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Abstract
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study
white matter microstructure by examining the 3D displacement profile of water molecules in brain
tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order
tensors (represented by three-by-three positive definite matrices) can be computed to model dominant
diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white
matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution
schemes with more than six gradient directions have been employed to address this issue. In this
article, we introduce the tensor distribution function (TDF), a probability function defined on the
space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF
that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of
Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is
determined, the orientation distribution function (ODF) can easily be computed by analytic
integration of the resulting displacement probability function. Moreover, a tensor orientation
distribution function (TOD) may also be derived from the TDF, allowing for the estimation of
principal fiber directions and their corresponding eigenvalues.
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In the past decade, diffusion magnetic resonance imaging (dMRI) has become a powerful tool
for studying the structure of fibrous materials, including white matter connectivity and integrity
in the living brain. By applying diffusion-sensitized gradients (1–3), dMRI characterizes the
particle diffusivity profile in various tissues (see, e.g., 4–6 for early approaches).

When the duration of the applied diffusion sensitization δ is much smaller than the time between
the two pulses, the MR signal attenuation is related to the displacement probability function
using a Fourier integral relationship with respect to a wave vector q (7,8).
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As water Brownian motion is constrained by the underlying tissue microstructure,
measurements of the displacement probability function of water molecules thus provide great
insight into this microstructure. In brain imaging, dMRI can be advantageous over conventional
nondiffusion-weighted MRI as it can reveal the configuration and orientation of fiber tracts in
white matter. This can allow virtual tractography to be conducted and brain connectivity
inferred (9–14).

In diffusion tensor MRI (DT-MRI) (15,16), the water displacement probability function is
modeled using a zero-mean 3D Gaussian distribution whose covariance matrix, a second-order
symmetric positive definite tensor, thus represents the principal directions of diffusion or the
orientation of local fiber tracts. Here, eigenvectors represent the three principal orthogonal
directions of water diffusion at each point in the image, and the associated eigenvalues denote
the relative mobility along these three directions. Thus, local fiber tract orientation is
considered parallel to the eigenvector associated with the largest eigenvalue. Although
extremely powerful and easy to compute, DT-MRI relies on strong assumptions including an
unrestricted environment and homogeneity of diffusion within voxels [i.e., no partial volume
effect; also see (17) for more discussion] to correctly model displacement probability functions
as 3D Gaussian distributions. As a result, DT-MRI has some disadvantages. First, despite major
hardware improvements, the spatial resolution of dMRI images is still suboptimal compared
with the size of the fiber bundles, and thus partial volume effects are inevitable in regions where
multiple fiber tracts cross. Unfortunately, any Gaussian probability distribution function has
at most one orientational mode, and thus can not resolve fiber crossing. To address this issue,
multicompartment models have been proposed (18–21). Unfortunately, the numerical fittings
of these models are generally highly nonlinear and/or unstable. As a result, the number of
tensors often needs to be specified a priori. More recently, high-order tensor (HOT) fitting, as
first pioneered in (22) and further studied in (23–25), has also been proposed to account for
fiber crossing, although the direct physical relevance of high-order tensors to the water
diffusion process is less straightforward and yet to be fully explored.

In addition to the partial volume effect, the issue of whether non-Gaussianity of the
displacement profile results from intra- or extra-cellular exchange or restriction remains
unresolved (17). To bypass the Gaussian assumption, the q-space imaging (QSI) technique
(26) seeks to provide a model-free reconstruction of the displacement probability function by
sufficient sampling of the q vectors and exploiting their Fourier integral relationship using the
fast Fourier transform (FFT). Although theoretically possible, q-space imaging requires a large
amount of data to be acquired, leading to high gradient strengths and long acquisition times,
and thus is not feasible in clinical settings without compromise (e.g., under-sampling and
suboptimal spatial resolution).

