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Abstract

The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-
dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which
contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients
are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical
regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1,
a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin
transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins.
Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1D cells, indicating that
Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF
transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through
several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient
modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient
availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in
vertebrates.
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Introduction

Entry into the cell cycle is initiated by G1 cyclins, which bind

and activate cyclin-dependent kinases [1]. There are two cyclin-

dependent kinases in budding yeast that function during G1,

called Cdk1 and Pho85, which are activated by numerous

different G1 cyclins [1]. Cdk1 is activated by the cyclins Cln1,

Cln2, and Cln3, while Pho85 is activated by Pcl1 and Pcl2, as

well as by additional cyclins that do not appear to directly regulate

G1 events. The G1 cyclins are redundant: cells lacking any two of

the cyclins Cln1, Cln2 or Cln3 are viable, but loss of all three

cyclins is lethal [2,3]. Similarly, cells lacking Cln1 and Cln2 or

Pcl1 and Pcl2 are viable, but loss of all four cyclins is lethal [4,5].

The cyclin Cln3 plays a role in triggering transcription of a suite of

genes required for initiation of G1 events, including the genes for

Cln1, Cln2, and Pcl1, which are often referred to as late G1

cyclins [5–9]. Transcription of the late G1 cyclins is generally

considered to be the key molecular event that marks entry into the

cell cycle [10,11]. The late G1 cyclins initiate growth of a new

daughter bud and are also required for polar growth after bud

emergence [4,12].

Production of late G1 cyclins is tightly regulated. Cyclin mRNA

and protein undergo rapid turnover, so mechanisms that act at the

level of transcription play an important role [13–15]. Transcrip-

tion of G1-specific genes, including the late G1 cyclin genes, is

dependent upon the SBF and MBF transcription factors. SBF and

MBF each include a distinct DNA binding subunit, called Swi4

and Mbp1, respectively, and a shared subunit called Swi6. SBF

and MBF are kept inactive early in the cell cycle by a repressor

called Whi5 [16,17]. Loss of Whi5 causes transcription of late G1

cyclins to occur before the mother cell has completed growth,

leading to premature bud emergence and a reduced cell size.

Cdk1/Cln3 triggers transcription of late G1 cyclins by phosphor-

ylating and inactivating Whi5. Transcription of late G1 cyclins can

also be triggered by a redundant Cln3-independent pathway that

is dependent upon the Bck2 protein [18–21]. The late G1 cyclin

Cln2 promotes its own transcription via a positive feedback loop,

which ensures that initiation of G1 events occurs in a coordinated,

switch-like manner [6,7,22].

Mechanisms that control G1 cyclin transcription play an

important role in control of cell size. A cell size checkpoint links

initiation of G1 cyclin transcription to cell size. Thus, transcription

of late G1 cyclins is only initiated when the mother cell has

reached a critical size, which contributes to cell size homeostasis.

An interesting property of cell size control in yeast is that the

critical cell size is modulated by external nutrients, such that cells

growing in poor nutrients are significantly smaller than cells

growing in rich nutrients [23,24]. It is thought that nutrients

modulate cell size by rapidly changing the critical cell size for

initiation of G1 cyclin transcription [11].
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The mechanisms that link initiation of G1 cyclin transcription to

cell size and nutrient availability are unknown. Interestingly, cln3D
bck2D whi5D triple mutants, which lack all upstream regulators

known to play an important role in the control of G1 cyclin

transcription, undergo normal nutrient modulation of cell size

[25]. Thus, the signals that control cell size by linking G1 cyclin

transcription to nutrient availability must act by a different

mechanism. The mechanisms that link G1 cyclin transcription to

cell size and nutrient availability are likely to be a key to

understanding cell size control.

Here, we report that a specific form of protein phosphatase 2A

(PP2A) is required for control of G1 cyclin transcription and

nutrient modulation of cell size. PP2A is a trimeric complex that

consists of a catalytic ‘‘C’’ subunit, a scaffolding ‘‘A’’ subunit, and

a regulatory ‘‘B’’ subunit [26]. Binding of different B-type

regulatory subunits is thought to direct PP2A activity toward

different substrates. Thus, the key to understanding PP2A is to

understand the function and regulation of specific regulatory

subunits. In budding yeast, two B subunits called Cdc55 and Rts1

bind to PP2A in a mutually exclusive manner, forming two distinct

PP2A complexes: PP2ACdc55 and PP2ARts1 [27,28].

We discovered a role for Rts1 in controlling G1 cyclin levels

while characterizing a genetic interaction between RTS1 and the

septin CDC12. The septins are a conserved family of proteins that

localize to the site of bud emergence in early G1 and to the bud

neck during bud growth and cytokinesis [29]. The septins have

been proposed to form a diffusion barrier between the mother and

daughter cell, to serve as a signaling scaffold for activation of

kinases, or to carry out functions in the secretory pathway.

Temperature sensitive alleles of the septins cause cells to undergo a

prolonged delay at G2/M while undergoing continuous polarized

growth, leading to the formation of highly elongated cells [30].

The G2/M arrest is mediated by Swe1, the budding yeast Wee1

homolog, which phosphorylates and inhibits Cdk1 to delay entry

into mitosis [31]. The G2/M delay and the elongated cell

phenotype are eliminated by swe1D. A number of kinases have

been identified that regulate septin function and localization, and

may in turn be regulated by the septins [31–36]. These kinases

include Elm1, Gin4, Cla4, and Hsl1. Loss of these kinases can

cause a Swe1-dependent G2/M delay and an elongated cell

phenotype similar to septin mutants.

Previous work found that rts1D increased the restrictive

temperature of the cdc12-6 allele [37]. Loss of RTS1 also caused

altered septin ring dynamics; however, it remained unclear

whether the observed changes in septin ring dynamics were

sufficient to explain the rescue of the cdc12-6 temperature sensitive

phenotype. For example, it was possible that in addition to

regulating septin ring dynamics, Rts1 played additional roles in

pathways that promote polar growth or Swe1-dependent G2/M

delays. We therefore further investigated the role of Rts1 in polar

cell growth and cell cycle progression.

Results

Loss of the PP2A regulatory subunit Rts1 reduces polar
growth caused by loss of septin function

Since rts1D suppressed the temperature sensitivity of cdc12-6, we

tested whether rts1D also suppressed the elongated cell phenotype of

these cells. We found that rts1D cdc12-6 cells showed reduced

elongation compared with cdc12-6 cells when shifted to 30uC
(Figure 1A). In addition, rts1D significantly reduced the elongated

cell phenotype caused by loss of GIN4, ELM1, and CLA4 (Figure 1B).

We next considered the possibility that rts1D rescued the

elongated cell phenotype of these mutants by eliminating the

Swe1-dependent G2/M delay. To test this, levels of the mitotic

cyclin Clb2 were assayed by Western blotting during a synchronized

cell cycle in wild type, elm1D, and elm1D rts1D cells (Figure 1C). As

previously shown, elm1D cells underwent a prolonged G2/M delay

with elevated Clb2 levels when compared to wild type cells [35].

The prolonged G2/M delay was not eliminated by rts1D. Thus,

although rts1D reduced the elongated cell phenotype caused by loss

of CDC12, GIN4, CLA4, and ELM1, it did not appear to do so by

reducing the Swe1-dependent G2/M delay.

Rts1 is required for the timely initiation and normal rate
of polar cell growth

Since rts1D did not rescue the G2/M delay in elm1D cells, we

considered the possibility that Rts1 plays a direct role in promoting

polar growth. To test this, we utilized cells that over express SWE1

from the GAL1 promoter, which arrest at G2/M with high levels of

G1 cyclins and undergo constitutive polar growth [12,38]. Wild

type or rts1D cells carrying GAL1-SWE1 were released from a G1

arrest in the presence of galactose to induce expression of SWE1.

