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Collective Dynamics of Periplasmic Glutamine Binding Protein upon
Domain Closure
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ABSTRACT The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems
responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular
dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the
biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from
two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states
are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous
b-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable
closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when
the associated magnitudes of the eigenvalues are well separated.
INTRODUCTION

Investigations into the complex nature of macromolecular

movements are of outstanding importance for the under-

standing of their biological roles and functioning. Conforma-

tional changes are known to be crucial in catalysis, signaling,

allosteric regulation, complex formation, and substrate

binding.

A natural need that arises is to be able to predict macromo-

lecular motion from structural information typically origi-

nating from x-ray crystallography. Various successful

approaches for characterizing global motion have been re-

ported in the literature (1–3). Common tools are the Mol-

MOV database (2,4,5), which uses morphing technology to

create smooth animated pictures, and DynDom (6–8), which

computes the possible rigid and flexible parts of a protein.

Anisotropic elastic network models (ANM) (9–11), on the

other hand, have been shown to crudely predict macromolec-

ular movements from single crystal structures.

The link between the structure of a molecule and its func-

tion is dynamics. Molecular dynamic (MD) simulation tech-

niques can help in sampling the complicated energy landscape

of biomolecules and their global movements. Analysis

methods like normal mode analysis (12) or principal compo-

nent analysis (13) ((PCA), essentially the same as the quasi-

harmonic method (14) and the effective normal mode analysis

(15) but also known as essential dynamics (16) and other

names in different communities but eventually going back

to work from Pearson (17)), may be applied to dissect them

into a linear combination of independent, one-dimensional

movements and categorize them.
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ATP binding cassette (ABC) transporters can be found

across the three kingdoms of archaea, eubacteria, and eu-

karya (18,19). In Escherichia coli they make up of almost

5% of the genome comprising of ~80 known transporters.

They are involved in many physiological roles, making

them highly interesting for medical as well as commercial

applications. Most ABC transporters show high specificity

for their substrate whereas some others bind to a wider

variety of ligands, but transporters exist for virtually any

molecule that needs to permeate the membrane.

X-ray structures for complete transport systems have

become available only since recently (20). The core structure

of ABC transporters consists of four domains: two a-helical

transmembrane domains spanning the membrane multiple

times, and two domains for the ATP or nucleotide binding

domain in the cytoplasm. Auxiliary domains in the periplasm

(periplasmic binding protein or pBP) may be used for

specific functions like binding the substrate. In Gram-posi-

tive bacteria these are covalently bound to the outside of

the cell due to the absence of an outer membrane, whereas

the pBPs of Gram-negative transporters move freely in the

periplasm (see Fig. S14 in the Supporting Material for illus-

tration). The pBP superfamily may be divided into two

classes, I and II, based on the number of b-strands (21) per

domain. The general structural fold consists of two domains

connected by a common hinge, which is located near the

substrate’s binding site.

The ABC transporter of interest for this work is the gluta-

mine transport system GlnHPQ (EC 3.6.3.21, polar-amino-

acid-transporting ATPase). The structures for GlnP and

GlnQ have not been determined yet but GlnH (referred to as

GlnBP in the following) has been studied by nuclear magnetic

resonance (22–24) and x-ray (25,26). Likewise, the mecha-

nism of association between GlnH and GlnP is unknown

but it is suspected that it is the changed conformation after
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ligand binding that is recognized by the membrane receptor

and initiates transport (see Fig. S14). Kinetical data for both

binding and transport have been measured (27,28) and the

influence of various pH and salt concentrations on stability

and transport has been reported (29). In addition, the role of

the ligand on the thermostability was subject of a recent study

(30) as well as the folding behavior (31).

In theoretical work, the glutamine binding protein has been

subject to molecular dynamics studies earlier. Six-nano-

second MD simulation have been carried out to elucidate

interdomain dynamics and ligand binding of the closed-

ligand, closed-apo, and open-apo states (32). However, one

of the main findings suggested that the dominant global move-

ment of the open-apo form would be a twist-type motion and

not a hinge-type motion, which was ranked as second most

important. Shorter simulations were carried out in later

work (33). Domain movements of the closed-ligand, closed-

apo, and open-apo states were investigated (34) with the

help of the Gaussian network model and the anisotropic

network model, which suggested a hinge motion to be most

dominant and a twist motion to be second.

