
1058

Control to Range for Diabetes: Functionality and Modular Architecture

Boris Kovatchev, Ph.D.,1 Stephen Patek, Ph.D.,2 Eyal Dassau, Ph.D.,3 Francis J. Doyle III, Ph.D.,3
Lalo Magni, Ph.D.,4 Giuseppe De Nicolao, Ph.D.,4 and Claudio Cobelli, Ph.D.5  
for the Juvenile Diabetes Research Foundation Artificial Pancreas Consortium

Author Affiliations: 1Department of Psychiatry and Neurobehavioral Sciences and Department of Systems and Information Engineering, 
University of Virginia, Charlottesville, Virginia; 2Systems and Information Engineering, University of Virginia, Charlottesville, Virginia;  
3Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; 4Department of Computer Engineering  
and Systems Science, University of Pavia, Pavia, Italy; and 5Department of Information Engineering, University of Padova, Pavia, Italy

Abbreviations: (AP) artificial pancreas, (APS) artificial pancreas software, (BG) blood glucose, (CGM) continuous glucose monitoring,  
(MPC) model predictive control, (FDA) Food and Drug Administration, (IOB) insulin on board, (PID) proportional-integral-derivative,  
(RCM) range correction module, (SSM) safety supervisor module

Keywords: artificial pancreas, closed-loop control algorithms, continuous glucose monitoring, diabetes, modeling

Corresponding Author: Claudio Cobelli, Ph.D., Professor of Biomedical Engineering, Department of Information Engineering, University of 
Padova, Italy, Via Gradenigo 6/A, 35131 Padova, Italy; email address cobelli@dei.unipd.it

 Journal of Diabetes Science and Technology
 Volume 3, Issue 5, September 2009 
 © Diabetes Technology Society

Abstract

Background:
Closed-loop control of type 1 diabetes is receiving increasing attention due to advancement in glucose sensor 
and insulin pump technology. Here the function and structure of a class of control algorithms designed to  
exert control to range, defined as insulin treatment optimizing glycemia within a predefined target range by 
preventing extreme glucose fluctuations, are studied.

Methods:
The main contribution of the article is definition of a modular architecture for control to range. Emphasis is 
on system specifications rather than algorithmic realization. The key system architecture elements are two 
interacting modules: range correction module, which assesses the risk for incipient hyper- or hypoglycemia and 
adjusts insulin rate accordingly, and safety supervision module, which assesses the risk for hypoglycemia 
and attenuates or discontinues insulin delivery when necessary. The novel engineering concept of range correction 
module is that algorithm action is relative to a nominal open-loop strategy—a predefined combination of basal  
rate and boluses believed to be optimal under nominal conditions.

Results:
A proof of concept of the feasibility of our control-to-range strategy is illustrated by using a prototypal 
implementation tested in silico on patient use cases. These functional and architectural distinctions provide 
several advantages, including (i) significant insulin delivery corrections are only made if relevant risks are 
detected; (ii) drawbacks of integral action are avoided, e.g., undershoots with consequent hypoglycemic risks; 
(iii) a simple linear model is sufficient and complex algorithmic constraints are replaced by safety supervision;  
and (iv) the nominal profile provides straightforward individualization for each patient.

Conclusions:
We believe that the modular control-to-range system is the best approach to incremental development, 
regulatory approval, industrial deployment, and clinical acceptance of closed-loop control for diabetes.
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Introduction

People with type 1 or type 2 diabetes face a life‑long 
optimization problem: to maintain strict glycemic 
control without increasing their risk for hypoglycemia.1–3  
The engineering challenge related to this problem is to 
design algorithms using automated insulin delivery to 
exert optimal closed-loop control of glucose fluctuations. 
Since the early studies of continuous external glucose 
regulation (e.g., BioStator4), two primary approaches 
have emerged: the use of classic proportional-integral- 
derivative (PID) algorithms and modern methods based on 
predictive models of glucose metabolism. The first studies 
using subcutaneous insulin delivery and continuous 
glucose monitoring (CGM) employed PID control.5,6  
Model predictive control (MPC) has been receiving 
considerable attention7–10 due to its many clinical and 
engineering advantages. Following the logic of MPC, we 
argue that progress toward automated closed-loop control 
will be accelerated greatly by a structured modular 
approach to building artificial pancreas (AP) components. 
Specifically, we envision a system of control modules 
responsible for basal rate, premeal and correction insulin 
boluses, and hypoglycemia prevention. These modules 
will be informed by biosystem observers providing 
information about the patients’ glycemic state. A modular 
approach to closed-loop control development would have a 
number of advantages that include, but are not limited to:

Incremental testing of modules in parallel or 
consecutive studies

Incremental regulatory approval, industrial deployment, 
and clinical acceptance of system features

User flexibility—each system observer or control 
module could be used separately or within an 
integrated control system, depending on patients’ or 
physicians’ choice

The first step toward a modular artificial pancreas system is 
the development of control to range, defined as insulin 
treatment for diabetes, which

Optimizes glucose control to within a certain target 
glucose range through the avoidance of extreme 
glucose fluctuations, specifically via prevention 
of hypoglycemia and reduction of postprandial 
hyperglycemia

Is based on CGM and continuous subcutaneous 
insulin delivery via an infusion pump

•

•

•

•

•

Consequently, we propose an algorithm aiming to achieve 
control to range that is composed of two interacting 
modules:

Range correction module (RCM)

Safety supervisor module (SSM)

The emphasis is more on “what the algorithm does” 
rather than on “how the algorithm does it.” The main 
purpose is to define a modular architecture for control 
to range and give specifications for the design of its  
modules. Ideally, the proposed architecture will provide a 
framework within which several different algorithms may  
be integrated, provided that they comply with the “what 
to do” specifications: SSM and RCM may be implemented  
in different ways as long as the specifications are 
fulfilled.

To provide a proof of concept of the modular architecture, 
we then introduce a particular implementation of these 
modules within a hierarchical architecture of an AP 
system and illustrate their action via computer simulation  
of typical use cases run on our in silico system, which 
has been previously introduced and accepted by the 
Food and Drug Administration (FDA) as a platform 
for preclinical experiments with closed-loop control 
algorithms.11,12

Fundamental Principles of Control to 
Range

The basic principles of operation of the RCM and SSM are 
as follows:

Both modules receive blood glucose (BG) and insulin 
data in real time

The RCM assesses continuously the risk for incipient 
hyper- or hypoglycemic deviations from the predefined 
range and adjusts insulin delivery rate as appropriate

The SSM assesses continuously the risk for hypo-
glycemia and attenuates the insulin delivery rate 
when necessary [e.g., exerts braking action or employs 
insulin-on-board (IOB) constraints]

Both the RCM and the SSM permit and account for 
external insulin manipulation, e.g., basal rate, boluses,  
or pump shutoff initiated by the patient

•

•

•

•

•

•
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The control function of the real-time layer is the RCM  
informed by a nominal open-loop strategy (basal and 
premeal boluses), in which a discrete-time, likely 
individualized, model of glucose–insulin kinetics is used 
to compute an optimized correction of nominal open-
loop therapy.

The off-line layer of modular architecture serves to assess 
all available patient data to compute a patient-specific 
model of the glucose–insulin kinetics, a nominal open-
loop strategy (basal and premeal boluses), and control 
aggressiveness parameter value.

The SSM and the RCM are detailed later. It is important 
to note that, while in the proposed design these two 
modules work in cooperation, they can also be deployed 
individually or sequentially in commercial medical 
devices. We anticipate that modular design will be the 
key to future sequential regulatory approval, deployment, 
and clinical acceptance of automated control-to-range 
treatment of diabetes.

Safety Supervision Module
Safety supervision is a natural component of any  
(open- or closed-loop) external glucose control. In control-to-
range applications the SSM prevents hypoglycemia by 
modifying insulin delivery when a risk for hypoglycemia  
is detected. More generally, the SSM can act as a 
supervisor in any sensor-pump system.

The SSM is based on a combination of constraints using 
our established risk analysis of blood glucose data14 and 

The SSM has override authority over the actions of the 
RCM and over any external patient-initiated insulin 
delivery

Therefore, the control actions can be summarized as 
follows:

If the risk for hyper- or hypoglycemic deviations from 
the defined range is detected, based on CGM and 
delivered insulin, the RCM corrects insulin dosing 
accordingly

If the risk for hypoglycemia is detected based on a BG 
that is too low and/or excess IOB, the SSM reduces 
or discontinues insulin delivery (braking action or 
cessation)

Both modules suggest significant corrections to insulin 
delivery only if the relevant risks are detected.