We then measured bud lengths at time intervals after induction of

GAL1-SWE1 to determine the rate of polar bud growth. We found

that polar bud growth in GAL1-SWE1 rts1D cells occurred at a

slower rate than GAL1-SWE1 control cells (Figure 2A and 2B).

Controls showed that wild type and rts1D cells expressed similar

levels of Swe1 protein (Figure 2C). Similar results were also

obtained by measuring rates of bud elongation after induction of

GAL1-SWE1 in log phase populations of cells (not shown).

We next determined whether Rts1 plays a role in initiation of polar

bud growth. To do this, we assayed initiation of bud growth in

synchronized populations of wild type and rts1D cells. Cells were

released from an early G1 arrest and the timing of bud emergence

was determined (Figure 2D). Cells lacking Rts1 showed a delay in bud

emergence of 22 minutes 6 0.15 minutes compared with wild type

cells. Together, these results demonstrate that Rts1 is required for

both the timely initiation and the normal rate of polar bud growth.

Cells lacking Rts1 are sensitive to the dosage of G1
cyclins

Since G1 cyclins are required for initiation and maintenance of

polar bud growth, it seemed likely that Rts1 is required for

Author Summary

A critical point in the cell cycle occurs in G1 phase, when
cells must decide whether to enter a new round of cell
division. At this time, cells assess nutrient availability to
ensure that they have sufficient resources to complete cell
growth and division. Vertebrate cells also assess growth
factors that control cell growth and determine when and
where cell division occurs in the context of a multi-cellular
organism. A cell-size checkpoint acts during G1 to delay
entry into the cell cycle if the cell is below a critical size.
When the appropriate signals have been received, cells
commit to entry into the cell cycle by initiating transcrip-
tion of G1 cyclins. The mechanisms that integrate external
signals, cell growth, cell size, and entry into the cell cycle
are poorly understood and represent a fundamental
unsolved problem in cell biology. We discovered that a
specific form of protein phosphatase 2A (PP2ARts1)
functions in the pathways that integrate nutrient avail-
ability, cell size, and entry into the cell cycle. PP2ARts1 is
highly conserved and may therefore carry out similar
functions in all eukaryotic cells.

Control of G1 Cyclin Levels by PP2ARts1
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Figure 1. Loss of Rts1 causes reduced polar growth. (A) rts1D reduces the polar growth caused by inactivation of septins. Cells of the indicated
genotypes were grown overnight to log phase at room temperature and then shifted to 30uC for 4 hours. (B) rts1D reduces the polar growth caused
by inactivation of kinases that regulate the septins. Cells of the indicated genotypes were grown to log phase. The gin4D and gin4D rts1D cells were
grown at room temperature, while the others were grown at 30uC. (C) rts1D does not eliminate the G2/M delay caused by elm1D. Wild type, elm1D,
and elm1D rts1D cells were released from an a factor arrest at 30uC. Samples were collected at 10 minute intervals and levels of the mitotic cyclin Clb2
were detected by Western blotting.
doi:10.1371/journal.pgen.1000727.g001

Control of G1 Cyclin Levels by PP2ARts1
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Figure 2. Loss of Rts1 causes a reduced rate of polar bud growth. (A) rts1D reduces polar growth induced by expression of SWE1 from the
GAL1 promoter. Cells were grown to log phase in YEP media containing 2% glycerol/ethanol and then arrested in G1 with a factor. The synchronized
cells were released into galactose-containing media at 30uC to induce SWE1 expression, and images of cells were obtained at 30 minute intervals. The
time indicates the number of hours after release of a factor-arrested cells into galactose. (B) rts1D reduces the rate of polar growth in cells that over
express SWE1. Polar growth was measured and plotted as a function of time for the experiment shown in (A). The extent of polar bud growth was
measured as the ratio of the length of the bud to the width of the bud measured at the widest point. The average ratio and standard deviation were
plotted for each time point. (C) Western blots showing equal expression of Swe1 protein in wild type and rts1D cells from the experiment shown in
(A). A Nap1 Western blot was included as a loading control. (D) rts1D causes a delay in bud emergence. Wild-type and rts1D cells were released from
an a factor arrest at 30uC and the percentage of budded cells was determined at 10 minute intervals. Error bars indicate standard deviation for 3
independent experiments.
doi:10.1371/journal.pgen.1000727.g002

Control of G1 Cyclin Levels by PP2ARts1
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functions mediated by G1 cyclins. To test this, we determined

whether rts1D showed genetic interactions with the G1 cyclins. We

found that cln2D significantly reduced the rate of proliferation of

rts1D cells (Figure 3A). Moreover, we failed to recover rts1D cln1D
cln2D spores when rts1D was crossed to a cln1D cln2D strain, which

suggested that rts1D is synthetically lethal with cln1D cln2D. To

further test this, we created a GAL1-CLN2 cln1D rts1D strain, in

which the expression of CLN2 could be repressed by switching

from galactose-containing media to dextrose-containing media.

This strain grew well on galactose, but was inviable on dextrose,

which confirmed that rts1D is lethal in cln1D cln2D cells (Figure 3B).

To characterize the defects caused by loss of Rts1, Cln1, and Cln2,

we turned off CLN2 expression in the GAL1-CLN2 cln1D rts1D cells

by shifting the cells to media containing dextrose for 8 hours

(Figure 3C). The GAL1-CLN2 cln1D rts1D cells arrested primarily

as large, unbudded cells with a small percentage of budded cells

Figure 3. rts1D cells are sensitive to levels of the G1 cyclins CLN1 and CLN2. (A) cln2D causes slow growth in rts1D cells. A series of 10-fold
dilutions of cells of the indicated genotypes were grown at 30uC, 34uC, and 37uC. (B) Loss of CLN1 and CLN2 is lethal in rts1D cells. Cells of the
indicated genotypes were grown at room temperature for three days at 25uC on YEP media containing galactose or dextrose. (C) Loss of CLN1 and
CLN2 in rts1D cells causes increased cell size and an arrest with predominantly unbudded cells. Images of cells of the indicated genotypes were taken
8 hours after expression of CLN2 was repressed by washing cells out of galactose-containing media into dextrose-containing media at 30uC.
doi:10.1371/journal.pgen.1000727.g003

Control of G1 Cyclin Levels by PP2ARts1
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(6.5%). Control cells carrying rts1D or cln1D GAL1-CLN2 had 35%

and 15% budded cells respectively. The GAL1-CLN2 cln1D rts1D
cells also became abnormally large, which is commonly observed

in cells that fail to undergo bud emergence (Figure 3C) [39,40].

We next tested whether rts1D showed a genetic interaction with

cln3D. When rts1D cells were crossed to cln3D cells, a small

proportion of the expected progeny was recovered (2/80 spores

were recovered rather than the predicted 20/80), while the other

progeny segregated according to the expected Mendelian ratios

(rts1D: 21/80, cln3D: 20/80, wild type: 18/80). The few recovered

rts1D cln3D cells formed colonies at the same rate as rts1D cells, but

their low rate of recovery from the cross suggested that they could

contain suppressor mutations. To analyze the viability of cells

lacking RTS1 and CLN3 in a context unlikely to select for

suppression, we utilized a GAL1-CLN3 rts1D strain. When switched

to dextrose-containing medium we found that GAL1-CLN3 rts1D
cells were viable, although they formed colonies at a slightly slower

rate than rts1D cells (not shown).

It was previously reported that rts1D is synthetically lethal with

the cyclin-dependent kinase Pho85 in the S288C strain back-

ground [41]. We were able to isolate a few rts1D pho85D spores in

the W303 strain background, although they were poorly viable

and grew significantly slower than either rts1D or pho85D cells

(Figure 4A). We were also able to recover pcl1D pcl2D rts1D cells

from crosses. These grew more slowly than rts1D cells but were

more robust than pho85D rts1D cells (Figure 4B). Thus, the poor

viability of pho85D rts1D cells is not strictly due to lack of Pho85

activity associated with the Pcl1/2 cyclins, and may indicate that

additional Pho85/Pcl complexes are important for normal growth

in rts1D strains. In contrast to cells lacking CLN1, CLN2 and RTS1,

the pcl1D pcl2D rts1D cells did not show severe defects in bud

formation, although they did become larger than the rts1D or

pcl1D pcl2D cells. (Figure 4C).