In related work, MD simulations have been carried out on

the ligand-binding region of ionotropic glutamate receptors

(35,36). This region is closely related, structurally, to GlnBP,

and Mendieta et al. have used 1WDN and 1GGG structures to

model missing loops in GluR2 (35). Stockner et al. observed

the opening/closing mechanism of the maltose binding

protein from MD (37) and Kandt et al. observed the Vitamin

B12 binding protein in a 480-ns multicopy MD simulation

(38). The opening/closing mechanism of the ribose binding

protein was studied via umbrella sampling molecular

dynamics, and a free energy landscape as a function of the

hinge and twist angles was proposed (39). The leucine/

isoleucine/valine binding protein was studied by targeted

molecular dynamics as part of the structure resolution (40).

In this work, we want to shed light on the closing mecha-

nism and on the domain motions of GlnBP. We studied the

protein by MD and subsequent PCA analysis. The principal

modes revealed that a hinge-type movement is the dominant

mode, which corresponds to the biological function of the

protein, i.e., the closing of GlnBP upon ligand binding.

The closure has been observed in two independent MD simu-

lations by use of PCA mode analysis, and these results are

discussed in detail below.

METHODS

Initial structures

Four states of GlnBP—closed-liganded (CL), open-unliganded (OU),

closed-unliganded (CU), and open-liganded (OL)—have been constructed

from crystal structures, as described in this section. The CL (PDB id

1WDN (25)) and OU (PDB id 1GGG (26) chain A) x-ray crystal structures

have been taken from the PDB database (41).

The class II pBP (21) is composed of a small domain (residues 90–180)

and a large domain (1–84 and 186–226) containing both N- and C-termini
Biophysical Journal 97(9) 2541–2549
(Fig. 1) connected by a hinge region (85–89 and 181–185) (26). The ligand,

zwitterionic glutamine, binds with high specificity (Kd¼ 3� 10�7 M at 5�C
and pH 7.2) (27) into the cleft near the hinge region, invoking a large confor-

mational change from an open to a closed state. The x-ray structures suggest

a hinge-type motion of >50�, as visually demonstrated by morphing videos

FIGURE 1 The structure of GlnBP. The top panel shows the modeled

open-liganded GlnBP while the bottom panel shows the final structure

from the OL/N simulation (see Analysis of Closing Trajectories in the

main text). The circle marks the secondary structure (as discussed in

Secondary Structure and Hydrogen Bonds of Hinge Region in the main

text). Key residues (Val14, Asn160, Lys115, Gly119, His156, and Asp157) form-

ing H-bonds to the ligand (compare to Fig. S16) are drawn as stick models.

Key residues between ligand and large domain (Asp10, Phe13, Phe50, Ala67,

Gly68, Ile69, Thr70, and Arg75) are drawn as lines.
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(4,5,42). Almost all contacts between ligand and hinge region are indirect

(25).

Missing hydrogens and the missing carboxy-O of the ligand in 1WDN

were added. In both structures, N- and C-terminal residues were unresolved

by x-ray crystallography (25,26); these were residues 1–3 in 1WDN, and

residues 1–4 and 225–226 in 1GGG, in both chains. These residues were

added and the structures obtained were subjected to brief minimizations

with the coordinates from the frozen PDBs. The N- and C-terminal residues

were acetylated and amidated according to the AMBER standard database.

The protonation states, valid for a pH range of 6.6–7.2, were determined

with Hþþ (43,44). Experiments have shown that ligand binding is unaf-

fected over a pH range of 5–8 and is relatively insensitive to salt concentra-

tions between 0 and 1.0 M KCl (29). Hþþ suggested protonated Glu17,

Asp106, and 3-protonated His156. Whereas the first two residues are at

some distance to the ligand, His156 may be directly involved in hydrogen-

bonding to the glutamine zwitterionic ligand N3156–O3227 (25). The

closed-liganded crystal could be grown at pH 4.6 where His156 is expected

to be fully protonated, but could not be grown at higher pH. In contrast, the

open-unliganded crystal structure was obtained at pH 8.5 (26).

