was 
changed every 3 days in accordance with manufacturer 
and FDA recommendations for sensor life and stability 
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period. Patients were instructed on the calibration of the 
CGM unit as well as trained in the use of the electronic 
diary before their involvement in the study. It is also 
important to note that data logged via the use of the 
electronic diary may have been entered incorrectly by 
patients involved in the study; however, it was difficult 
to identify such instances if they occurred. To mitigate 
errors of this type, patients were instructed and trained 
on the methods to record data using the electronic diary 
prior to their involvement in the study. 

Neural Network Model Development and Design 
Neural network models were generated using 
NeuroSolution® software (Neurodimension, Gainesville, 
FL). These neural networks were configured to forecast 
future glycemic levels within a certain predefined time 
frame or predictive window. Models were developed 
with predictive windows ranging from 50–180 min.  
The predictive windows were chosen arbitrarily to cover 
a wide range; however, longer predictive windows were 
implemented to gain a predictive view of 120–180 min, 
which is very important for diabetes patients, specifically 
after meals and insulin dosages. Each glucose value 
obtained from the Medtronic CGMS was collected 
every 5 min; therefore, for a 50 min predictive window, 
the neural network was configured to predict 10 CGM 
values.

The neural networks developed in this investigation 
were time-lagged feed-forward neural networks. These 
neural networks are classified as multilayer perceptrons 
that have memory components to store previous values 
of data within the network. The existence of such 
memory components provides the system the ability to 
learn relationships and patterns existent in the data over 
time. These neural networks consist of multiple layers 
of processing elements that are connected together in 
a feed-forward manner. Various connections (synapses) 
were constructed to facilitate connections between the 
processing elements of the neural network (axons). 

The neural networks generated were trained using 
a method known as the back propagation of errors. 
Elements in the neural network known as back 
propagation axons (BackAxons) facilitate the training 
process. BackAxons derive a relative error at their 
input, which is to be back propagated to any processing 
elements preceding them in the neural network design. 
The back propagation of errors is completed as an error 
is presented at the output of each BackAxon in the neural 
network, and the BackAxon is charged with calculating 
the gradient information associated with calculating 
weights for the minimization of total error in the neural 
network. Optimal weights for the minimization of error 
in the predictive model are obtained via a gradient 
descent algorithm performed within the BackAxon 
elements. This gradient descent algorithm calculates the 
optimal weight for the minimization of the total error in 
the neural network model. The optimization value of the 
step size in such an algorithm is integral in the amount 
of time it takes to train the neural network. A small step  
size could lead to a large training time, and conversely, 
a large step size could lead to overestimation of the 
desired local minimum. Neural networks were trained 
via batch training, i.e., network weights were updated 
after each epoch (single cycle or pass through the  
dataset). The neural networks were configured to stop 
training after 1000 epochs or if the mean squared error 
was less than 0.1.

Models such as the neural network models developed in 
this investigation included optimization via use of genetic 
algorithms, which are useful computer-aided design 
techniques.29–31 Optimization via a genetic algorithm was 
used to minimize the number of processing elements 
(neurons) and inputs into the neural network. The genetic 
algorithm effectively determines which inputs have 
an impact on predictions and minimizes the various 
interconnections between neurons in the neural network. 
The genetic algorithm also determines the best value for 
the step size and momentum for the neural network.

Figure 1. Graphical user interface of electronic diary for initial data 
acquisition.
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Figure 2 includes the neural network design and 
architecture of one of the processing and output layers 
of the neural network models designed using the 
NeuroSolutions software. The various components in the 
neural network design are labeled 1–5. Component 1 is a 
hyperbolic tangent axon (tanh axon). The tanh axon has 
the processing elements for the hidden layer of the neural 
network. Each processing element sums the weighted 
connections from the inputs into the axon. Component 2  
is a Laguarre axon that functions to store delayed 
versions of the processing elements output and pass it 
onto the next layer of the neural network. The Laguarre 
axon therefore serves to provide the neural network with 
memory, thus enabling the processing of information in 
time. Component 3 is the momentum/gradient descent 
component of the network. This component serves to 
adjust the weights with information about the error 
within the network. Optimal step sizes and momentum 
values in these elements for the minimization of error 
are determined via the implementation of a genetic 
algorithm, as previously discussed. Component 4 is an 
example of the synapses of the neural network, which 
serve to connect the various axons and processing 
elements of the neural network. Component 5 is the 
output layer of the neural network, which consists of 
a bias axon (leftmost element in Component 5) and an 
output axon (rightmost element in Component 5). The 
bias axon has the processing elements for the output 
layer, each of which sums the weighted connections 
from the second hidden layer. The output axon yields the 
predicted values in the original format (i.e., the desired 
response) as originally presented to the neural network. 