More recently, high-angular resolution diffusion imaging (HARDI) seeks to address the issue
of long acquisition time in QSI by sampling the q-space on one or more shells with fixed radii.
As a result, HARDI is in general considered to contain less information than that which is
required for the full recovery of the displacement probability function. Thus, methods such as
the q-ball imaging technique (27, also see Refs. 28 and 29), the Persistent Angular Structure
(PAS) technique and MESD (30,31), the DOT transform (32), and deconvolution-based
techniques (33–36; also Ref. 37 where a unified framework of deconvolution was proposed
and studied) have been proposed to recover partial information on the displacement probability
function, while still allowing the underlying fiber orientations to be inferred. For example, the
q-ball imaging technique (QBI) as proposed in (27–29) provides a model-free reconstruction
of the orientation distribution function (ODF), the radial integral of the water displacement
probability function, by applying the Funk-Radon transform. This scheme provides an
approximation to the true radial integral because the result is a convolution of the probability
values with a 0-th order Bessel function. This may give rise to an undesirable contamination
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of the probability along one direction with probabilities from other directions. The spherical
deconvolution methods, on the other hand, reconstruct the fiber orientation distribution by
deconvolving the diffusion-weighted signal in the q space using a model of the response
function of a single fiber tract (i.e., the deconvolution kernel). In these methods (e.g., 33 and
36; also Ref. 38 where this kernel takes the form of a Wishart distribution), however, prior
assumptions on the fibers are usually imposed and all fiber tracts are considered to have the
same anisotropy profile.

In this article, we propose a new approach, the computation of the tensor distribution function
(TDF), to model fiber crossing and non-Gaussianity in diffusion MR images. By using
Gaussian distributions as basis functions, we expand the unknown displacement probability
function with the weights given by the TDF. This may also be viewed as a natural, probabilistic
extension of multicompartmental models. With the computation of the TDF, the water
displacement probability function, orientation distribution function, tensor orientation
distribution, and their corresponding anisotropy measures may all be obtained through simple
analytic relations. In the following sections, we discuss in detail the theory and implementation
of the proposed TDF approach.

THEORY
In standard dMRI, images are acquired using the Stejskal-Tanner pulsed gradient spin-echo
method (2). With some simplifications (rectangular pulse profiles), measured image intensities
S are linked to p, the displacement probablity function of water molecules, via the following
Fourier transform

[1]

Here the wave-vector q = rδG, where r, δ, and G are the gyromagnetic ratio, the duration of
the diffusion sensitization, and the applied magnetic gradient vector, respectively. Without loss
of generality, let us assume the constant S(0) is 1.

Assuming a simple one-tensor Gaussian diffusion model, the displacement probability function
evaluated at position x (given diffusion tensor D and diffusion time t) is

[2]

Thus, the measured diffusion MR image intensities in this one-tensor case are simply S(q) =
exp(−tqTDq). It is often useful to use the normalization q̃ = q/|q| and the notation b = t|q|2. In
this case, we have

[3]

The Tensor Distribution Function
Let us first denote the space of symmetric positive definite three-by-three matrices as . We
seek a probabilistic ensemble of tensors, as represented by a tensor distribution function (TDF)
P, defined on the tensor space , that best explains the observed diffusion-weighted images.
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If we estimate that the TDF should be P for a particular voxel, then the (calculated) image
intensity should be

[4]

Notice that this equation is the same as Eq. [4] in (38), although in (38) this probability density
function takes the form of a mixture of Wishart distributions, whose shape parameter and
corresponding tensor eigenvalues are fixed (i.e., all fibers are assumed to have the same
anisotropy profile). Thus, the method proposed in (38) is essentially a deconvolution-based
technique.

To solve for an optimal TDF P*, we apply multiple diffusion-sensitized gradient directions
qi and arrive at P* using the least-squares principle

[5]

To simplify our derivations, we define the error vector E(qi) = Sobs(qi) − Scalculated(qi) to be
the contribution to the total error with respect to qi. For P(D) to be a true TDF, we have to
enforce two constraints, i.e., (1) the non-negativity constraint: P(D) ≥ 0 for every D and (2)
the probability density constraint: ∫ P(D)dD = 1.