Because the AMBER standard database does not include charges for

zwitterions, these were computed with the RESP method (45,46) for the

AMBER ff03 force field (47). In addition to the crystal structure of the gluta-

mine ligand, two additional minimum structures obtained from preliminary

MD simulations were included in the final fit to the electrostatic potential.

The CU and OL structures were not available and therefore had to be

modeled. For CU we replaced the ligand with five water molecules. The

OL structure was constructed by superimposing 1GGG with 1WDN by

least-square fitting of the binding site, i.e., residues 10, 13, 50, 67–70, 75,

183, and 185 (all large domain), and then transferring the ligand to the

open structure. The large domain is the most likely binding site (48) because

of the higher number of interactions with the large domain and the perfect fit

of the ligand into the binding site, as determined from the solvent-accessible

surface. To check this, we performed two MD simulations with the ligand

attached to the small domain, but neither led to a stable complex.

MD simulations

The initial structures were solvated in a rectangular TIP3P water box and

crystal waters retained (all waters within 4.0 Å of chain A in the case of

1GGG). A single chloride ion was added to neutralize the system. The

four simulation boxes (closed-liganded, open-unliganded, closed-unli-

ganded, and open-liganded) contained ~62,500 atoms (z77 � 85 � 95 Å3

on average during constant pressure simulation) in the case of CL, CU, and

OL, and 61,160 atoms in the OU case. In the two CL and OL cases, an

additional larger box size with ~140,000 atoms was created (z106� 122�
109 Å3). To reach a reasonable starting structure, the systems were slowly

heated over a period of ~100,000 steps in several steps of constant temper-

ature with harmonic positional restraints applied (force constant 25 and

20 kcal mol�1 Å�2). Fifty-thousand additional steps were performed to

switch from constant volume to constant pressure. Both temperature and

pressure were controlled by the Berendsen algorithm (49) with coupling

constants of 0.2 ps�1 and 1.0 ps�1, respectively. Over the course of several

hundred thousand steps, the positional restraints were stepwise-lowered and

eventually switched off. The first five nanoseconds of unrestrained MD

simulations were not included in computing statistical properties, unless

specified.

All hydrogen bonds were constrained with the SHAKE algorithm (50),

allowing a timestep of 2 fs. Coordinates and energies were written every

1 ps. Total unrestrained simulation times comprised 30 ns in each state

and box size unless pointed out below.

Principal component analysis (PCA)

Principal component analysis (13–17) (PCA) is a powerful technique to

assess collective motions by analyzing the (mass-weighted) covariance-vari-
ance matrix of atomic displacements over time. An element aij of the second

moment, matrix A is given as

aij ¼
�
ðxi � hxiiÞ

�
xj �

�
xj

���
; (1)

where xi and xj are the Cartesian coordinates of atoms i and j, and the angle

brackets denote an average over time. Diagonalizing the matrix leads to

eigenvectors from each column vector in W describing the directions of

the collective motion of all atoms, and the associated eigenvalue in the diag-

onal matrix z carries information about the magnitude of motions along the

corresponding eigenvector

AW ¼ W2: (2)

The sum over the diagonal elements of z is a measure for the overall move-

ment. We can assess the similarity between different simulations of states

and of modes by comparing eigenvectors of individual modes and

computing their dot product. The projection vector sm of an eigenvector

wm onto the trajectory T can be computed as

sm¼ T0wm; (3)

where the prime denotes a transposed matrix. The trajectory T is a 3N � K

matrix, where N is the number of atoms and K the number of simulation steps.

RESULTS

Stability and fluctuation of simulated structures

To assess the basic reasonableness of the simulations, analysis

of the root mean-square deviations (RMSD) and root mean-

square fluctuations (RMSFs) have been carried out. The

general picture is that the RMSDs of all simulations develop

into a stable plateau (see Fig. S1 for the total RMSD and

Fig. S2 for per-domain RMSDs) indicating sufficient stability

of the trajectories for further analysis. The RMSD data shows

that the open states fluctuate more strongly than the closed

states, hinting at larger-scale motions. The larger box simula-

tions behave very similarly to the smaller box simulations.