In summary, rts1D showed genetic interactions with multiple G1

cyclins and cyclin-dependent kinases. Because the late G1 cyclins

show extensive redundancy, mutations that cause reduced

function of G1 cyclins should show synthetic interactions with

mutations that cause a further reduction in cyclin levels. The fact

that rts1D showed lethality when combined with cln1D cln2D, and

reduced viability when combined with pcl1D pcl2D, suggests that

Rts1 is required for the normal function of both pairs of cyclins,

rather than mediating the functions of specific cyclins. The fact

that rts1D also showed genetic interactions with cln3D, which is

upstream of the late G1 cyclins, indicates that Rts1 does not act

solely in a Cln3-dependent pathway that promotes transcription of

the late G1 cyclins.

Rts1 is required for normal accumulation of the G1
cyclins

We next determined whether accumulation of the G1 cyclin

Cln2 occurred normally in synchronized rts1D cells. For these

experiments, we utilized a 3XHA-tagged version of CLN2

expressed from the CLN2 promoter and quantitative Western

blotting to assay Cln2 protein levels. These experiments revealed

that the peak of Cln2 accumulation was delayed by 10–15 minutes

in rts1D cells and that Cln2 failed to reach normal levels (Figure 5A

and 5C). The effects of rts1D on Cln2 accumulation were more

severe at 34uC and 37uC (Figure 5D). Accumulation of the mitotic

cyclin Clb2 was correspondingly delayed and cells appeared to

delay in G2/M, as revealed by sustained levels of Clb2 relative to

the wild type control (Figure 5A).

Since the cells used in these experiments were synchronized

with mating pheromone, it was possible that the delayed

accumulation of Cln2 was due to delayed release from mating

pheromone arrest. To determine whether rts1D cells underwent

normal release from mating pheromone arrest, we assayed the

phosphorylation state of Cdc24, which is the guanine nucleotide

exchange factor for Cdc42 [42]. In previous work, it was found

that Cdc24 becomes hyperphosphorylated during mating phero-

mone arrest and undergoes dephosphorylation upon release from

the arrest [12,43]. Cdc24 then undergoes hyperphosphorylation

during G1 that is dependent upon the Cla4 kinase and Cdk1

[12,43,44]. We found that Cdc24 underwent normal dephosphor-

ylation in rts1D cells after release from mating pheromone arrest,

which suggested that rts1D does not cause delayed release from

mating pheromone arrest (Figure S1A). Cdc24 showed delayed

phosphorylation in rts1D cells, consistent with delayed initiation of

G1 events.

To further rule out the possibility that the G1 delay was due to

mating pheromone-induced arrest, we used an alternative method

for cell synchronization. Cells can be arrested in mitosis by

depletion of Cdc20, which is required for proteolytic destruction of

the mitotic cyclins [45–47]. CDC20 was placed under the control

of the GAL1 promoter in wild type and rts1D cells. Synchronization

in metaphase was achieved by shifting cells to media lacking

galactose for 4 hours, followed by releasing cells into galactose-

containing media to initiate synchronous exit from mitosis. Cells

lacking Rts1 showed a 30–40 minute delay in Cln2 accumulation

and reduced Cln2 levels under these conditions (Figure 5B).

We also tested whether the effects of rts1D on Cln2

accumulation were dependent upon the strain background.

Several commonly used laboratory yeast strains contain different

alleles of the SSD1 gene, which can cause significant differences in

phenotypes [48]. However, we found that rts1D caused similar

defects in Cln2 accumulation in both the W303 (ssd1-d2) strain

background and the S288C (SSD1-v1) strain background (Figure 5

and Figure S1B, respectively).

Our finding that Cln2 accumulation was delayed and reduced

in rts1D cells suggested an explanation for the reduced polar

growth caused by rts1D in mutants that undergo excessive polar

growth (Figure 1A and 1B and Figure 2A). We hypothesized that

rts1D leads to reduced and delayed Cln2 accumulation in these

cells, thereby causing reduced polar growth. We tested this directly

by assaying Cln2 accumulation in synchronized gin4D and rts1D
gin4D cells. As expected, rts1D caused reduced and delayed

accumulation of Cln2, and a corresponding delay in Clb2

accumulation (Figure S2).

We next tested whether rts1D affected levels of CLN2 mRNA or

mRNAs encoding additional G1 cyclins. Northern blotting

revealed that accumulation of CLN2, CLN1 and PCL1 mRNA

was reduced and delayed in rts1D cells (Figure 5E and 5F and

Figure S1C). Transcription of the late G1 cyclins is controlled by

the SBF transcription factor. To test whether rts1D caused delayed

transcription of MBF targets as well, we assayed RNR1 mRNA

expression. RNR1 mRNA accumulation was reduced and delayed

to a similar extent as CLN2 mRNA in rts1D cells (Figure 5G and

5H). Together these results show rts1D causes reduced and delayed

accumulation of both SBF and MBF-regulated transcripts.

Expression of CLN2 from a heterologous promoter
rescues the delayed bud emergence of rts1D cells

Since rts1D caused reduced and delayed transcription of G1

cyclins, the delayed bud emergence observed in rts1D cells could

be due solely to a role for Rts1 in promoting G1 cyclin

transcription. Alternatively, Rts1 could play diverse roles in

regulating events required for bud emergence. To distinguish

these possibilities, we tested whether expression of CLN2 from the

GAL1 promoter could rescue the delayed bud emergence of rts1D

Control of G1 Cyclin Levels by PP2ARts1
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cells. Wild type and rts1D cells carrying GAL1-CLN2 or an empty

vector were released from a G1 arrest under conditions that

induce expression of CLN2, and the timing of bud emergence was

assayed. We found that expression of CLN2 from the GAL1

promoter dramatically advanced the timing of bud emergence in

rts1D cells, providing nearly complete rescue of the delay in bud

Figure 4. rts1D causes a reduced rate of proliferation in pho85D and pcl1D pcl2D cells. (A) pho85D causes slow growth in rts1D cells. A series
of 10-fold dilutions of cells of the indicated genotypes were grown at 30uC, 34uC, and 37uC. (B) pcl1D pcl2D causes slow growth in rts1D cells. A series
of 10-fold dilutions of cells of the indicated genotypes were grown at 30uC, 34uC, and 37uC. (C) rts1D pcl1D pcl2D cells are abnormally large. Cells of
the indicated genotypes were grown overnight to log phase at 25uC.
doi:10.1371/journal.pgen.1000727.g004

Control of G1 Cyclin Levels by PP2ARts1
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Figure 5. G1 events are delayed in rts1D cells. (A) Wild-type and rts1D cells were released from an a factor arrest into pre-warmed media at 30uC.
Levels of Cln2-3XHA and Clb2 were monitored by Western blotting. (B) GAL1-CDC20 and GAL1-CDC20 rts1D cells were arrested in metaphase by
depletion of Cdc20 in raffinose media for 4 hours. Cells were released by addition of galactose. Levels of Cln2-3XHA were monitored by Western
blotting. (C) Accumulation of Cln2 protein is delayed and reduced during a synchronized cell cycle in rts1D cells. Cln2-3XHA protein levels were
quantified during a synchronized cell cycle at 30uC. Error bars indicate the standard error of the mean for 3 independent experiments. (D)
Accumulation of Cln2 protein is delayed and reduced during a synchronized cell cycle in rts1D cells. Cln2-3XHA protein levels were quantified during
a synchronized cell cycle at 34uC. Error bars indicate the standard error of the mean for 3 independent experiments. (E,F) Accumulation of the CLN2
mRNA is reduced and delayed during a synchronized cell cycle in rts1D cells. Wild-type and rts1D cells were released from an a factor arrest into pre-
warmed media at 30uC and samples were collected at 10 minute intervals during the cell cycle. (E) shows levels of CLN2 mRNA detected by Northern
blotting. (F) shows quantification of CLN2 mRNA normalized to an ACT1 loading control. Error bars indicate the standard error of the mean for 3
independent experiments. (G,H) Accumulation of the RNR1 mRNA is reduced and delayed during a synchronized cell cycle in rts1D cells. Wild type
and rts1D cells were released from an a factor arrest into pre-warmed media at 30uC and samples were collected at 10 minute intervals during the cell
cycle. (G) shows levels of RNR1 mRNA detected by Northern blotting. (H) shows quantification of RNR1 mRNA normalized to an ACT1 loading control.
Error bars indicate the standard error of the mean for 3 independent experiments.
doi:10.1371/journal.pgen.1000727.g005

