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Gating Transition of Pentameric Ligand-Gated Ion Channels
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ABSTRACT Pentameric ligand-gated ion channels are an important family of membrane proteins and play key roles in
physiological processes, including signal transduction at chemical synapses. Here, we study the conformational changes asso-
ciated with the opening and closing of the channel pore. Based on recent crystal structures of two prokaryotic members of the
family in open and closed states, respectively, mixed elastic network models are constructed for the transmembrane domain. To
explore the conformational changes in the gating transition, a coarse-grained transition path is computed that smoothly connects
the closed and open conformations of the channel. We find that the conformational transition involves no major rotations of the
transmembrane helices, and is instead characterized by a concerted tilting of helices M2 and M3. In addition, helix M2 changes
its bending state, which results in an early closure of the pore during the open-to-closed transition.
INTRODUCTION

Pentameric ligand-gated ion channels (1,2) (pLGICs) are

a family of membrane proteins that open or close in response

to ligand binding or pH change. They share a common struc-

tural scaffold of five subunits, each consisting of an extracel-

lular ligand-binding domain (ECD) and a transmembrane

channel domain (TMD). Some notable members of the

family, such as the nicotinic acetylcholine receptor, play crit-

ical physiological roles in signal transduction at neuromus-

cular synapses, and are major targets for psychoactive drugs.

Despite significant progress in the structural investigation

of pLGICs, the highest resolution structure of a complete

eukaryotic pLGIC so far is at ~4 Å, obtained by electron

microscopy (3,4). In contrast, the structures of two prokary-

otic pLGICs have recently been determined by x-ray crystal

diffraction. The structures of ELIC (5) from bacterium Erwi-
nia chrysanthemi and GLIC (6,7) from Gloeobacter viola-
ceus have both been determined at high resolution by x-ray

crystallography, and seem to represent closed and open

conformations of the ion channel, respectively. Despite their

only moderate sequence similarity, the two proteins have the

same overall architecture, with close correspondence on the

structural level (6,7), in particular within their TMDs.

The structures of ELIC (5) and GLIC (6,7) in the closed

and open states thus provide an opportunity to study the

gating transition of pLGICs at an atomic level. The structural

changes associated with the opening and closing of ion

channels have been studied extensively for a number of

channels by a variety of experimental and theoretical

methods (4,8–27). Elucidating the motions associated with

the channel gating transition, and their coupling to ligand

binding, is not only of fundamental interest, but may also

aid in the design of ligands that interfere with channel activa-

tion in a controlled way.
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Here, we explore the structural changes during the open-to-

closed transition of the channel with the help of coarse-

grained representations. Coarse-grained energy functions

offer a powerful tool to study large-scale motions in proteins

(28–31). In elastic network models (ENMs) (32–36), proteins

are treated as deformable elastic bodies, permitting an almost

analytical treatment. ENMs and normal mode analyses have

been applied to study motions of the acetylcholine receptors

(19,21), ELIC (22), and GLIC (7). However, the harmonic

energy surfaces of ENMs may not fully capture large, inher-

ently nonlinear conformational changes. Also, traditional

ENMs involve only a single energy minimum, and therefore

are not immediately applicable to studies of the transition

between multiple states, such as the open and closed states

of ion channels. To extend ENMs to proteins with multiple

conformations, mixed elastic network models (MENMs)

have been developed (37), among other methods (38–41).

MENMs can be used to construct a transition path that

smoothly connects two conformations of a protein. In this

study, we develop an MENM of the conformational transition

between the open and closed states of the ELIC and GLIC

pentameric ion channels, focusing in particular on the trans-

membrane domain. By studying a transition path between

the open and closed conformations, we can identify details

of the possibly nonmonotonic motions and the sequence of

events, which cannot be deduced from the static endpoint

structures alone.

METHODS

In this section, we will give a general introduction to the MENM method,

and then describe the specific procedures of modeling the ELIC and GLIC

systems using this method.

Mixed elastic network models

In an MENM of a protein, the harmonic energy surfaces of multiple ENMs

are combined to construct an overall anharmonic surface with multiple
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minima corresponding to different metastable states (here ‘‘open’’ and

‘‘closed’’). In an ENM, a protein is modeled as an elastic solid, described

as beads connected by harmonic springs. Each Ca atom in the protein back-

bone is represented by a bead, and the protein coordinates are collectively

represented by a vector ~x in 3N dimensional space, where N is the

number of Ca atoms in the protein. ENMs are constructed from a given

native protein structure with coordinates ~x0. The energy function in an

ENM is then given by

Eð~xÞ ¼ 1

2

X
d0

ij
<RC

C
�

dij � d0
ij

�2

; (1)

where dij is the Euclidian distance between Ca atoms i and j in structure~x,

and d0
ij is the corresponding distance in the reference structure~x0. According

to this definition, if the distance d0
ij in the native protein structure is within

a given cutoff distance RC, the pair i,j of Ca atoms is connected by a harmonic

spring with force constant C and equilibrium length d0
ij .