To enforce the first constraint, we utilize the nonnegativity property of the exponential function
and let P(D) = exp(R(D)). The minimization problem as proposed above is now optimized in
the associated R space instead of the original P space, ensuring the nonnegativity of the
resulting TDF. To this end, the gradient descent in the R space for this minimization problem
is:

[6]

Here, τ is an artificial time, and .

Let us now turn to address the second constraint. We first rewrite this constraint in the R space:
∫D∈  exp(R(D))dD = 1, and modify the gradient direction in Eq. [6] by gradient projection
onto the constraint space. This gives us the following modified gradient descent equation:

[7]

where L is the Lagrange multiplier
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Please refer to the Appendix for detailed derivations.

Parametrizing the Tensor Space 
As the solution space  is a six-parameter space, some reduction may be helpful for numerical
optimization purposes. Here, we follow the ideas in (36) and assume that fiber tracts are
cylindrical, thus enforcing two eigenvalues (out of three) to be equal for each individual tensor
in . With this assumption, we only need to specify, for each tensor, one unit direction (defined
on the unit sphere), which we associate with the third eigenvalue. Thus, each tensor is now
represented by two scalars (specifying three eigenvalues) and one unit direction, allowing us
to reduce  to a four-dimensional space. In the rest of this article, every diffusion tensor D is
expressed using D(λ, θ), with the eigenvalues λ = (λ1, λ2) (with λ2 the repeated eigenvalue) and
θ= (θ1, θ2) the azimuthal and polar angles associated with λ1. Notice that here we do not specify
whether the two equal eigenvalues are smaller or greater than the third eigenvalue, thus
allowing more types of tensors to be included. This may be advantageous when comparing our
TDF approach with the deconvolution methods where a standard analytic fiber response
function is usually assumed.

From TDF to ODF and Beyond
Once the optimal TDF is calculated, the displacement probability function p is simply:

[8]

Moreover, the ODF can be analytically computed by radial integration:

[9]

Here C is a normalizing constant. To determine dominant fiber directions, we propose the
tensor orientation distribution function (TOD), a scalar-valued function defined on the unit
sphere, by computing the marginal density function of the TDF with the eigenvalues λ = (λ1,
λ2) integrated out.

[10]

Here, the TOD directly encodes orientational information by computing, along any direction
θ, the probability that we observe the principal fiber direction. As a result, the TOD has very
sharp and distinctive peaks.

Once the dominant fiber direction θ* is determined, one can further estimate their
corresponding eigenvalues (λ*) by computing the expected values of λ along this direction.

[11]
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Exponential Isotropy via Shannon Entropy
To provide a complete presentation of the TDF framework, here we seek a measure, similar
to fractional anisotropy or generalized fractional anisotropy, which quantifies the overall
anisotropy of any given voxel. First, we observe that the Shannon entropy (H) of any TDF P
measures the randomness of this probabilistic ensemble, and thus is inversely related to the
certainty with which we can estimate dominant fiber directions.

[12]

In other words, here the Shannon entropy measures the isotropy of diffusion in any given voxel,
and thus we propose the exponential isotropy (EI) as follows.

[13]

To motivate the concept of EI, we observe that in an ideal one-fiber system [i.e., P(D) = 0
everywhere except for one point in the tensor space ], the Shannon entropy is 0 and the EI is
1. For an ideal two-fiber system with equal weights [P(D) = 0 everywhere except for two points
in the tensor space , each of which takes a value of 0.5], the Shannon entropy is ln2 and the
EI is 2. Thus, in general, we expect EI to take a value that is approximately proportional to the
number of dominant fibers.

As indicated by its name [and opposite to the fractional anisotropy (FA) or the generalized FA
(GFA) (27)], the EI is a measure of isotropy instead of anisotropy, and thus takes greater values
in gray matter tissue than in white matter. As will be shown in the results section, EI is a natural
analog of FA or GFA in the TDF framework.