Analysis of the two individual domains suggests that the small

domain deviates less from the crystal structure than the large

domain. In both cases, however, fluctuations are quite small

compared to the total RMSD, meaning that the two domains

move as rather rigid bodies against each other. RMSD statis-

tics is summarized in Table S1.

The RMSF analysis (see Fig. S3) shows that individual

residue fluctuations are quite similar in the four states with

larger motions in the loop regions of the small domain and

smaller fluctuations in the residues binding to the ligand.

The hinge region also shows relatively small RMSFs, but

the fluctuations of the OU simulation and the OL simulations

too, are larger than the others, indicating a less stable anti-

parallel b-sheet. Somewhat larger residue fluctuations were

found in the simulations with the larger box size.

Major collective motions: hinge and twist

PCA was applied to decompose the complex motions into

simpler-to-understand, one-dimensional modes. It is neces-

sary to establish sufficient convergence of PCA modes

(51–54) and thus the reliability of the results for the
Biophysical Journal 97(9) 2541–2549
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subsequent analysis of the global motions in the closure of

GlnBP. We also wish to explore whether certain modes are

more dominant than others, and whether these modes are

linked to the biological functioning of GlnBP.

Table 1 lists the relative contributions of individual, first

three, and first 25 modes to the overall motions of the simu-

lation systems, which reveal that dominant modes are present

in some cases (see Fig. S4). In general, open states display

larger motions and the first mode dominates over all other

modes. The closed states do not show this clear dominance,

and the motion is more evenly distributed over the first few

modes. Both effects are more pronounced in the larger box

sizes, i.e., the first mode of the OL big-box simulation accu-

mulates ~47% (10% for the second) of all motion, whereas

the CL big-box simulation only shows 20% for the first

mode (16% for the second).

Pairwise comparison of individual modes via dot products

(see Table S2) shows that both first mode and second modes

are not very similar to each other. Visual inspection with

VMD (55) and IED (56) shows that the first mode of the

open states is of hinge type, whereas the second mode is

of twist type. The first mode of the closed states is of twist

type and the second mode is hinge type. However, hinge

and twist types between the open and closed states are not

very similar to each other, as is obvious from the dot prod-

ucts and cross correlations (see Table S2 and Table S3).

Further analysis of dot products and cross correlations on

subtrajectories of 5-ns length (see Table S4, Table S5, Table

S6, Table S7, Table S8, Table S9, Table S10, Table S11,

Table S12, Table S13, Table S14, and Table S15) reveals

that for the open state simulations, the direction of the first

mode, and to a lesser extent the second mode, is maintained

in shorter simulation times. In contrast, eigenmodes of the

closed state simulations are not very well reproduced in

shorter simulations.

Secondary structure and hydrogen bonds
of hinge region

In general, the predictions of the MD simulations agree very

well with the x-ray crystallographic data (25,26). A notable
Biophysical Journal 97(9) 2541–2549
exception, however, is the secondary structure in the hinge

region (see Fig. 1). Using the DSSP algorithm (57) as imple-

mented in AMBER’s ptraj utility, we find that the b-sheet

formed by the two hinge strands is effectively broken in

both crystal structures, as residues 89, 181, and 182 cannot

be categorized as having secondary structure.

Interestingly, however, in the CL (both box sizes) and CU

simulations, the secondary structure around these residues is,

in fact, a continuous b-sheet. On the other hand, the open-

state simulations exhibit a secondary structure similar to

the two crystal structures over the entire simulation period.

We tested the stability of the secondary structure in this

region with a few short simulations using a shorter setup

protocol that also used smaller restraints. Two additional

simulations starting from 1WDN (closed-liganded) showed

similar behavior to the CL simulations: in the first, the

continuous b-sheet formed very early, whereas in the second

simulation, the broken b-sheet was maintained for ~3 ns.