Control of G1 Cyclin Levels by PP2ARts1
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emergence (Figure 6). This observation, combined with our

previous observations, established that Rts1 functions in mecha-

nisms directly involved in controlling transcription of the G1

cyclins. Expression of GAL1-CLN2 did not rescue the temperature

sensitivity of rts1D cells, which indicated that the temperature

sensitivity of rts1D cells must be due, at least in part, to additional

functions of Rts1 (not shown).

Rts1 does not regulate the turnover of Cln2 protein
Recent work found that Cln2 acts in a positive feedback loop to

stimulate its own transcription [22]. Thus, the delay in

accumulation of CLN2 mRNA could be due to a failure in

mechanisms required for normal accumulation of the Cln2

protein, which would disrupt the feedback loop. Overexpression

of CLN2 from the GAL1 promoter might be expected to rescue this

kind of defect. Therefore, we tested whether Rts1 functions in

several mechanisms known to regulate accumulation of CLN2

protein.

Cln2 is a highly unstable protein and proteolysis plays an

important role in regulation of Cln2 protein levels. Proteolysis of

Cln2 is controlled by the SCF ubiquitin ligase complex, which

recognizes phosphorylated sites at the C-terminus of Cln2 and

targets Cln2 for destruction [13,49]. Cdc34 is the E2 ubiquitin

conjugating enzyme component of the SCF complex. We

hypothesized that the reduced Cln2 protein levels observed in

rts1D cells could be caused by increased SCF-dependent

proteolysis of Cln2 protein. Reduced protein levels, in turn, would

disrupt the positive feedback loop that promotes CLN2 transcrip-

tion, thereby causing reduced and delayed transcription of CLN2

mRNA. To test this possibility, we created an rts1D strain that also

contained a temperature sensitive allele of CDC34 (cdc34-2). Cells

were released from a synchronized G1 arrest into 37uC media, and

Cln2 protein expression was followed by Western blotting

(Figure 7A). As previously reported, inactivation of Cdc34 in the

control cells caused stabilization of Cln2 and a dramatic increase

in Cln2 protein levels [13]. In the cdc34-2 rts1D cells, Cln2 protein

levels were still reduced and did not accumulate to the high levels

observed in cdc34-2 cells. This showed that the failure of rts1D cells

to accumulate normal levels of Cln2 is due to a failure to produce

Cln2, rather than to increased SCF-dependent destruction of

Cln2.

We also considered the possibility that Rts1 regulates Cln2

stability via SCF-independent mechanisms. The Cln2 protein has

a short half-life of 8–10 minutes [13,49]. To determine whether

rts1D decreased the half-life of the Cln2 protein, we expressed a

burst of CLN2 from the GAL1 promoter and then measured the

rate of destruction of Cln2 protein after shutting off the promoter.

In wild type control cells, the half-life of Cln2 was 9.662.0 min-

utes, similar to previous reports. In rts1D cells, the half-life of Cln2

was 10.862.4 minutes, which showed that there is not a

significant decrease in the stability of Cln2 protein (Figure 7B).

Rts1 does not act in a Whi5-dependent pathway
To further define the function of Rts1, we tested whether it acts

in pathways known to control G1 cyclin transcription. The Whi5

transcriptional repressor delays G1 progression by inhibiting

transcription of G1 cyclins. Whi5 acts by binding and inhibiting

the SBF and MBF transcription factors, which are required for

transcription of the G1 cyclins [16,17]. The Cdk1/Cln3 complex

relieves this inhibition by phosphorylating Whi5, which triggers

export of Whi5 from the nucleus. Thus, it was possible that Rts1

played a role in the inactivation of Whi5. If this were true, whi5D
should rescue the delayed expression of Cln2 observed in rts1D
cells. However, we found that bud emergence and accumulation of

Cln2 protein were still delayed in rts1D whi5D cells compared to

whi5D cells (Figure 8A, and data not shown). In addition, whi5D
did not rescue the temperature sensitivity of rts1D cells (Figure 8B).

Loss of Whi5 advanced the production of Cln2 protein in rts1D
cells, although not to the same extent observed in whi5D cells,

which indicated that Whi5-dependent regulation of transcription

occurs normally in rts1D cells. Thus, the delayed Cln2 expression

in rts1D cells is not due to a failure to inactivate Whi5.

Rts1 does not function solely in a Bck2-dependent
pathway

Bck2 acts in a redundant pathway that works in parallel to Cln3

to promote transcription of G1 cyclins [18–20]. To test whether

Rts1 acts in this Bck2-dependent pathway, we crossed rts1D to

bck2D to create rts1D bck2D cells. If Rts1 functioned solely in the

Bck2-dependent pathway, we expected to see no additive

phenotypic effects in the double mutant.

Figure 6. Expression of CLN2 from a heterologous promoter rescues the delayed bud emergence of rts1D cells. Wild-type and rts1D
cells carrying GAL1-CLN2 or an empty vector were released from an a factor arrest at 30uC and the percentage of budded cells was determined at
10 minute intervals. Over 200 cells were counted for each time point. Error bars indicate the standard error of the mean for 3 independent
experiments.
doi:10.1371/journal.pgen.1000727.g006
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All of the expected rts1D bck2D progeny were recovered from

the cross. We found that bck2D increased the temperature

sensitivity of rts1D (Figure 9A). To test whether deletion of Bck2

altered the timing of G1 events in rts1D cells, we compared the

timing of bud emergence and Cln2 accumulation in wild type,

rts1D, bck2D, and rts1D bck2D cells. Cells lacking BCK2 delayed bud

emergence to a similar extent as rts1D cells. Bud emergence was

severely delayed in rts1D bck2D cells when compared to either

single mutant, and a subset of cells failed to bud by 2 hours after

release from G1 arrest (Figure 9B). Cln2 accumulation peaked

later in rts1D bck2D cells than in rts1D or bck2D cells, and

accumulated to lower levels (not shown). These observations are

consistent with previous reports that CLN2 mRNA is reduced in

bck2D cells [18,19]. When tested at 34uC, we saw results that were

similar, although more severe (not shown). We examined the

phenotype of rts1D bck2D cells in log phase cultures that were

grown at room temperature, and found that rts1D bck2D cells

appeared much larger than either rts1D or bck2D cells (Figure 9C).

The strong additive effects of rts1D and bck2D rule out the

possibility that Rts1 functions solely in the Bck2-dependent

pathway that controls G1 cyclin transcription, although it remains

possible that Rts1 contributes to both Bck2-dependent and

independent pathways.