The energy function in Eq. 1 can be expanded to second order near the

minimum~x0:

Eð~xÞz1

2
ð~x �~x0ÞTHð~x �~x0Þ; (2)

where H is the Hessian matrix. This expression can be more easily analyzed

by linear algebra, and is therefore adopted as the actual energy function here.

Although in principle the second-order expansion is only accurate near the

minimum~x0, Eq. 2 has been used frequently in ENM and MENM studies

of large-amplitude protein motions (32,37) to enable analytical treatments.

By construction, Eq. 2 preserves the property that the energy minimum is

located at~x ¼~x0 with Eð~x0Þ ¼ 0, as is the case for Eq. 1.

Now we consider a scenario in which a protein has two different confor-

mations (such as open and closed), denoted by~x1 and~x2, respectively. Two

ENM energy functions can then be constructed for these conformations

according to Eq. 2, Eið~xÞ ¼ ð~x �~xiÞTHið~x �~xiÞ=2 with i¼ 1,2. In MENMs,

a global energy function combines the two potentials (37) as

Eð~xÞ ¼ �b�1ln
�
e�bðE1ð~xÞþ 31Þ þ e�bðE2ð~xÞþ 32Þ

�
; (3)

where b ¼ 1/kBTm with kB being the Boltzmann constant. This energy func-

tion retains ~x1 and ~x2 as approximate local minima. The MENM energy

function Eð~xÞ involves free parameters 31 and 32 for energy offsets, and

Tm for the mixing temperature (37). The difference in energy offsets 32 � 31

can be considered an energetic driving force for the transition, with 31 an

arbitrary constant. Tm determines the height of the barrier between the two

states. We note that the Boltzmann-weighted mixing of two structure-based

energy surfaces in Eq. 3, introduced by Best et al. (28) for protein conforma-

tional changes, is related to the quantum-mechanical mixing in valence bond

models, as introduced independently by Maragakis and Karplus (38) in their

plastic network model (PNM). The main practical difference between the

MENM and PNM approaches is that in the latter the anharmonic surfaces

Eq. 1 are used.

Based on the energy function Eq. 3, several methods can be used to deter-

mine a transition path between the two conformations (37). In this study, we

adopt the definition of a ‘‘parameter-independent’’ transition path (37),~xðf Þ,
defined as a function of a weighting parameter f ˛ [0,1] and independent of

b, 31, and 32, as well as the particular mixing scheme (statistical-mechanical

mixing (28), Eq. 3, or valence-bond mixing (38)). At each given f,~xðf Þ is

determined by

½ fH1 þ ð1� f ÞH2�~xðf Þ ¼ fH1~x1 þ ð1� f ÞH2~x2: (4)

By construction, all minima and saddle points of the MENM energy surface

Eq. 3 lie on the path~xðf Þ. Moreover, this path is the trace of the saddle points

of the energy function Eð~xÞ in Eq. 3 as the energetic driving force 32 � 31,

provided here by ligand binding to the ECD, is varied from �N (favoring

the open state) to þN (favoring the closed state) (37). This parameter-inde-
pendent transition path has been shown to agree closely with the steepest

descent and minimum free energy paths (37).

We note that the transition path~xðf Þ defined in Eq. 4 coincides with the

minimum of the weighted energy function Uð~x; f Þ obtained by linear inter-

polation,

Uð~x; f Þ ¼ fE1ð~xÞ þ ð1� f ÞE2ð~xÞ; (5)

with Uð~x; f Þ being a harmonic function. As f is varied from 0 to 1, Uð~x; f Þ
gradually changes from E2ð~xÞ to E1ð~xÞ, and its minimum point~xðf Þ traces

the transition path between~x2 and~x1.

System setup

The focus here is primarily on the structural changes in the TMD during the

gating transition of the channel. We thus exclude the ECD in the MENM.

Our MENM was constructed from the closed and open conformations of

pLGICs as defined in the crystal structures of ELIC (Protein Data Bank

(PDB) code 2VL0) (5) and GLIC (PDB code 3EHZ) (6), respectively.

Despite the relatively small sequence identity, the sequence alignment

between ELIC and GLIC is unambiguous in the core of the TMD formed

by helices M1, M2, and M3 (see below), without the presence of any gap

(5–7). We thus use the TMDs of ELIC and GLIC as reference structures

in the MENM. In contrast, gaps are present in the sequence alignment of

the two ECDs, which sense different signals (ligand binding in ELIC versus

pH change in GLIC). Moreover, the ECDs from the two independently

determined GLIC crystal structures (PDB codes 3EHZ and 3EAM) (6,7)

in the open state are structurally less consistent than their TMDs, with a

backbone Ca root mean-square deviation (RMSD) of ~1.7 Å for the ECD

and ~0.5 Å for the TMD. In contrast, the conformational difference between

the ECDs in the ELIC and GLIC structures is small compared to that

between their TMDs (6). Nevertheless, we caution that the removal of the

ECD may alter the collective motions of the protein, and the MENM with

only the TMD may not fully capture the transition path of the intact channel.