Another simulation starting from 1GGG (open-unliganded)

confirmed the result from the OU simulation. We also per-

formed a simulation of 1GGG with a continuous b-sheet

throughout the simulation. Here we find the first PCA

mode to be very close to the open-liganded simulations

(dot products > 0.8) but different from the OU simulation

(dot product ¼ 0.62).

We also removed the ligand from the OL simulation and

carried out two simulations: one starting structure taken

from after the release of the restraints, and the other from

after 15 ns of OL simulation. The secondary structure in

the hinge region remained unchanged in both cases as in

the original OL simulation. The dot products of the first

PCA mode between the latter two simulations and the OU

simulation are 0.83 and 0.94, respectively.

In summary, from these test calculations we confirmed

that binding of the ligand modifies the direction of the hinge

motion. This motion is very different in the unliganded

GlnBP, but becomes more similar to the liganded protein

when the anti-parallel b-sheet becomes continuous in the

hinge region.

Two different H-bond patterns were found in the hinge

region Fig. S15. Whereas Leu90:N makes a H-bond to
TABLE 1 List of MD simulations and contribution of individual, first three, and first 25 PC modes to the total motion

Simulation setup Abbrev. Box size Final structure

Contribution (%)

1st 2nd 3rd First 3 First 25

Closed-liganded CL Normal Closed 21.3 12.6 7.3 41.1 79.0

CL big Big Closed 19.9 16.3 7.0 43.1 79.8

Closed-unliganded CU Normal Closed 17.1 14.5 8.3 39.9 78.8

Open-liganded OL Normal Open 29.9 13.5 7.3 50.7 82.1

OL big Big Open 46.7 10.2 6.3 63.2 86.5

OL/N* Normal Closed 87.3 2.0 1.6 90.9 96.7

OL/N2* Normal Closed 85.0 3.0 2.0 90.0 96.6

Open-unliganded OU Normal Open 42.6 12.2 6.0 60.7 86.0

*For these two cases, restraint MD simulations were done before production. The percentages are computed from PCA analysis over the entire trajectory.

See Analysis of Closing Trajectories in main text for details.
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Leu180:O in the crystal structure and the open state simula-

tions, the closed state simulations make a H-bond to one

residue farther away, that is, to Glu181:O. This also leads

to a more closed structure, as determined from average

RMSD distances (calculated for the small domain after the

large domain had been fixed). In the case of the continuous

b-sheet (Leu90:N–Glu181:O), the RMSDs are ~15.4 Å, while

they are larger than 16.7 Å for the broken b-sheet.

Analysis of closing trajectories

As outlined above, the hydrogen-bonding pattern in the

backbone of the hinge region in the two OL simulations

(both smaller and larger box size) is different from the closed

state simulations. To assess what would happen if we had the

same H-bond pattern, we performed an additional restraint

MD simulation with force constant k¼ 100 kcal/mol applied

to the six f- and j-angles of residues 89, 181, and 182 to

force the region into b-conformation. The restraints were

released after 1 ns and then the simulation (OL/N) was

continued without any restraints. In another simulation

(OL/N2), we kept restraints with k¼ 10 kcal/mol for another

100 ps before release.

We find that both OL/N and OL/N2 simulations start

closing after ~18 ns and 30 ns, respectively. The b-structure

in the three residues 89, 181, and 182 appears to be weaker in

the earlier stage, but is fully formed in the later stage of the

open state (see Table S16). In contrast, neither do the OL or

OU simulations reach the closed state nor do the CL or CU

simulations reach the open state.

The closing of the protein can be analyzed through PCA.

The projections of the first three principal modes are shown
in Fig. 2 for both simulations. The most dominant mode corre-

sponds naturally to the closing motion itself (see Table 1). The

second and third modes do not show a clear trend in any of the

two simulations, although the projections become somewhat

less variable after closure. It can be seen that the onset of

closure is ~18 ns for the OL/N simulation. The projection

suggests that closure is complete at ~20 ns, i.e., the total time-

span to close is roughly 2–3 ns. In the case of the OL/N2 simu-

lation, the protein attempts to close first at ~28 ns, but opens

again at 30 ns. From this time on, the projection progresses

toward closure in two steps. In the first step between 30 ns

and 32.5 ns, the projection decreases only slightly on average,

reaching, temporarily, a deep minimum at 31 ns. In the second

step, the projection between 32.5 ns and 37.5 ns reaches

a plateau, which eventually leads to final closure.