Rts1 may regulate the Swi6 component of SBF and MBF
We next determined whether we could detect a role for Rts1 in

regulating SBF or MBF. The components of SBF and MBF are

Swi6, Swi4 and Mbp1. The Stb1 protein also associates with SBF

and MBF and regulates their activity [50]. We therefore generated

3XHA-tagged versions of these proteins and determined whether

they showed Rts1-dependent changes in modification state or

protein levels. Stb1-3XHA and Swi6-3XHA showed multiple

forms on Western blots due to phosphorylation, as previously

reported [50–52]. Loss of Rts1 caused no detectable changes in the

levels of Stb1 modification during a synchronized cell cycle (not

shown). In contrast, Swi6-3XHA showed reduced phosphorylation

in rts1D cells at 20 to 30 minutes after release from a mating

pheromone arrest (Figure 10A). Notably, the defect in Swi6

phosphorylation occurred at the time that cells would normally be

initiating G1 cyclin transcription. We detected no changes in the

Figure 7. The half-life of Cln2 is not reduced in rts1D cells. (A)
Inactivation of the SCF E3 ubiquitin ligase does not cause increased
Cln2 protein levels in rts1D cells. Cells of the indicated genotypes were
released from an a factor arrest into pre-warmed media at 37uC. Levels
of Cln2-3XHA protein were monitored by Western blotting. (B) rts1D
does not decrease the half-life of the Cln2 protein. GAL1-3XHA-CLN2 and
GAL1-3XHA-CLN2 rts1D cells were grown overnight at room tempera-
ture in YEP media containing 2% glycerol/ethanol. A burst of CLN2
transcription was triggered by washing the cells into YEP +2% galactose
for 1 hour. At time = 0, CLN2 transcription was turned off by washing
cells into YEPD media. Samples were collected at t = 0, 5, 10, 15, 20, 30,
45, 60, and 120 minutes, and quantitative Western blotting was used to
determine Cln2 levels. The half-life of Cln2 protein was calculated using
a standard curve fitted for one phase exponential decay. The half-life of
Cln2 was 9.662.0 minutes in wild type cells and 10.862.4 minutes in
rts1D cells (n = 3).
doi:10.1371/journal.pgen.1000727.g007

Figure 8. Rts1 acts by a Whi5-independent mechanism. (A) rts1D
causes a G1 delay in whi5D cells. Cells of the indicated genotypes were
released from an a factor arrest into pre-warmed media at 34uC and
samples were collected at 10 minute intervals. Levels of Cln2-3XHA
were assayed by Western blotting. (B) whi5D does not rescue the
temperature sensitivity of rts1D. A series of 10-fold dilutions of cells of
the indicated genotypes were grown at 30uC and 37uC.
doi:10.1371/journal.pgen.1000727.g008
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protein levels of Swi4 or Mbp1 in rts1D cells during the cell cycle.

Swi4 and Mbp1 both migrated as a single band, so electrophoretic

mobility shifts could not be used to assay their modification states.

We also tested for genetic interactions between rts1D and swi6D,

swi4D or mbp1D. Previous studies found that swi6D is recovered

poorly from genetic crosses (27% of expected swi6D progeny are

recovered) [53]. We obtained similar results, and were unable to

obtain swi6D rts1D progeny, suggesting that swi6D is synthetically

lethal with rts1D. We found that mbp1D rts1D cells grew more

poorly than either single mutant (Figure 10B). We detected no

genetic interaction with swi4D (Figure 10C). The synthetic lethal

interaction with swi6D must be treated with caution because swi6D
shows synthetic lethality with a surprisingly broad range of genes,

including genes that do not appear to have G1-specific functions

(BioGRID database). Thus, the synthetic lethality may be due to

functions of Rts1 that are not related to G1 functions.

Rts1 is required for nutrient modulation of cell size
Our analysis of the role of Rts1 in control of G1 cyclins

suggested that Rts1 does not function solely in the known critical

pathways for control of G1 cyclin transcription that work through

Cln3, Whi5, or Bck2. This was an intriguing discovery, because

previous work found that the mechanisms responsible for nutrient

modulation of cell size do not control G1 cyclin transcription via

Cln3, Whi5 or Bck2 [11,25]. We therefore hypothesized that Rts1

controls G1 cyclin transcription in a distinct pathway that

mediates nutrient modulation of cell size. To test this, we

determined whether Rts1 is required for nutrient modulation of

cell size. We grew wild type and rts1D cells in rich or poor carbon

sources and measured cell size with a Coulter counter. We found

that Rts1 is required for nutrient modulation of size (Figure 11A).

The slight shift in size observed for rts1D cells shifted to poor

carbon sources is similar to the slight shift observed for sch9D and

sfp1D, which have also been found to be required for nutrient

modulation of cell size [25]. Since rts1D cells are abnormally large,

we were concerned that they may already be above the critical size

for initiation of G1 cyclin transcription, and therefore not subject

to G1 size control. To test this, we used mih1D cells, which are

abnormally large because they undergo extra growth during G2/

M [54,55]. The mih1D cells showed normal nutrient modulation of

Figure 9. rts1D shows additive defects with bck2D. (A) rts1D causes slow growth in bck2D cells. A series of 10-fold dilutions of cells of the
indicated genotypes were grown at 30uC, 34uC, and 37uC. (B) rts1D causes a prolonged delay in bud emergence in bck2D cells. Cells were released
from an a factor arrest at 30uC and the percentage of cells with buds was determined at 10 minute intervals. A minimum of 200 cells was counted for
each time point. Error bars indicate the standard error of the mean for 3 independent experiments. (C) rts1D causes increased cell size in bck2D cells.
Images of cells from rapidly growing cultures of cells of the indicated genotypes. Cells were grown at 25uC.
doi:10.1371/journal.pgen.1000727.g009
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cell size control (Figure 11B). Furthermore, others have found that

cln3D cells, which are also abnormally large, undergo normal

nutrient modulation of cell size [25].

Discussion

Rts1 is required for normal control of G1 cyclin
transcription

Loss of Rts1 caused reduced and delayed expression of multiple

G1 cyclins, and a corresponding delay in bud emergence.

Overexpression of CLN2 from a heterologous promoter largely

rescued the delayed bud emergence in rts1D cells. We found no

evidence that Rts1 regulates Cln2 protein stability. Together, these

observations demonstrate that Rts1 functions in a pathway that

regulates G1 cyclins at the level of transcription.

The results of genetic analysis further supported the conclusion

that Rts1 works in a pathway that controls G1 cyclin levels. The

genetic interactions that we observed for rts1D are summarized in

Table 1. In general, rts1D caused slow growth or lethality when

combined with deletions of G1 cyclin genes or pho85D. Due to the

redundancy of the G1 cyclins, a general reduction in levels of G1

cyclin expression caused by rts1D would be expected to cause

additive effects when combined with gene deletions that further

reduce levels of G1 cyclins.

The finding that Rts1 is required for normal levels of Cln2

protein provides an explanation for why rts1D caused reduced polar

growth in mutants that fail to properly inactivate Swe1. Failure to

inactivate Swe1 causes cells to arrest at G2/M with high levels of

Cln2 protein [12]. Since Cln2 promotes polar growth, a reduction

in Cln2 levels would be expected to cause reduced polar growth.

Accordingly, we found that rts1D caused reduced and delayed

accumulation of Cln2 in gin4D cells, which fail to inactivate Swe1.

Previous work found that G1 cyclin transcription is regulated by

another PP2A-like phosphatase called Sit4. Loss of Sit4 caused

decreased transcription of late G1 cyclins and defects in bud

emergence, similar to rts1D [56]. However, there are a number of

significant differences in the G1 phenotypes caused by sit4D and

rts1D. First, in contrast to rts1D, defects in bud emergence caused

by sit4D are not rescued by expression of CLN2 from a

heterologous promoter, which demonstrates that Sit4 carries out

functions required for bud emergence beyond controlling G1

cyclin transcription [56]. Second, the phenotype of sit4D cells is

strongly enhanced by the ssd1-d2 allele, whereas the phenotype of

rts1D is not affected by the status of SSD1 [56]. Finally, sit4D cln3D
cells are barely viable, whereas loss of RTS1 caused relatively mild

effects in cln3D cells [56]. These phenotypic differences suggest

that Rts1 and Sit4 may function in independent pathways that

regulate late G1 cyclin levels in response to different signals, but do

not rule out the possibility that they have overlapping functions.