Numerical Implementations
To implement the descent equation Eq. [7], the unit sphere is initially parameterized using the
n diffusion-sensitized gradient directions qi. The rationale behind this particular discretization
is twofold. First, the angular resolution of computed fiber tracts should be monotonically
increasing with the number of independent diffusion-sensitized gradients employed when
acquiring HARDI. Second, explicit discretization of the unit sphere allows for the discrete
sampling of the corresponding TOD, and thus straightforward determination of dominant fiber
directions using simple thresholding. To further refine the angular resolution (beyond that
given by the number of diffusion-sensitizing gradient directions), we employ a multiresolution
strategy and locally include new unit directions, at each resolution, around the maximal values
of the TOD in our discretization of the unit sphere. This step allows us to increase angular
resolution without much compromise in computation speed by only upsampling regions on the
unit sphere where dominant fiber directions are located. In this article, these new directions
are selected from icosahedron-based triangulations approximating the unit sphere (up to the
7th order tessellation with n = 642 directions).

Image Acquisition
In this article, a 94-direction diffusion-sensitized gradient protocol was employed to generate
simulations and acquire real human dMRI data. The timing of the diffusion sequence was
optimized for SNR (signal-to-noise ratio) according to the scheme proposed in (39). For human
data, the dMRI of an individual subject was acquired on a Bruker Medspec 4 Tesla MRI
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scanner, with a transverse electromagnetic (TEM) headcoil. This protocol used a total of 105
scans (94 diffusion-sensitized gradient directions plus 11 baseline scans with no diffusion
sensitization) and the acquisition parameters were (b-value: 1159 sec/mm2; TE/TR: 92.3/8,250
msec; FOV = 230 × 230; in-plane resolution: 1.8 mm × 1.8 mm; 55 × 2 mm2 contiguous slices;
acquisition time 14:30 min).

RESULTS
In this section, we present experimental results to validate the proposed TDF approach. To
assess the performance of the TDF approach, we first simulate various configurations of two-
fiber systems, crossing at 90° with equal volume fractions, using different b values and SNR
ratios (similar to those seen in real HARDI data). To quantitatively compare the proposed TDF
approach with other methods in the literature, we compare the calculated ODF and the true
ODF using the well-known Kullback-Leibler (KL) divergence, as employed in the original
QBI (27), and the L2 norm or squared error as in (29). The KL divergence is a non-negative,
nonsymmetric divergence or measure of the difference between two probability density
functions, and takes the value zero if and only if the two density functions are identical. Given
any two probability density functions p1 and p2, the KL divergence of p1 over p2 is

. For completeness, we also included the L1-norm between the
computed and true ODF (as a variety of different natural distance metrics may be defined
between ODFs).

Here, we chose λ1 = 10 and λ2 = 2 (×10−10 m2 s−1) as the eigenvalues for each individual tensor
(FA = 0.77) and employed complex Gaussian noises as in (33) (with a standard deviation of S
(0)/SNR) when generating simulations using discrete mixtures of Gaussian distributions based

on Eq. [3] (i.e., ; w1 = w2 = 0.5). The ODFs were
rendered using 642 points, as determined using a seventh-order icosahedral approximation of
the unit sphere.

Table 1 and Fig. 1 (first row) compare the mean and standard deviation of the three performance
measures with a fixed b value (1,200 sec/mm2) and different SNRs of 5, 10, 15, 20, 25, 30, 40,
50, and 1,000 using the 94-direction protocol (100 simulations were computed for each SNR
value). As expected, the accuracy of the computed ODF improves as SNR increases.

In Table 2 and the second row of Fig. 1, we investigated the influence of the b value, ranging
from 500 sec/mm2 to 8,000 sec/mm2, on the three performance measures. Our results indicated
that all three measures decrease as the b value increases from 500 sec/mm2 to around 1,500
sec/mm2 and remain relatively stable before increasing again starting around 3,000 sec/mm2.
This finding is consistent with the literature where optimal b values were reported to be from
around 2,000 sec/mm2 to 4,000 sec/mm2 (29).