The most likely control-to-range scenario would include 
action of both the RCM and the SSM. It is expected that 
over time the combined action of the RCM and the SSM 
will gradually improve the control of type 1 diabetes 
to within the desired range. This improvement could 
also be based on “learning” algorithms, such as run-to-run 
control (anticipated in future implementations of control  
to range).

Modular Design of Control to Range
The modular architecture of the proposed control-to-
range algorithm is shown in Figure 1 and involves  
decomposition of control, estimation, and signal management 
functions into multiple timescales. Algorithmic processes 
will run at three distinct timescales: (1) “continuous time,” 
defined by the fastest possible rate at which information 
can be provided by the system’s physical layer (e.g., AP 
hardware interface platform, such as the APS described 
later13); (2) “real time,” defined by the rate at which BG 
management control updates are computed (e.g., 15-minute 
samples); and (3) “off line,” referring to the fact that  
some data processing (patient individualization) will take 
place prior to but not during the patient’s time under 
closed-loop control. Each timescale defines a “layer” 
of the overall architecture within which the control, 
estimation, and signal management functions will run 
(Figure 1).

The control function of the continuous time layer is the 
SSM responsible for the prevention of hypoglycemia and 
comprising algorithms that decide whether to reduce 
or discontinue the insulin infusion recommendations  
from the real-time layer, based on continuous time data.

•

•

•

• Figure 1. Modular architecture of control to range. The real-time layer 
corresponds to the RCM, and the continuous time layer corresponds  
to the SSM.
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knowledge of active insulin, e.g., using IOB constraints15 
and “power brakes,16” making the best possible use 
of glucose and insulin data. Specifically, the signal 
management function of the continuous time layer is a 
data coordinator that serves to relay CGM and pump 
information to the estimation and control functions 
within the continuous time layer and also up to the 
real-time layer (Figure 1). The estimation function of the  
continuous time layer will receive frequent information 
about metabolic measurements (continuous glucose) and 
treatment (insulin injections) and will make internal 
calculations that assess the risk of hypoglycemia directly 
and/or indirectly. If the risk of hypoglycemia is high, the 
SSM intervenes by gradually reducing or discontinuing 
insulin delivery. Simulation experiments with a doubling 
insulin delivery rate show that power brakes alone 
prevent over 95% of otherwise imminent hypoglycemic 
episodes.16

Range Correction Module
The key concept of the RCM is the notion of a nominal 
open-loop profile. The nominal open-loop profile is a 
treatment strategy determined for each person off-line 
from patient records or observation, which is believed to 
be routine or typical for this individual. As described later, 
the RCM acts by introducing corrections to the nominal 
treatment strategy. This is a fundamental difference from 
typical control to target because no specific target glucose  
is pursued and control actions are limited to corrections  
of a predetermined nominal profile.

In terms of implementation within our modular architecture 
(Figure 1), each time step of the discrete time model 
embedded in the RCM will correspond to 15 minutes of 
real time. The estimation function of the real time layer 
is performed by a state update module, which maintains 
an internal representation of the patient’s state based on 
a patient model identified off-line. The signal management 
function of the real-time layer is performed by a filtering 
module, which accepts 1- or 5-minute samples from the 
continuous time layer and produces appropriate 15-minute 
inputs to the state update module (Figure 1).

With this understanding, and in order to better 
characterize the control-to-range action of the RCM, we 
contrast RCM to control to target.

Control to target calls for integral action (e.g., such 
as found in PID control5) and will take action (insulin 
correction) continuously as long as the glucose is not 
exactly equal to the target value. Moreover, constraints on 

injected insulin and glucose concentration should be  
explicitly taken into account in the optimization problem. 
Finally, in order to reach control to target, an unbiased 
CGM system is needed. In contrast, a control-to-range 
objective is easier to reach and thus a simpler algorithm  
is required. In particular,

The RCM only computes corrections with respect to 
the nominal open-loop strategy: in fact, the actual pump 
command is the algebraic sum of a fixed open-loop 
nominal strategy (basal and premeal boluses), known  
to the RCM, and closed-loop control corrections 
decided by the RCM.

No integral action is included.

A simple linear model is used.