Rts1 does not function solely in one of the pathways
known to play a critical role in transcription of G1 cyclins

We used epistasis analysis to determine whether Rts1 regulates

G1 cyclin transcription via known mechanisms. This analysis

Figure 10. Rts1 is required for normal phosphorylation of Swi6. (A) Swi6 is dephosphorylated in rts1D cells at the time of initiation of G1
cyclin transcription. Wild type and rts1D cells were released from an a factor arrest into pre-warmed media at 30uC. Swi6-3XHA modification was
monitored by Western blotting. (B,C) mbp1D but not swi4D causes a reduced growth rate in rts1D cells. A series of 10-fold dilutions of cells of the
indicated genotypes were grown at 25uC, 30uC, 34uC, and 37uC.
doi:10.1371/journal.pgen.1000727.g010
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demonstrated that Rts1 does not function solely in a Bck2-

dependent pathway, and ruled out a role for Rts1 in a pathway

known to regulate G1 cyclin transcription via Cln3-dependent

inactivation of the Whi5 transcriptional repressor. Cln3 may also

promote G1 cyclin transcription in a Whi5-independent manner.

Overexpression of CLN3-1 makes whi5D cells smaller, which

suggests that Cln3 can drive G1 cyclin transcription by an

alternative mechanism [16]. In genetic crosses, we found that most

cln3D rts1D spores failed to germinate, and cells lacking both Rts1

and Cln3 showed slow growth when compared to either single

deletion. Thus, Rts1 does not appear to function solely in a Cln3-

dependent pathway that promotes G1 cyclin transcription.

Together, these observations suggest that Rts1 does not function

solely in one of the known pathways that play an important role in

promoting G1 cyclin transcription. Our results do not rule out the

possibility that Rts1 contributes to multiple pathways.

Rts1 may regulate SBF and MBF via Swi6
We found that rts1D caused reduced and delayed expression of

both SBF and MBF-dependent transcripts, which demonstrated

that Rts1 acts in a pathway upstream of both transcription factors.

We further found that rts1D caused a reduction in Swi6

phosphorylation at the time that cells initiate G1 cyclin

transcription. Since Swi6 is the one shared component of SBF

and MBF, this suggests that Rts1 regulates both transcription

factors via Swi6. In support of this, the pattern of genetic

interactions observed for rts1D is similar to the pattern previously

reported for swi6D. Both swi6D and rts1D cause slow growth in

cln2D cells, lethality in cln1D cln2D cells, and slow growth or

lethality in bck2D cells [57,58]. In addition, neither rts1D nor swi6D
caused synthetic lethality in combination with cln3D cells [58]. In

contrast, loss of SWI4 is lethal in combination with cln3D [58]. The

fact that Swi6 undergoes reduced phosphorylation in rts1D cells,

rather than hyperphosphorylation, indicates that it is unlikely to be

a direct target of PP2ARts1.

Phosphorylation of Swi6 that can be detected by an electro-

phoretic mobility shift is dependent upon the MAP kinase Slt2,

and activation of Slt2 coincides with initiation of polar growth

[51,59]. The Slt2 pathway is activated by Pkc1, and overexpres-

sion of Pkc1 suppresses swi4 mutants, which demonstrates a role in

controlling G1 cyclin transcription [60]. In previous work, slt2D
was not found to cause reduction in the levels of CLN1 or CLN2

transcripts, but did cause a reduction in levels of PCL1 and PCL2

transcripts in cells grown at 37uC. These studies did not utilize

synchronized cells and may therefore have missed effects of slt2D
on levels of CLN1 and CLN2 transcripts. In addition, rts1D could

lead to misregulation of Slt2 that causes effects on CLN1 and CLN2

transcripts that are more significant than the effects caused by

slt2D. Further work will be necessary to test for possible roles of

Rts1 in Slt2-dependent regulation of G1 cyclin transcription.

Rts1 is required for nutrient modulation of cell size
Previous work found that nutrient modulation of cell size does

not require Cln3, Whi5, or Bck2, which suggests that it works via a

distinct mechanism. The discovery that Rts1 does not function

solely in one of the pathways known to play a critical role in

controlling G1 cyclin transcription therefore prompted us to test

whether Rts1 is required for nutrient modulation of cell size. We

found that Rts1 is required for nutrient modulated control of cell

size, which identifies Rts1 as a new component of the pathways

that integrate nutrient availability, cell size, and entry into the cell

cycle.

Little is known about the pathways responsible for nutrient

modulation of cell size. Two conserved pathways play broad roles

Figure 11. Rts1 is required for nutrient modulation of cell size.
Wild-type, rts1D (A), and mih1D (B) cells were grown to log phase in
media containing either 2% dextrose or 2% glycerol/ethanol as a
carbon source. Cell size was measured with a Coulter counter and
plotted as a distribution of number % of cells in each size bin. Each plot
is the average of 4 independent experiments in which 3 independent
samples were analyzed.
doi:10.1371/journal.pgen.1000727.g011

Table 1. Summary of genetic interactions.

Genotype Viability

30uC 34uC 37uC

Wild type +++ +++ +++

rts1D ++ +/2 2

cln2D +++ +++ +++

cln2D rts1D +/2 2 2

cln1D cln2D rts1D 2 2 2

pho85D ++ + +/2

pho85D rts1D + 2 2

pcl1D pcl2D +++ +++ ++

pcl1D pcl2D rts1D ++ 2 2

whi5D +++ n/a +++

whi5D rts1D ++ n/a 2

bck2D +++ +++ ++

bck2D rts1D + 2 2

swi4D +++ +++ +++

swi4D rts1D ++ +/2 2

swi6D rts1D 2 2 2

mbp1D +++ +++ +++

mbp1D rts1D + 2 2

n/a = Not tested.
doi:10.1371/journal.pgen.1000727.t001
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in controlling nutrient sensing, nutrient utilization, cell growth and

cell cycle entry [61]. In one pathway, the TOR kinases respond to

the availability of nitrogen and trigger activation of pathways that

control cell growth and nitrogen utilization. A second pathway

responds to carbon source availability and regulates growth via

activation of the Ras GTPase and protein kinase A (PKA) [61].

The Ras/PKA pathway is required for control of cell size:

increased activity of the pathway leads to increased cell size, while

decreased activity leads to reduced cell size [62–64]. However, the

mechanisms by which Ras/PKA control cell size are unknown.

A key target of both pathways is ribosome biogenesis. Two key

regulators of ribosome biogenesis that are thought to regulate cell

growth are Sch9 and Sfp1. Sch9 is a member of the AGC kinase

family and is closely related to vertebrate Akt kinase, while Sfp1 is

related to transcription factors [65]. Sch9 and Sfp1 carry out

overlapping functions in controlling transcription of genes

required for ribosome biogenesis [25,66,67]. Loss of either protein

causes reduced ribosome biogenesis, while loss of both is lethal.

The TOR pathway appears to work through Sch9, but the

mechanisms by which the Ras/PKA pathway controls ribosome

biogenesis are unclear [65,68].

It is thought that nutrient modulation of cell size is achieved by

changing the critical cell size required for initiation of G1 cyclin

transcription [11]. Thus far, only three proteins have been found

to be required for nutrient modulation of cell size: Sch9, Sfp1 and

PKA [25,64]. Notably, all three converge on control of ribosome

biogenesis. Moreover, mutants that cause reduced rates of

ribosome biogenesis cause cells to enter the cell cycle at a reduced

cell size, leading to an overall reduction in cell size [67]. Together,

these observations suggest a model in which the rate of ribosome

biogenesis sets the critical cell size [11,67]. According to this

model, cells growing in rich nutrients have a high rate of ribosome

biogenesis, which sends a signal that inhibits G1 cyclin

transcription to allow the cell to reach a larger critical size.