The probability distributions for the projections in Fig. 2

clearly show the locations of both the open and the closed

states along the reaction coordinate, i.e., the first principal

mode. However, the free energy profile is too rugged in

the intermediate regions to allow an estimate of the activa-

tion free energy.

In Table 2 we summarize cross correlations for the first

three modes between the three OL simulations. The two

closing simulations OL/N and OL/N2 match each other

very well. The comparison of PCA vectors of the initially

open states with the OL simulation also shows quite high

similarity between the first two modes.

In Table 3 we summarize cross correlations for the first

three modes between the open liganded and open unliganded

simulations. The coordinates of the ligand have been

removed from the eigenvectors to enable comparison. We
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find low similarity between the initially open states and the

open-unliganded OU simulation in all three modes.

Fig. 3 plots the first PCA vector (x axis) versus the second

PCA vector (y axis) together with the probability distribu-

tions. Moving from the open (left) to the closed (right) state

along the first mode (hinge motion, see discussion above),

we find four relatively well-separated patches in the OL/N

simulation. These patches correspond to the plateaus found

in the projection of the first mode (Fig. 2). The first patch cor-

responding to the open state shows a larger variance in both

dimensions. The two intermediate patches as well as the last

patch are confined to a smaller space.

The OL/N2 simulation also displays four patches, but the

second one from the right is less well separated from the

other intermediate patch, indicating a smaller barrier

between these two substrates. The open state patch is quite

spread out along the second mode dimension, similar to

the second patch.

Fig. S16 shows the formation of the hydrogen bonds

between the Gln ligand and the residues Lys115, Gly119,

His156, and Asp157 from the small domain in the closing

simulations. The first new H-bond that is created between

the small and the large domain in the closing event, however,

is between Asn160:ND2 (helix VI, residues 158–167) and

Val14:O. Correspondingly, the distance between helix VI

and helix VIII increases (residues 212–220), which is neces-

sary to achieve closure. The Tyr163:CA–Phe221:CA distance

has been chosen as a measure, and this distance increases

from ~5.5 Å to ~9.5 Å, indicating the progress of closure.

Asp157, the residue spatially closest to the ligand in the open

state, forms the H-bond ~1 ns later than Val14:O–Asn160:ND2

in both simulations. Lys115 forms a very strong H-bond ~1 ns

later than Asp157 in the OL/N case, but several nanoseconds

later in the OL/N2 case. The backbone of Lys115 also appears

to be more rigid than other lysines, i.e., the residue’s side

chain points away from the small domain in a rather constant

TABLE 2 Eigenmode cross-correlations between OL

simulation and the OL/N and OL/N2 simulations while still open

Mode OL/N versus OL/N2 OL/N* versus OL OL/N2y versus OL

First 0.97 �0.91 0.86

Second 0.84 0.69 0.70

Third 0.62 0.19 �0.38

*First 15 ns.
yFirst 20 ns.

TABLE 3 Eigenmode cross-correlations between open

liganded and open unliganded simulations

Mode OU versus OL OU versus OL/N* OU versus OL/N2y

First �0.47 �0.54 �0.49

Second 0.13 0.09 0.04

Third 0.04 0.38 �0.22

Note that the coordinates of the ligand have been ignored in this comparison.

*First 15 ns.
yFirst 20 ns.
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angle, which could possibly facilitate hydrogen-bond forma-

tion. His156 stays at positions of ~4.0 Å and comes closer only

temporarily, thus not really forming a H-bond. Gly119 arrives

at similar distances but only long after closure, due to a local

rearrangement in the backbone in the OL/N case but much

earlier in the OL/N2 case.