Validation of Generated Neural Network Models
Three methods were implemented to analyze the accuracy 
of the developed neural network’s predictive abilities. 
The first method involved the validation of neural 
network models generated with variable length training 
sets. In this analysis, training sets using 11–17 patients 
were used to generate neural network models with a 
constant predictive window of 100 min. The performance 
of each neural network model was evaluated using the 
CGM and electronic diary data from a patient who was 
not included in the training data of any of the neural 
network models. MATLAB® was used for performance 
analysis of the neural network model. The mean absolute 
difference percent (MAD%) of the model’s predictive 
abilities on the entire test dataset (overall MAD%), 
hypoglycemic extremes (≤70 mg/dl) and hyperglycemic 
extremes (≥180 mg/dl), was calculated using

 (1)

 (2)

where AD%(t) is the calculated AD% at time t, NNetpredict(t) 
is the predicted neural network glucose value at time t,  
and CGMactual(t) is the actual CGM data point at time t.  
N is the number of data points in the dataset, used 
for calculating the MAD%. Equation (1) is utilized 
for calculating the absolute difference percent (AD%) 
between each neural network-predicted value and the 
corresponding actual CGM value. Equation (2) is used 
to calculate the MAD%, which is defined as the mean of 
all obtained AD% values in the dataset. The percentage 
of hyperglycemia and hypoglycemia predicted by the 
system was also calculated.

A second method of performance analysis involved 
the validation of the multiple neural network models 
generated using 12–17-patient datasets. The final patient 
included in each dataset (i.e., the last 3–3.5 days of each 
dataset) was omitted from the training data and utilized 
to validate the accuracy and predictive abilities of the 
neural network on unseen patient data. This analysis 
mimics the real-time functionality of such models 
on multiple unseen patients, as the data used to test 
model performance is from a different patient each time. 
MATLAB was utilized for performance analysis and 
used to calculate the previously described performance 
measures.

Figure 2. Design and architecture of the processing (hidden) and output 
layer of the neural network model.



797

Development of a Neural Network for Prediction of Glucose Concentration in Type I Diabetes Patients Pappada

www.journalofdst.orgJ Diabetes Sci Technol Vol 2, Issue 5, September 2008

The final method of performance analysis was the 
validation of the various neural network models with 
variable predictive windows ranging from 50–180 min, 
trained with a 17-patient dataset. Each neural network 
model was tested using data acquired from an 18th 
patient who was not included in the initial training data. 
The respective model’s predictive abilities were analyzed 
using MATLAB. 

Results and Discussion 

Prediction of a Single Unseen Patient Data Record 
Using 11–17-Patient Artificial Neural Network Models
Figure 3 is a plot containing neural network predictions 
using a 100 min predictive window on a single patient 
whose data was not included in the training data during 
initial model development. This plot illustrates the 
effect of varying the number of patients (11, 14, and 17) 
utilized for training the initial neural network model. 
Figure 3 demonstrates that as the number of patients 
used in training is increased, the sensitivity of the neural 
network predictions at hyperglycemic extremes generally 
increased. Training sets of fewer patients (i.e., less data) 
appear to underestimate hyperglycemia to a greater 
extent, which leads to some hyperglycemic reactions 
not being predicted. Table 1 includes the performance 
analysis results while varying the number of patients 
included in the initial training set in neural network 
development from 11–17 patients. There was a total of 128 
hyperglycemic reactions and 94 hypoglycemic reactions 
in the unseen patient data that was used to validate 
model performance. The overall MAD% appears to be 
relatively consistent throughout, regardless of training set 
size ranging from 18.7 to 25.8% with an average of 22.7%. 
Generally, as the quantity of training data is increased, 
neural network performance increases; however, this was 
not observed. A possible reason for the slight variability 
in overall MAD% is that the patients added to training 
set had different electronic diary data documenting 

similar lifestyle and emotional factors, which did not 
lead to the same glycemic trends as the patient chosen 
for analysis. Furthermore, the patient data used to 
validate these neural network models had a significant 
number of hypoglycemic reactions (as demonstrated in 
Figure 3). The neural networks generated with lower 
quantities of training data underestimate hyperglycemic 
extremes and are thus more accurate at the estimation of 
lower glucose extremes, thus leading to a smaller MAD% 
overall. This is realized as the MAD% at hypoglycemic 
extremes is greater when the neural network model 
overall MAD% does not follow the expected trend.  
As the amount of training data is increased, the 
percentage of hyperglycemic reactions predicted 
successfully by the neural network model increases 
from 49.2 to 69.5% for 11 and 17 patients, respectively.  
In addition, there is a corresponding decrease in MAD% 
at hyperglycemic extremes from 17.4 to 11.7% for 11 and 
17 patients, respectively. Overall, the models commonly 