The mechanisms that link initiation of G1 cyclin transcription to

ribosome biogenesis and nutrient availability are unknown. The

identification of Rts1 as a new upstream regulator of G1 cyclin

transcription that is also required for nutrient modulation of cell

size is therefore a significant step towards understanding these

pathways. Rts1 could function between ribosome biogenesis and

G1 cyclin transcription. Alternatively, Rts1 could promote

ribosome biogenesis, in which case the effects of rts1D could be

due to decreased rates of ribosome biogenesis. Inactivation of

factors that promote ribosome biogenesis cause reduced cell size,

whereas rts1D causes increased cell size. However, we do not yet

know what causes rts1D cells to have an increased cell size, and it

could be due to a G2/M delay that occurs later in the cell cycle

[28].

Since Rts1 is highly conserved, it may also play a role in

mechanisms that integrate external signals, cell size, and G1 cyclin

transcription in vertebrate cells. The signaling pathways that

control G1 cyclin transcription in vertebrate cells are of

considerable interest, since deregulation of these pathways

contributes to cancer [69].

Materials and Methods

Yeast strains, culture conditions, and plasmids
The strains used for this study are listed in Table 2. Cells were

grown in yeast extract-peptone-dextrose (YEPD) media supple-

mented with 40 mg/liter adenine, unless otherwise noted. Full

length CLN2 was expressed from plasmid pSL201-5[GAL1-CLN2-

3XHA URA3] [49]. 3XHA-tagging of CLN2 was carried out by

digesting plasmid pMT104 with PvuII and integrating at the Cln2

locus using standard yeast transformation techniques [9,70].

3XHA-tagging of other genes was carried out as previously

described [71].

Cell cycle time courses
Cells were grown overnight at room temperature on a shaking

platform. Cells at an OD600 of 0.6 were arrested in G1 by the

addition of 0.5 mg/ml a factor for 3.5 hours. Cells were released

into a synchronous cell cycle by washing 36with fresh YEPD pre-

warmed to 30uC, and time courses were carried out at 30uC unless

otherwise noted. To prevent cells from entering a second cell cycle,

a factor was added back at 65 minutes. For metaphase arrest,

strains containing GAL1-CDC20 were first grown overnight in YEP

+2% raffinose +2% galactose and then washed into media

containing 2% raffinose and allowed to arrest for four hours.

Cells were released from metaphase arrest by adding 2% galactose

and were then shifted to 30uC. At each time interval, 1.6 ml

samples were collected in screw-top tubes. The cells were pelleted,

the supernatant was removed, and 250 ml of glass beads were

added before flash freezing. To lyse cells, 100 ml of 16 sample

buffer (65 mM Tris-HCl (pH 6.8), 3% SDS, 10% glycerol,

50 mM NaF, 50 mM b-glycerolphosphate, 5% 2-mercaptoetha-

nol, bromophenol blue) was added. 2 mM PMSF was added to the

sample buffer immediately before use from a 100 mM stock made

in 100% isopropanol. Cells were lysed by shaking in a Biospec

Multibeater-8 at top speed for 2 minutes. The tubes were

immediately removed, centrifuged for 1 minute in a microfuge

and placed in a boiling water bath for 5 minutes. After boiling, the

tubes were again centrifuged for 1 minute and 10 ml was loaded

on a gel (5 ml when probing for Nap1). For microscopy, 180 ml

samples were collected and fixed by adding 20 ml of 37%

formaldehyde for 1 hour. Cells were washed twice in 16 PBS,

0.05% Tween-20, 0.02% sodium azide and imaged by differential

interference contrast microscopy. Bud emergence was quantified

by counting the number of buds per 200 cells for each sample.

Western blotting
Polyacrylamide gel electrophoresis was carried out as previously

described [72]. Gels were run at 20 mA on the constant current

setting. Western blots were transferred for 1 hour at 1 Amp at 4uC
in a Hoeffer transfer tank in a buffer containing 20 mM Tris base,

150 mM glycine, and 20% methanol. Blots were probed overnight

at 4uC with affinity purified rabbit polyclonal antibodies raised

against Clb2, Swe1, Cdc24, Nap1 or HA peptide. Blots were

probed with an HRP-conjugated donkey anti-rabbit secondary

antibody (GE Healthcare).

For quantitative western blotting, protein was transferred onto

Millipore Immobilon-FL membrane. Before transfer, the mem-

brane was first briefly wetted in 100% methanol. A Cy5-

conjugated secondary antibody was used (Affinipure goat anti-

rabbit, Jackson ImmunoResearch) and images were collected on a

Typhoon 9410 variable mode imager. ImageQuant was used to

quantify band intensity. Local background was subtracted from

each band. An antibody that recognizes the Nap1 protein was

used as a loading control. Since Nap1 migrates below Cln2, the

western blots could be cut into two pieces to independently probe

Cln2 and Nap1 in the same samples. For each lane, the ratio of

Cln2/Nap1 signal was determined to normalize for differences in

loading. Graphing was done with GraphPad Prism version 4.00

for Mac [73].

Northern blot analysis
Probes that specifically recognized CLN1, CLN2, PCL1, RNR1

and ACT1 RNA were made using a gel-purified PCR product

Control of G1 Cyclin Levels by PP2ARts1

PLoS Genetics | www.plosgenetics.org 14 November 2009 | Volume 5 | Issue 11 | e1000727



Table 2. Strains used in this study.

Strain Genotype Reference or Source

DK186 MATa Altman et al., 1997 [78]

DK647 MATa rts1D::kanMX6 This study

CC4 MATa cdc12-6 Carroll et al., 1998 [34]

DK778 MATa cdc12-6 rts1D::kanMX6 This study

RA19 MATa gin4D::LEU2 Mortensen et al., 2002 [36]

DK655 MATa gin4D::LEU2 rts1D::kanMX6 This study

AS8 MATa elm1D::TRP This study

DK682 MATa elm1D::TRP rts1D::kanMX6 This study

HT160 MATa cla4D::HIS3MX6 Mortensen et al., 2002 [36]

DK738 MATa cla4D::HIS3MX6 rts1D::kanMX6 This study

AS20 MATa elm1D::URA3 Sreenivasan et al., 2003 [79]

DK847 MATa elm1D::LEU2 rts1D::kanMX6 This study

DK1027 MATa GAL1-SWE1::HIS3MX6 CLN2-3XHA::LEU2 This study

DK1029 MATa GAL1-SWE1::HIS3MX6 CLN2-3XHA::LEU2 rts1D::kanMX6 This study

ZZ41 MATa CLN2-3XHA::LEU2 Zimmerman and Kellogg, 2001 [80]

DK751 MATa CLN2-3XHA::LEU2 rts1D::kanMX6 This study

KA61 MATa cln1D::TRP cln2D::LEU2 This study

DK685 MATa rts1D::kanMX6 This study

KA12 MATa cln2D::LEU2 This study

DK788 MATa rts1D::kanMX6 cln2D::LEU2 This study

DK547 MATa cln1D::TRP GAL1-3XHA-CLN2::HIS3MX6 This study

DK1158 MATa cln1D::TRP GAL1-3XHA-CLN2::HIS3MX6 rts1D::kanMX6 This study

DK1300 MATa cln3D::HIS3MX6 This study

DK1309 MATa rts1D::kanMX6 cln3D::HIS3MX6 This study

ZZ79 MATa GAL1-3XHA-CLN3::HIS3MX6 This study

DK1419 MATa GAL1-3XHA-CLN3::HIS3MX6 rts1D::kanMX6 This study

SH183 MATa pho85D::kanMX6 Egelhofer et al., 2008 [81]