In the next experiment, we investigated the angular resolution of the TDF approach using
simulated two-fiber systems (equal volume fractions; the FA for each individual fiber is 0.77)
crossing at different angles (i.e., angular separations). As the TDF approach provides a
probabilistic estimation of the underlying fiber distributions, we need new measures to quantify
the angular resolution. To this end, here we introduce the maximal spread and the weighted
spread. The maximal spread was defined as the largest angular separation among all recovered
peaks of the TOD (defined as any unit direction with a TOD value greater than 0.15). We then
clustered these peaks into two groups, depending on which simulated fiber direction each peak
was closer to, and calculated the weighted mean fiber directions for these two groups (weights
given by the corresponding TOD values). We then obtained the weighted spread by computing
the angular separation between the two weighted mean fiber directions. Table 3 shows the
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means and standard deviations (in parentheses) of the maximal spread and the weighted spread
as functions of SNR (20, 30, and 40) and the angular separation (30, 45, 60, and 90°) used for
simulating these two-fiber systems. For each angular separation, the 94-direction HARDI
protocol as described in the theory section was used (with a b value of 3,000 sec/mm2) and 20
simulations were computed. Our results indicate that, in general, a smaller angular separation
(less than 45°) coupled with a reduction in SNR translates to a larger bias for both maximal
and weighted spreads in recovering the angular separation, although the TDF approach was
still able to recover probabilistic ensembles at 30° (i.e., more than one peaks were identified
in the corresponding TOD; notice that, in the case of 30°, the ground truth ODF has only one
peak). For fibers crossing at 45 and 30°, both maximal and weighted spreads under-estimate
the angular separation at low-SNR values (for noise-free simulations with 30° of separation,
maximal and weighted spreads were 36 and 22°). For 60°, the maximal spread over-estimates
and the weighted spread under-estimates the angular separation. To put our results in
perspective, the angular resolution of our discretization of the unit sphere (icosahedron-based;
n = 642 directions) is approximately 9°.

To validate the TDF approach using real imaging data, the dMRI of a normal control subject
was acquired using the 94-direction protocol. Figures 2 and 3 illustrate the proposed TDF
approach applied to two slices (one axial and one coronal) showing the complex white matter
microstructure in the centrum semiovale, a predominantly white matter core in the interior of
the cerebral hemispheres. For the visualization of ODFs, we adopted a conventional color
coding scheme in which red corresponds to medial-lateral (i.e., left–right), green to anterior-
posterior, and blue to superior–inferior orientation. Here, visual inspections suggest that the
EI plot provides a clear separation between gray matter and white matter (colorbars are included
in the EI plots to illustrate typical EI values obtained using the proposed numerical
implementations), and that the TOD and ODF plots complement each other to provide better
fiber orientation information at a voxel level. Here, voxel-wise ODFs were min–max
normalized and scaled using their generalized fractional anisotropy (GFA), whereas no
normalization or rescaling was necessary in the TOD plots (TOD is itself normalized as it is
the marginal density function of the TDF).

To further illustrate the TDF approach and compare the recovered fiber morphology with
known neuroanatomical structures, we examined more closely the transverse section of the
right centrum semiovale in Fig. 2. Figure 4 shows the detailed GFA, ODF, TOD, and EI plots
of this region, along with the nondiffusion weighted structural MRI. Here, the detailed ODF
plot reveals the left–right oriented corpus callosum (C), the superior-inferiorly oriented corona
radiata (CR), and the anterior-posteriorly oriented superior longitudinal fasciculus (S) and
cingulum (CN). Also notice that compared with the gray matter, the white matter region has
higher GFA values but lower EI values.

In Fig. 5, we plot the computed λ2 (values scaled by 10−9 m2 s−1) and λ1/λ2 ratio maps, using
Eq. [11], for the brain region in Fig. 4. As λ2 value differs more than λ1 between gray and white
matter, the ratio map (instead of the λ1 map) is shown here to better visualize the separation
between gray and white matter. Although no spatial constraint was employed when computing
these maps (to ensure neighboring voxels to have similar λ values), we notice that the TDF
approach still produced maps that are spatially relatively smooth, with a visually identifiable
gray/white matter junction and values consistent with those reported in the literature.