A key vdW interaction has been identified (26) between

Gln227:N and Tyr185:CE with a distance of 3.62 Å in the

crystal structure (26). We also find this interaction in our

simulations with average distances of 3.69 Å in the CL simu-

lation and 3.85 Å in the OL simulation (the two equivalent

3-Cs switch position after 4 ns). The difference in fluctua-

tions of Tyr185 in the OU and OL simulations, however,

seems to be not too large, i.e., the ligand obviously fixes

the Tyr185 location only a little. In addition, there appears

to be only a small effect on the Tyr185 backbone when

comparing CL and OL simulations. OL tends to be larger

by 6� on average in both backbone dihedrals.

Comparison of the open-unliganded and closed-liganded

crystal structures (25) suggests that the hinge motion is

centered around residue 89 on one strand and residue 181

on the other strand. The most significant changes in back-

bone dihedral angles were found in the f-angle of Gly89

with 41.1� and the j-angle of Glu181 with 34.3�.
A rigid body analysis with DynDom (6–8) suggests that the

hinge angle of the first mode is 54� in both simulations, based

on the respective average structures of open and closed states.

The hinge residues are 87–89 and 180–183 (OL/N) and

88–89 and 180–183 (OL/N2). Table S17 compares DynDom

with the MD simulations. The torsions most strongly affected

in MD are in residues 89, 90, and 181–183. For comparison,

an ANM analysis has been carried out (see Table S13) to

estimate mean-square deviations (MSDs) in the hinge region.

The data shows that residues 181–186 are least flexible in the

OL simulation whereas residues 85–89 show very similar

MSDs for the three simulations OL, OL/N, and OL/N2.

The MD simulations results were obtained from the differ-

ences in the average dihedral of open and closed states. In
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some cases, dihedrals fluctuated quite strongly and thus, are

only rough estimates. However, we also find a clear stiff-

ening in some torsions after closure in agreement with the

closed-state simulations. In general, DynDom and MD simu-

lation results compare quite well (see Table S16).

DISCUSSION

In this article, we have used molecular dynamics and prin-

cipal component analysis to investigate the dynamics and

closure of glutamine binding protein. We have shown that

PCA is a valuable tool in understanding global motions of

proteins including transitions between different states, e.g.,

from open to closed state.

Size effects appear to play a role for the global domain

motions. The large amplitude motions of the larger box sizes

and hence slower domain movements may indicate that

closure is less likely to be observed. However, this effect

is only minor, and it is therefore reasonable to assume that

the simulations with the smaller box sizes are sufficient to

describe global motions and closure.

Convergence of collective motions

We have demonstrated that even relatively short simulations

may yield plausible PCA modes in the case of the 226-

residue GlnBP. However, this appears to depend on several

factors like the separation of the magnitudes of eigenvalues

from each other or the size of the simulation system. Other

influences may come from the choice of the starting structure

as well as the simulation length. This would explain why

Pang et al. have found the most dominant mode of the

open-unliganded protein not to be of hinge-type motion in

their recent 6-ns MD simulation on GlnBP (32).

In the open cases, whether liganded or not, the first mode

is very well separated from the second mode. It is in these

simulations where we also observe the fastest convergence,

i.e., even short 5-ns patches would be able to predict motions

very similar to the ones obtained from much longer

simulations.

In the closed simulations, the first modes do not separate

so clearly from each other, i.e., their eigenvalues are of

very similar magnitude. In these cases, their associated

eigenvectors are more likely to be dissimilar on comparison

of short trajectory patches. In other words, achieving reliable

results is more difficult even on longer timescales.

Closing mechanism

PCA suggests that the hinge-type motion is the dominant one

in the open states. However, the direction of the hinge

motion was found to be different in the simulations depend-

ing on the secondary structure in the hinge region and the

presence of the ligand. The crystal structures 1WDN and

1GGG (25,26) suggest a discontinuous anti-parallel b-sheet

in the hinge area with a bend at residue 181. Interestingly,
the structurally very closely related glutamate/aspartate

binding protein (also of pBP type II) with a sequence identity

of only 24% was recently found to have a continuous anti-b-

sheet in the closed-liganded x-ray structure (58).