Constraints are not considered explicitly but are 
replaced by the SSM, which may override the control 
actions suggested by the RCM whenever the risk for 
hypoglycemia is encountered.

The aggressiveness of control actions is individualized  
so as to optimize a control-to-range performance 
index, such as the control variability grid analysis,17,18 

which allows optimization with respect to a well-
defined glucose range by jointly minimizing the risks  
for hypo- and hyperglycemia.

Reference glucose range varies according to the 
nominal open-loop profile, with different limits for 
night time, postprandial periods, etc. This approach 
reduces the likelihood of control action when glucose 
readings are within range.

Physical Layer [Artificial Pancreas 
Software (APS)]
The APS provides a flexible tool to conduct clinical trials 
in a clinical research center setting without the need 
to deal directly with the communication protocols of 
sensors, pumps, and controllers, as well as unified data 
log and human machine interface. The software shall call 
the controller every control cycle and the APS database 
can be queried by both SSM and RTC layers. The APS  
has been accepted by the FDA for use in closed-loop 
investigational systems.13

A Proof of Concept: Use Cases
In this section, a proof of concept of the feasibility of our 
control-to-range specifications is given by a specific SSM 
and RCM implementation. According to the modular 

•

•

•

•

•

•
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paradigm, this is just one possible realization of the 
proposed architecture. Alternative algorithms for one  
or both the modules could be used, provided that they  
meet the aforementioned specifications.

The SSM is based on the computation of the low BG risk 
function proposed elsewhere14 given by

Risk(BG) = 22.765(max(0, –(log(BG)1.084 – 5.381)))2

In our SSM, the insulin suggested by the RCM is 
multiplied by 1/(1 + risk(BG)).

The RCM is based on the unconstrained linear model 
predictive control algorithm described elsewhere,19 where 
more details are available. Its main feature is that, 
knowing a well-tuned open-loop therapy (given by the 
ensemble of basal insulin and premeal boluses), the 
quadratic cost function penalizes the glycemia error 
with respect to the nominal glycemia associated with 
the open-loop therapy. In this way, RCM does not rely 
on a constant set point but on a time-varying profile.  
For instance, the unavoidable postmeal rise of glycemia 
is accounted for so that excessive insulin delivery is 
avoided as long as the glucose rise resembles the nominal 
one. Although this particular implementation of RCM 
and SSM cannot be shown to defend a priori boundaries,  
it is a practical strategy to maintain and possibly recover 
the desired glucose range in the face of uncertainties  
and disturbances�.

Note that in this implementation, the state update 
module is rather simple because the input–output nature 
of the considered MPC algorithm does not require a 
real observer but just a register of past input and output 
values�.

The proposed control-to-range strategy is illustrated 
by means of four in silico experiments conducted on 
a virtual patient.11,12 All experiments start at 10:00,  
with the patient at a basal glucose value (140 mg/dl).  
An open-loop therapy consisting of basal insulin delivery 
and premeal boluses, proportional to meal amounts,  
was optimized via trial-and-error experiments on the 
virtual patient. The four experiments are described here.

1. Open loop in nominal conditions (Figure 2). This 
experiment shows that in nominal conditions  
(e.g., nominal meals and nominal insulin sensitivity), a 
control-to-range objective may be achieved by means 
of a well-calibrated open-loop therapy. However, as 
highlighted by subsequent experiments, an entirely 

different picture arises when nominal conditions are 
perturbed.

2. Control to range vs open loop with perturbed meals  
(Figure 3). Closed-loop control starts at 13:00. Actual 
meals differ from nominal ones so that the open-
loop therapy is no longer optimal: the first two meals 
are greater than the nominal ones while the third is 
smaller and delayed by 30 minutes. In response to meal 
confirmation, RCM administers an appropriate insulin 
bolus based on nominal meal size according to the 
nominal open-loop profile (Figure 3; see the plot at 18:00). 
However, if an incipient hyperglycemic deviation is 
identified, as happens at 18:30, RCM increases the insulin 
delivery rate above the nominal open-loop basal level. 
Conversely, after identifying an incipient hypoglycemic 
deviation, as happens at 7:30, RCM attenuates the insulin 
delivery rate below the nominal basal level for open-loop 
control. On two occasions, at 1:00 and 8:00, hypoglycemia 
risk is detected and the SSM enforces attenuation of 
insulin delivery. Overall, control to range is more robust 
than open-loop therapy because it applies corrections in 
order to cope reactively with unexpected deviations from 
nominal profiles of glycemia, meals, and insulin.