To more closely examine fiber crossing, two regions of interest were identified (Fig. 6): the
first region (top row) covered the crossing of the corona radiata (CR) and corpus callosum (C),
and the second region (bottom row) was obtained from the dispersion of the superior
longitudinal fasciulus (S). In both cases, the proposed TDF approach was successful in
resolving the complex fiber geometries consistent with known neuroanatomy.
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DISCUSSION
In this article, we propose to compute the tensor distribution function as a novel method for
simultaneously recovering the water displacement probability function, dominant fiber
orientations and their corresponding eigenvalues, and the orientation distribution function in
dMRI. We also propose the exponential isotropy, an inverse measure of anisotropy, by taking
the exponential of the Shannon entropy of the computed tensor distribution function. The TDF
approach can be considered a hybrid methodology as it has theoretical similarities to other
approaches. First, the TDF approach provides a probabilistic fitting of multiple tensors, and
thus may be thought of as a natural extension of multitensor models. However, here we observe
a major difference between the TDF approach and multitensor fitting. In TDF, a weight is being
assigned to any tensor whose anisotropic properties are consistent with human physiology (i.e.,
in the solution space); while in conventional multitensor estimation, the physiological
properties of the tensors are considered unknown variables that remain to be determined. This
difference explains the advantages of TDF fitting from a computational perspective. For
example, multitensor fitting requires certain constraints to be imposed to guarantee the positive
definiteness of the computed tensors. In contrast, only positive definite second-order three-by-
three tensors are included in the solution space of the TDF approach, thus excluding
nonphysiological tensors. Moreover, by using the logarithmic transform along with projected
gradient descent, the proposed algorithm naturally yields positive weights for all tensors in the
solution space, without the need for extra constraints or numerical procedures.

Alternatively, the TDF approach also shares similarities with deconvolution-based techniques,
as 3D Gaussian diffusion functions may be simply viewed as basis functions with which we
expand the water displacement probability function. Here, let us point out an interesting
observation that 3D Gaussian distributions, as basis functions, are not orthogonal to one another
in the traditional sense, and thus in theory may introduce redundancy in the solution space and
ambiguity in tensor representations. We suggest that this explains why Gaussian mixture
models in multitensor fitting are well known to be unstable and ill-posed, and thus the number
of compartments usually needs to be predetermined in advance. The TDF approach, by
introducing a probabilistic interpretation into tensor fitting, provides a numerically stable
solution.

To point out the difference between spherical-deconvolution methods and the TDF approach,
we observe that, in the former, a single fiber response function in the q space is usually assumed
to be applicable to all fiber bundles and thus MR signals must be explained as a linear
combination of this response function, whereas in the latter, no prior knowledge on axonal
water diffusion is assumed and different fiber tracts are allowed to have different anisotropic
properties (i.e., different tensor eigenvalues). Thus, the TDF approach may potentially be
advantageous for studying regional differences or recovering longitudinal changes in white
matter anisotropy. Last, as discussed at length in (37), realizing non-negative weights during
the deconvolution operation is not a trivial task for these methods, and advanced optimization
techniques such as non-negative least squares using quadratic programming and active set
strategy were employed in (37).

Comparing the TDF approach with the QBI and PAS methods, we notice that the TDF approach
directly computes the water displacement probability function, whereas only partial
information on the water displacement probability function is recovered in QBI (the ODF) or
PAS (the angular structure). Moreover, although state-of-the-art analytic ODF reconstruction
methods (28,29) through spherical harmonics are much faster and require fewer directions,
these methods still employ the Funk-Radon transform, which merely provides a numerical
approximation to the true ODF.
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Although the TDF approach is based on the Gaussian diffusion assumption, we point out that
a different diffusion model can be used, as Eq. [4] can be thought of as the weighted response
function (in the q space) with respect to the discretized solution space. In theory, one can also
sharpen the computed TDF using a regularizing prior similar to the entropy penalty term in the
PAS approach. Mathematically, this means that, instead of minimizing Eq. [5], we minimize
the following combined cost function:

[14]

Numerically, our experimental results indicate that the TDF approach performs well when
coupled with the 94-direction HARDI protocol. Moreover, as the TDF directly encodes
information on the orientation of the dominant fibers (through the tensor orientation
distribution) as well as their corresponding anisotropy measures, we envisage that the TDF
approach will make it easier to develop a simple and elegant fiber-tracking technique. We are
currently investigating TDF-based probabilistic tractography and we intend to report our results
in future studies.