Figure 3. Neural network prediction of unseen data: variation of training 
set length. An error of 11–21% exists in the Medtronic CGMS relative to 
serum glucose levels.32
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Table 1.
Performance Analysis on Unseen Data: Variation of Training Set Length (100 min Predictive Window)
Number of patients Overall MAD(%) MAD(%) hyper MAD(%) hypo Hyper predicted (%) Hypo predicted (%)

11 18.7 17.4 44.0 49.2 0

12 21.5 14.0 55.4 56.3 0

13 23.1 13.7 57.4 58.6 0

14 25.8 12.4 61.6 67.2 0

15 25.1 11.5 58.7 68.0 0

16 22.1 11.2 54.1 70.3 1.1

17 22.5 11.7 51.9 69.5 0
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overestimate hypoglycemic values. The model generated 
using the 16‑patient training set predicted only 1.1% of 
hypoglycemic values, whereas the other models did not 
predict any hypoglycemic values.

Prediction of Multiple Unseen Patient Data Records 
Using 11–17-Patient Artificial Neural Network Models
Figures 4 and 5 show neural network model predictions 
made on two different patient datasets, while the number 
of patients, 15 and 16, respectively, were used for training 
the developed neural network model. Both neural 
network models perform well at following trends in data 
as well as predicting a fairly significant percentage of 
hyperglycemic reactions. In Figure 5, the patient utilized 
for validation experiences extended hyperglycemic and 
hypoglycemic reactions, which occur at the maximum 
recorded value for the glucose sensor at 400 and 40 mg/dl,  
respectively. In each respective case, the neural network 
predictions underestimated and overestimated the 
glycemic extremes, which leads to a significant impact on 
overall MAD% as well as the MAD% at hyperglycemic 
and hypoglycemic extremes (i.e., 39.9, 24.1, and 30%, 
respectively, compared with 22.6, 19, and 3% for the 
15-patient model—see Table 2). Error calculations are 
therefore very subjective to trends in the dataset used for 
validation. Table 2 summarizes the performance analysis 
and an assessment of neural network predictive abilities 
in predicting glucose values in multiple unseen patients 
while varying the length of the training data utilized 
during the initial model formulation. Because each 
patient is different, the number of hyperglycemic and 
hypoglycemic reactions in each dataset varies. In each  
case, the quantity of training data is increased, and 
the model is validated on a single patient dataset that 
was not used in the initial model formulation. As the 
quantity of training data is increased, the performance of 
the neural network model increases, and overall MAD% 
decreases with the exception of the final neural network 
model developed using the 16-patient training set for 

Table 2.
Performance Analysis: Multiple Unseen Patients with Increasing Training Set (100 min Predictive Window)

Patients in 
training set

Overall 
MAD(%)

MAD(%) hyper MAD(%) hypo
# of hyper 

reactions in 
dataset

# of hypo 
reactions in 

dataset

Hyper 
predicted (%)

Hypo 
predicted (%)

11 43.0 30.6 15.8 431 55 57.1 0

12 46.3 29.4 46.2 303 157 52.8 0

13 28.4 22.3 6.7 784 61 92.6 0

14 20.0 19.6 0 750 0 86.5 N/A

15 22.6 19.0 3.0 504 20 72.4 0

16 39.9 24.1 30.0 475 94 67.8 0

Figure 4. Neural network predictive abilities (generated using a 
15‑patient training set) (unseen data). An error of 11–21% exists in the 
Medtronic CGMS relative to serum glucose levels.32
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Figure 5. Neural network predictive abilities (generated using a 
16‑patient training set) (unseen data). An error of 11–21% exists in the 
Medtronic CGMS relative to serum glucose levels.32
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the reasons previously described. In addition to these 
reasons, it is also important to note that this patient 
exhibited the second highest number of hypoglycemic 
reactions of the unseen patient data that was tested. 
The respective models predict a significant percentage 
of hyperglycemic reactions ranging from 52.8–92.6%; 
however, they commonly overestimate hypoglycemic 
values. This correlates to the poor performance in the 
successful prediction of hypoglycemic extremes, and 
likely correlates to the decreased model accuracy in the 
model with the 16-patient training set. 