DK853 MATa pho85D::kanMX6 rts1D::HIS3MX6 This study

DK605 MATa pcl1D::natMX6 pcl2::kanMX6 This study

DK850 MATa pcl1D::natMX6 pcl2::kanMX6 rts1D::HIS3 This study

DK1561 MATa GAL1-CDC20::HIS3MX6CLN2-3XHA::LEU2 This study

DK1549 MATa GAL1-CDC20:HIS3MX6 CLN2-3XHA::LEU2 rts1D::kanMX6 This study

DK1194 MATa pSL201-5[GAL1-CLN2-3XHA URA3] This study

DK1407 MATa ycplac33[CEN/URA3] This study

DK1233 MATa rts1D::HIS3MX6 pSL201-5[GAL1-Cln2-3XHA URA3] This study

DK1408 MATa rts1D::kanMX6 ycplac33[CEN/URA] This study

DK1228 MATa CLN2-3XHA::LEU2 cdc34-2 This study

DK1227 MATa CLN2-3XHA::LEU2 cdc34-2 rts1D::kanMX6 This study

DK1304 MATa CLN2-3XHA::LEU2 whi5D::kanMX6 This study

DK1303 MATa CLN2-3XHA::LEU2 whi5D::kanMX6 rts1D::HIS3MX6 This study

DK456 MATa whi5D::kanMX6 This study

DK1295 MATa whi5D::kanMX6 rts1D::HIS3MX6 This study

KA46 MATa bck2D::kanMX6 This study

DK818 MATa rts1D::HIS3MX6 This study

DK1320 MATa rts1D::HIS3MX6 bck2D::kanMX6 This study

DK1307 MATa CLN2-3XHA::LEU2 rts1D::HIS3MX6 This study

DK1329 MATa CLN2-3XHA::LEU2 bck2D::kanMX6 This study

DK1330 MATa CLN2-3XHA::LEU2 bck2D::kanMX6 rts1D::HIS3MX6 This study

DK1608 MATa swi4D::kanMX6 This study

DK1630 MATa swi4D::kanMX6 rts1D::HIS3MX6 This study
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(CLN1 oligos: AGAATGGTCCTGTAAGAGAAAGT, AGAAA-

CTGATGATGAAGAGGCAT; CLN2 oligos: TGAACCAAT-

GATCAATGATTACGT, TCAAGTTGGATGCAATTTGC-

AG; PCL1 oligos: ACTAGATTGGTCAGATACACCAA, TGG-

TTACATCTTTTAGCCTTCTTAGA; RNR1 oligos: ACT-

TAGGTGTCATCAAGTCATCA, TCTACCACCATGCTT-

CATGATATCTT; ACT1 oligos: TCATACCTTCTACAAC-

GAATTGAGA, ACACTTCATGATGGAGTTGTAAGT) and

the Megaprime DNA labeling kit (GE Healthcare Amersham).

Total yeast RNA was extracted as previously described [74] and

blotting was carried out using standard methods [75]. Blots were

stripped and re-probed for ACT1 as a loading control. Images

were collected on a Typhoon 9410 variable mode imager.

ImageQuant was used to quantify band intensity. Local back-

ground was subtracted from each band. The amount of CLN1,

CLN2, PCL1, and RNR1 RNA was normalized to the amount of

ACT1 RNA for each lane and used to determine relative

expression level. Data from three independent time course

experiments was used to determine error bars (standard error of

the mean).

Measurement of the rate of polar growth
Samples of synchronized GAL1-SWE1 or GAL1-SWE1 rts1D

cells were collected at 30 minute intervals following release from a

G1 arrest into galactose-containing media. Cells were imaged

using differential interference contrast microscopy and ImageJ

1.37v software was used to measure bud length and bud width for

100 cells for each sample [76]. The extent of polar growth was

measured as the ratio of length/width, and was plotted for each

time point.

Determination of the half-life of the Cln2 protein
The half-life of the Cln2 protein was determined as previously

described with the following modifications [49]. Cells were grown

overnight in YEP media containing 2% glycerol/ethanol. GAL1-

CLN2 transcription was induced by washing cells into YEP media

containing 2% galactose for 1 hour. Expression of CLN2 was then

repressed by washing cells into YEPD media. Quantitative Western

blotting was carried out to quantify Cln2 levels over time. Non-

linear regression curve fitting for one phase exponential decay was

carried out using GraphPad Prism version 4.00 for Mac [73].

Measurement of cell size
Cultures of cells were grown in triplicate overnight at 25uC in

either YEP +2% dextrose or YEP +2% glycerol and 2% ethanol. A

1 ml sample of log phase (OD600 = 0.60) culture was fixed with 1/

10 volume 37% formaldehyde for 1 hour, then washed twice with

16 PBS+0.04% sodium azide +0.02% Tween 20. Cell size was

measured using a Channelizer Z2 Coulter counter as previously

described [77]. 150 ml of fixed culture were diluted in 20 ml of

Isoton II and sonicated for 20 seconds prior to Coulter counter

analysis. Each plot is the average of 4 independent experiments in

which 3 independent samples were analyzed.

Supporting Information

Figure S1 rts1D results in delayed G1 events. (A) The Cdc24

protein undergoes normal dephosphorylation during release from

a factor arrest in rts1D cells. Western blotting was carried out with

an anti-Cdc24 antibody. Changes in Cdc24 phosphorylation were

detected as a shift in electrophoretic mobility. (B) Accumulation of

the Cln2 protein is delayed during a synchronized cell cycle in

rts1D cells in the S288C (SSD1-v1) strain background. Wild type

and rts1D cells were released from an a factor arrest into pre-

warmed media at 30uC. Levels of Cln2-3XHA were monitored by

Western blotting. (C) CLN1 and PCL1 RNA accumulation were

delayed and reduced in rts1D cells. Wild type and rts1D cells were

released from an a factor arrest into pre-warmed media at 30uC
and samples were collected at 10 minute intervals during the cell

cycle. Levels of CLN1 and PCL1 mRNA were monitored by

Northern blotting.

Found at: doi:10.1371/journal.pgen.1000727.s001 (0.94 MB TIF)

Figure S2 Cln2 accumulation is delayed and reduced in gin4D
rts1D cells. gin4D and rts1D gin4D cells were released from an a

Strain Genotype Reference or Source

DK1569 MATa mbp1D::kanMX6 This study

DK1571 MATa mbp1D::kanMX6 rts1D::HIS3MX6 This study

HT179 MATa mih1D::URA3 Harvey et al., 2003 [82]

DK1415 MATa SWI6-3XHA::HIS3MX6 This study

DK1416 MATa SWI6-3XHA::HIS3MX6 rts1D::kanMX6 This study

DK1544 MATa CLN2-3xHA::LEU2 SWI4-3XHA::HIS3MX6 This study

DK1543 MATa CLN2-3xHA::LEU2 SWI4-3XHA::HIS3MX6 rts1D::kanMX6 This study

DK1521 MATa MBP1-3XHA::HIS3MX6 This study

DK1533 MATa MBP1-3XHA::HIS3MX6 rts1D::kanMX6 This study

DK1417 MATa STB1-3XHA::HIS3MX6 This study

DK1418 MATa STB1-3XHA::HIS3MX6 rts1D::kanMX6 This study

DK1498* MATa CLN2-3xHA::LEU2 This study

DK1497* MATa CLN2-3xHA::LEU2 rts1D::kanMX6 This study

DK889 MATa CLN2-3XHA::LEU2 gin4D::HIS3MX6 This study

DK792 MATa CLN2-3XHA::LEU2 gin4D::HIS3MX6 rts1D::kanMX6 This study

All strains are isogenic to DK186 and are in the W303 background except as otherwise noted (leu2-3,112 ura3-1 can1-100 ade2-1 his3-11,15 trp1-1 bar1D GAL+ ssd1-d2).
*BY4741 Strain background (MATa his3D1 leu2D0 met15D0 ura3D0 SSD1-v1).
doi:10.1371/journal.pgen.1000727.t002

Table 2. Cont.
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factor arrest into pre-warmed media at 30uC. Levels of Cln2-

3XHA and Clb2 were monitored by Western blotting.

Found at: doi:10.1371/journal.pgen.1000727.s002 (0.66 MB TIF)
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