Last, one may generalize the proposed approach by relaxing the constraint on the tensor space
in the section on Parametrizing the Tensor Space  Section, and compute the TDF with respect
to the full six-dimensional space. However, with its current solution space of four dimensions,
the TDF approach is already computationally expensive. To tackle this issue, we proposed a
multiresolution scheme to compute the TDF more efficiently, although we acknowledge that
our computation speed is still slow compared with other methods (e.g., analytic Q-ball imaging
via Funk-Radon transform), and the convergence of the proposed numerical solution is yet to
be analytically In the future, we will further investigate this issue, at a software (numerical)
and hardware (machine) level.

CONCLUSION
In this article, we introduced the computation of the as a novel method to resolve intravoxel
fiber in HARDI. We presented mathematical formulations the TDF and proposed a projected
gradient descent rithm for the numerical computation of TDF. With constraints on the diffusion
process and the of individual tensors, the proposed approach solves an underlying tensor
ensemble that best describes observed diffusion-weighted MR images. Moreover, offers some
advantages relative to other as the displacement probability function, orientation tribution
function, and principal fiber directions (or tensor orientation distribution function) may all be
derived from TDF through simple analytic relations.
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APPENDIX
Let us first define the notation RHS = Σi E(qi) exp(R(D)) F(D, qi), we then have the projected
gradient descent equation , where L is a Lagrange multiplier. To
determine L, we differentiate the probability density constraint ∫D∈  exp(R(D))dD= 1 with
respect to the artificial time τ, followed by switching the order of differentiation and integration:

[A1]

Thus, we obtain
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[A2]

By invoking the Cauchy-Schwarz inequality, it is straightforward to show that this projected
direction is still a gradient descent direction.
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FIG. 1.
The means and standard deviations of the three distance measures: KL divergence (left
column), L1 norm (middle column), and L2 norm (right column) between the computed ODF
(using Eq. [9]) and the true ODF as functions of SNR (top) and b value (bottom). Here, b values
are scaled by 1,000 sec/mm2 (i.e., a value of 2 represents 2,000 sec/mm2). For each experiment,
a 94-direction HARDI acquisition scheme as described in the theory section was used, and 100
simulations were computed using two-fiber systems with equal volume fractions and 90°
crossing (the FA for each individual fiber is 0.77). As expected, the accuracy of the computed
ODF improves as SNR increases. All three measures decrease as the b value increases from
500 sec/mm2 to around 1,500 sec/mm2, and remain relatively stable before increasing again
around 3,000 sec/mm2.
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FIG. 2.
This figure illustrates the TDF approach applied to the dMRI (axial view of the centrum
semiovale) of a normal subject using the 94-direction HARDI scheme as described in the theory
section. Here, the computed Shannon entropy (SE), exponential isotropy (EI), and ODF plots
are shown along with the structural image (T2). The detailed ODF and TOD plots are also
included for the highlighted region to show the complex local fiber orientation geometries.
Voxel-wise ODFs were min–max normalized and scaled using their GFAs, whereas no
normalization or rescaling was necessary when plotting TOD (TOD is itself normalized as it
is the marginal density function of the TDF). For the visualization of ODFs, we adopted a
conventional color coding scheme in which red corresponds to medial-lateral, green to
anterior–posterior, and blue to superior–inferior orientation. Notice the clear separation
between gray and white matter in the EI plot (here we include a colorbar for this plot to illustrate
typical EI values obtained using the proposed numerical implementations). [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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FIG. 3.
This figure illustrates the TDF approach applied to a coronal slice of the dMRI data in Fig. 2.
Here, the computed Shannon entropy (SE), exponential isotropy (EI), and ODF plots are shown
along with the structural image (T2). The detailed ODF and TOD plots are also included for
the highlighted region to show local fiber orientations. In this regional TOD plot, we notice
the complex fiber-crossing geometries between the corpus callosum and the corona radiata
(i.e., between the red or left–right oriented fibers and the blue or superior-inferiorly oriented
fibers in the regional ODF plot). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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FIG. 4.
The detailed ODF (top left), TOD (top right), GFA (bottom left), and EI (bottom right) plots
of the right centrum semiovale (axial view) in Fig. 2. On the far right is the corresponding
nondiffusion weighted structural image, showing where this region was extracted. Here, the
ODF plot reveals the left–right oriented corpus callosum (C), the superior-inferiorly oriented
corona radiata (CR), and the anterior-posteriorly oriented superior longitudinal fasciculus (S)
and cingulum (CN). Notice that the white matter has higher GFA values but lower EI values
compared with the gray matter, and that the TOD and ODF plots complement each other to
provide better fiber orientation information at a voxel level. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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FIG. 5.
The computed voxel-wise λ2 and λ1/λ2 ratio maps, using Eq. [11], of the brain region in Fig.
4. As the λ2 value differs more than λ1 between gray and white matter, the ratio map (instead
of the λ1 map) is shown here to better visualize the separation between gray and white matter.
Although no spatial constraint was employed when computing these maps (to ensure
neighboring voxels to have similar λ values), the TDF approach still produced maps that are
spatially relatively smooth, with visually identifiable gray/white matter junction and values
consistent with those reported in the literature. The values in the λ2 map are scaled by 10−9