This hinge motion was found to be very similar in the

open-liganded simulations OL, OL/N, and OL/N2. OL

displayed a broken b-sheet in the hinge area while OL/N

and OL/N2 have a continuous b-sheet. The binding of the

ligand obviously modifies the direction of the hinge motion

toward closure. Although the OU simulation with broken

b-sheet showed a hinge motion that was very different

from the hinge motion of the open-liganded simulations,

with a continuous b-sheet the observed dominant motion

was very similar to the open-liganded simulations. The

RMSF (see Fig. S3) suggests a more flexible hinge region,

and thus, a less stable secondary structure in the OU and

OL simulations. The role of the ligand is to induce the forma-

tion of a continuous b-sheet by switching the hydrogen bond

from Leu90:N–Leu180:O to Leu90:N–Glu181:O, and thereby

to stabilize the structure.

The first modes of the CL, CU, and OU state simulations

were found not to resemble each other, which implies that

previous findings from ANM analysis (34) are not correct.

The CL and CU simulations were not found to show a

preferred dominant mode.

The ligand has only indirect connections to the hinge resi-

dues Tyr185 and Gln183 through hydrogen bonds. Gln184 and

Ala182 point away from the ligand, and hence, their side

chains do not contribute to the closure. Glu181 shows only

weak H-bonding (25%) to the backbone of Ala182 in the

continuous b-sheet simulations. It appears, therefore, that

the hinge side chains probably play a minor role, at most,

in closure, and therefore the information from ligand binding

propagates through the backbone. The detailed interactions

between the ligand and the protein (see Fig. 1) were not

found to be significantly different in the three open-liganded

simulations.

Two closures of GlnBP starting from two independent

trajectories were observed. However, to achieve this we had

to force three backbone residues into a certain backbone

pattern leading to a continuous anti-b-sheet in the hinge

region. The question is whether the closure in the OL/N and

OL/N2 simulations is not simply an artifact of the initially

applied restraints. However, the two closures occurred at

18 ns and 30 ns, respectively, after the release of the restraints.

This allows for sufficient time to attain a new equilibrium.

Comparing the PCA of the closing reaction to the small

domain RMSD after fixing the large domain in space, and

the projection of the first mode in the two closure simula-

tions, shows very close correspondence. This suggests that

the reaction coordinate could indeed be approximated by

either measure. However, the detailed reaction mechanism

is more complicated. Ravindranathan et al. (39) described

the closing and opening of the ribose binding protein in

terms of a two-dimensional free energy landscape as
Biophysical Journal 97(9) 2541–2549
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a function of the hinge and twist angles. Our plot of the first

two modes against each other also shows that the dominant

hinge motion is accompanied by a twist motion.

The statistics from only two closure events is not sufficient

for furnishing enough detailed information about the mech-

anism. E.g., the analysis of f- and j-angles turned out to

be rather noisy, although reasonable agreement with rigid

body analysis (Table S17) was found when average dihedral

angles were compared. In addition, no estimate of the reac-

tion rate of the process can be given. This will be left to

subsequent studies.

The two closure simulation presented here do, however,

give some insights. The two-dimensional projection plot

(see Fig. 3) suggests that there are two intermediate states.

The OL/N2 simulation exhibits larger amplitude twist

motions in the second intermediate state and less well-sepa-

rated states. In addition, the transitions between the open and

first intermediate state are located at different positions along

the y axis, but the two other transitions are located at very

similar positions. The hydrogen bonds do close in a certain

order (see Fig. S16) in both simulations, but this is a natural

consequence from the change in spatial distances between

small and large domains during closure.

Summarizing the picture drawn from the closing event

above, it appears that the mechanism of closure is the sum

of tiny statistical events. The hinge motion is the natural

motion of GlnBP and the ligand steers the movements

toward the closed state. The free energy hyper surface is

thereby modified in such a way that the likelihood of closure

is larger when the ligand is present than when it is not. From

the viewpoint of principal component modes, the open state

must pass through several low dimensional funnels to reach

the closed state. These funnels are well presented by the first

few dominant PCA modes.
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