3. Control to range vs open loop with nominal meals and 
perturbed insulin sensitivity (Figure 4). In this experiment, 
insulin sensitivity is 25% higher than the assumed 

Figure 2. Open-loop glycemic regulation in nominal conditions. 
Open-loop therapy consisting of basal insulin and premeal boluses 
proportional to meal amounts was optimized via trial-and-error 
experiments on the virtual patient. Regulation is satisfactory as it 
maintains glycemia within the range.
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conditions that are far from nominal, control to range 
proves more robust than open-loop therapy in preventing 
hypoglycemia.

Conclusions
Compared to traditional control-to-target algorithms, a 
control-to-range algorithm, made of the combination 
of SSM and RCM, is easily implementable on current 
commercial devices because there is no need for real-
time parameter estimation or iteration procedures. 
Individualization is accomplished easily via the nominal 
profile of each person and can be based on a few clinical 
parameters (as experimented successfully in silico19 and 
in vivo20,21) or on an informative screening visit. Model 
individualization via ARX modeling22,23 can be used as well. 
These properties greatly simplify implementation of the 
control actions and accelerate the path toward regulatory 
approval and clinical application.

We have to note that the output of a dynamic system 
with delays cannot be guaranteed to be maintained 
within a precise target range by applying control actions 

Figure 3. Control-to-range vs open-loop glycemic regulation under 
perturbed meals. Closed-loop control starts at 13:00. Actual meals 
(blue dots) differ from nominal ones so that the open-loop therapy  
is no more optimal. Then, the RCM applies corrections in order to achieve 
a faster recovery of glycemic regulation within the range. The first 
two meals are greater than nominal, leading to administration of 
additional insulin. Because the control to range relies on nominal 
open-loop therapy, after the first two meals the initial rise of glycemia is 
similar to that observed in open loop. However, the RCM reacts and 
gives supplementary insulin so that recovery of within-range glycemia 
is faster than in open loop. This faster recovery is less evident after the 
first meal because closed-loop regulation is initiated at 13:00, when 
the glycemic peak has already been reached. The second meal is  
entirely under closed-loop regulation, and recovery within the range 
is therefore faster. The third meal is smaller than the nominal one and 
is delayed by 30 minutes. To cope with this perturbation, the RCM 
decreases the insulin basal value temporarily. On two occasions, a  
risk for hypoglycemia is detected and the SSM enforces attenuation of 
insulin delivery (red line, bottom).

Figure 4. Control-to-range vs open-loop glycemic regulation under 
nominal meals and perturbed insulin sensitivity. Closed-loop control  
starts at 13:00. Insulin sensitivity is 25% higher than nominal; 
consequently the open loop fails to prevent hypoglycemia. RCM and 
SSM act to maintain glycemic regulation within the range. On three 
occasions, risks for hypoglycemia are detected and the SSM further 
enforces attenuation of insulin delivery (red line, bottom). Between 
20:00 and 22:30 insulin delivery is decreased compared to the nominal 
open-loop basal one. This explains the glucose peak around midnight 
and, as a consequence, the higher glucose profile during all night  
leading to the 125-mg/dl fasting glucose, even if nocturnal closed-loop 
insulin delivery does not differ from the open-loop basal.

nominal insulin sensitivity and, as a result, open-loop 
therapy fails to prevent hypoglycemia. Both RCM and SSM 
act to maintain glycemia within the range. On three 
occasions, at 14:00, 20:00, and 9:45, hypoglycemia risks 
are detected and the SSM enforces attenuation of insulin 
delivery. Again, control to range is more robust than 
open-loop therapy.

4. Control to range vs open loop with perturbed meals and 
perturbed insulin sensitivity (Figure 5). In this experiment 
the perturbations described in the two previous 
experiments occur simultaneously. Open-loop control 
cannot avoid a severe hypoglycemic episode after the 
third meal. However, joint action of the RCM and 
SSM achieves a more effective glycemic regulation. In  
particular, on three occasions the SSM prevents possible 
hypoglycemia. In this difficult experiment under 
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