Prediction of a Single Unseen Patient Data Record 
Using a 17-Patient Artificial Neural Network Model 
with Different Predictive Windows
Figure 6 shows neural network models developed using 
a 17-patient training set and their predictions on a single 
unseen patient data record with variable predictive 
windows of 50, 100, and 180 min. As the predictive window 
is increased, the accuracy in each model decreases, 
respectively. It is hypothesized that the underestimation 
of hyperglycemic extremes is due to the extension of 
the predictive window and the associated inability of 
the neural network to determine oscillations and trends 
in glycemia as well as the occurrence of other relevant 
input events such as lifestyle, emotional states, insulin 
dosages, and meals that may occur within the predicted 
time window and may impact or change neural network 
weights. Table 3 includes the performance analysis for 
the models generated with the 17-patient training set and 
variable predictive windows. This dataset included 429 
hyperglycemic reactions and 8 hypoglycemic reactions. 
A consistent increase in overall MAD% (6.7–18.9%) 
is observed with an increase in the predictive 
window. Similarly, the MAD% at hyperglycemic and 
hypoglycemic extremes increases from 6.6–22.1% and 
0.6–1.7%, respectively. A majority of the hyperglycemic 
reactions in this dataset are predicted with 71.6–97.2% 
of hyperglycemic reactions being predicted by the 

models. Conversely, for reasons previously mentioned, 
hypoglycemic reactions are overestimated, resulting in 
no hypoglycemic extremes being predicted successfully. 

General Discussion
The results derived from this investigation indicate 
that the prediction of glycemic fluctuations in type 1 
diabetes patients is possible. As anticipated, the neural 
network performance degrades as the predictive window 
increases. In all model formulations, the neural network 
appears to follow trends in the data accurately; however, 
the model has the tendency to underestimate extreme 
hyperglycemic values and overestimate hypoglycemic 
values. This limitation is more apparent at hypoglycemic 
values, as the model rarely predicts hypoglycemia. 
One plausible reason for this limitation is that the 
training dataset did not have a significant number of 
hypoglycemic data relative to the number of euglycemic 

Figure 6. Neural network performance: predictive window variation 
(unseen data). An error of 11–21% exists in the Medtronic CGMS relative 
to serum glucose levels.32
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Table 3.
Performance Analysis: Unseen Data with Predictive Window Variation
Predictive window 

(min)
Overall MAD(%) MAD(%) hyper MAD(%) hypo Hyper predicted (%) Hypo predicted (%)

50 6.7 6.6 0.6 95.3 0.00

75 8.9 8.0 0.9 94.9 0.00

100 11.7 11.0 1.3 90.4 0.00

120 14.5 12.0 1.5 97.2 0.00

150 16.6 19.6 1.5 79.0 0.00

180 18.9 22.1 1.7 71.6 0.00
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(normal) and hyperglycemic data points. The CGM 
dataset used for the training of the neural network 
models had a relatively low incidence of hypoglycemia 
(1460 CGM values ≤70 mg/dl), which corresponds to 
approximately 7.9% of the dataset. On the contrary, 
hyperglycemia comprised approximately 35.7% of the 
dataset (6560 CGM values ≥180 mg/dl), and euglycemic 
(normal) values allotted for 56.4% of the dataset (10,380 
CGM values >70 and <180 mg/dl). This inadequacy in 
the training data could lead to a degradation in neural 
network performance for predictions at hypoglycemic 
extremes. Further development of a neural network with 
a larger quantity of hypoglycemic reactions is warranted. 
In addition, a rate-of-change-based analysis of CGM data 
may also prove advantageous. Such an analysis could 
lead to a determination of a glycemic-threshold-based 
method for the determination of correction factors to 
apply to predicted CGM data leading to hypoglycemia or 
hyperglycemia.

The neural network models created in this investigation 
could be improved by various subsequent studies.  
Neural network models can be generated on a patient-
specific basis, using large training sets from a single 
patient. Such an analysis could identify whether factors 
documented in this investigation using the intensive 
electronic diary would affect glycemia on a universal or 
patient-specific basis. Additionally, other neural network 
predictive models should be investigated such as 
predictive classification neural networks for the prediction 
of low, high, and normal glucose states.

Conclusion
The use of CGM and an intensive electronic diary 
documenting meter blood glucose readings, insulin 
dosages, carbohydrate intake, hypoglycemic and hypo-
glycemic symptoms, lifestyle (activities and events), and 
emotional states to generate a neural network model 
for the prediction of glucose was demonstrated in this 
investigation. Further research into generating a more 
elaborate neural network model is, however, warranted 
to improve predictions at both hyper- and hypoglycemic 
extremes. Additional studies on the documentation and 
use of other factors, such as lifestyle and medication 
logging, may also be warranted, including a detailed study 
on how such factors can impact glycemic predictions and 
overall model performance. If the prediction of glucose 
via such a methodology with considerable accuracy is 
indeed possible, the generation of a real-time “intelligent-
therapy” semiclosed-loop system may be possible. Such 
a system, capable of predicting future glycemic states, 

would likely be advantageous and allow for the real-
time optimization of insulin therapy based on expected 
occurrences of hypoglycemia and hyperglycemia.
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