m2 s−1.
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FIG. 6.
The detailed ODF (left) and TOD (right) plots showing: (top row) the crossing between the
left–right oriented corpus callosum commissural fibers (C) and the superior–inferior oriented
corona radiata (CR), and (bottom row) the dispersion of the superior longitudinal fasciculus
(S) in the centrum semiovale region of Fig. 4. The selected regions show where the complex
fiber crossing/dispersion geometries are most evident. The corresponding nondiffusion
weighted structural images indicating where the data were extracted (marked in white) are
shown on the right. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Table 3

Means and Standard Deviations (in Parentheses) of the Maximal Spread and the Weighted Spread for the
Recovered Dominant Fiber Directions as Functions of SNR (20, 30, and 40) and the Angular Separation (30, 45,
60, and 90°) Used for Simulating Two-Fiber Systems (Equal Volume Fractions; FA = 0.77)

Angular separation (°) 30 45 60 90

Maximal spread
 SNR = 40 17.6 (4.6) 50.5 (6.0) 66.7 (5.7) 89.6 (0.5)
 SNR = 30 13.0 (3.2) 47.0 (4.9) 68.0 (5.7) 89.7 (0.5)
 SNR = 20 10.4 (2.5) 40.1 (7.3) 63.9 (5.1) 89.5 (0.3)
Weighted spread
 SNR = 40 13.0 (2.7) 36.5 (3.1) 57.2 (3.0) 90.2 (1.5)
 SNR = 30 10.2 (2.7) 38.0 (2.2) 55.0 (6.3) 90.0 (1.7)
 SNR = 20 8.5 (1.2) 31.5 (5.6) 52.6 (6.1) 89.6 (1.9)

For each angular separation, the 94-direction HARDI protocol described in the theory section was used (with a b value of 3,000 sec/mm2), and 20
simulations were computed. Our results indicate that, in general, a smaller angular separation (less than 45°) coupled with a reduction in SNR translates
to a larger bias for both maximal and weighted spreads, although the TDF approach was still able to recover probabilistic ensembles at 30° (i.e., more
than one peaks were identified in the corresponding TOD; notice that in the case of 30° the ground truth ODF has only one peak). For fibers crossing at
45 and 30°, both maximal and weighted spreads under-estimate the angular separation at low SNR values. For 60°, the maximal spread over-estimates
and the weighted spread under-estimates the angular separation.
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