Therefore, we will later describe results for an ENM that incorporates the

ECD, allowing us to study the coupling between the two domains.

The TMD of each of the five subunits in ELIC or GLIC is composed of

four helices, denoted as M1–M4. The last helix, M4, is located at the

periphery of the transmembrane pore and only loosely interacts with other

helices (5). Moreover, sequence alignment between ELIC and GLIC shows

gaps in the loop connecting M3 and M4, and this loop is also highly variable

in a sequence comparison of prokaryotic and eukaryotic pLGICs. We there-

fore exclude the loop and M4 from our model. Consequently, unless explic-

itly noted otherwise, our system contains residues 200–283 in ELIC (PDB

code 2VL0) (5) or equivalently 193–276 in GLIC (PDB code 3EHZ) (6),

thus including 84 Ca atoms in each subunit or a total of 420 Ca atoms in

the pentameric protein. These residues represent helices M1–M3 and the

two connecting loops, defining the ‘‘common core’’ (7) of the TMD.

A model with M4 also incorporated will be briefly discussed later.

In both ELIC and GLIC, the five subunits are identical in sequence and

highly similar in the resolved crystal structures (5–7). In constructing the

MENM, we enforced perfect fivefold symmetry on the Ca backbone of

the TMD. First, the symmetry axis was identified by averaging the coordi-

nates over each quintet of corresponding Ca atoms in the subunits and

then fitting a line through the averaged points. Next, one of the subunits

was set as reference, and the other four were each rotated by a multiple of

72� around the symmetry axis to overlap with the reference. Finally, the

coordinates of the five overlapping subunits were averaged and then rotated

back to reconstruct the pentamer. The resulting pentameric structure is guar-

anteed to assume a perfect fivefold symmetry. The RMSD between the

symmetrized structure and the original one is 0.14 Å for ELIC (5) and

0.09 Å for GLIC (6). We note that even if the symmetry is present in both

native conformations, in principle the transition path could still be asym-

metric. For the a7 nicotinic receptor with its homo-pentameric composition,

pronounced asymmetry in the apo state, in contrast to a more symmetric

ligand-bound state, has been observed in molecular dynamics simulations
Biophysical Journal 97(9) 2456–2463
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(20). Both symmetric and asymmetric motions have also been identified

among the dominant normal modes for the a7 receptor, depending on the

adopted homology model and the degree of symmetry present in the model

(21). Here, with the transition endpoints defined by the structures of ELIC

and GLIC being symmetric, and under the assumption of a harmonic energy

surface (Eq. 2) in the ENMs, all snapshots along the MENM transition

path will have the same fivefold symmetry. Asymmetric transition

paths with symmetric end conformations can only arise from anharmonic

potentials.

An RMSD alignment was first carried out to superimpose the symme-

trized structures of ELIC and GLIC. The coordinates of the two aligned

structures were then taken as the beginning and end states, ~x1 and ~x2, of

the MENM. We consistently used a cutoff of RC ¼ 9 Å, and also confirmed

that using RC ¼ 10 Å gives similar results (not shown). To trace the transi-

tion path between the open and closed configurations, the weighting

parameter f was varied from 0 to 1 with a step size of 0.01, and for each

f the coordinates~xðf Þ were calculated by solving the linear equations given

in Eq. 4. The symmetrization procedure described earlier ensures that~x1,~x2,

H1, and H2 all exhibit a perfect fivefold symmetry, and consequently such

symmetry is also present in each calculated ~xðf Þ. We note that although

the energy function in Eq. 1 is invariant to rigid-body rotations, the approx-

imate energy in Eq. 2 will change under finite rotations of~x. As a result, the

calculated~xðf Þ from Eq. 4 is in general not optimally aligned with the refer-

ence conformation at f ¼ 0 or f ¼ 1. A postprocessing step was therefore

carried out to align each~xðf Þ with the reference.

As f is varied from 0 to 1, the snapshots of each~xðf Þ trace the transition

path in the multidimensional configuration space. Whereas f is spaced

evenly between 0 and 1, the snapshots of~xðf Þ are not necessarily distributed

evenly along the transition path. Therefore in some of the analyses we adop-

ted a ‘‘progression parameter’’ instead of f to describe the advancement

along the path. For a given snapshot on the path, the progression parameter

is defined as the curve length between the initial state and the snapshot

normalized by the total length of the path. In practice the curve length

was approximately calculated by summing up the RMSDs between adjacent
Biophysical Journal 97(9) 2456–2463
snapshots on the curve. The initial (open) and final (closed) states then corre-

spond to progression parameters of 0 and 1, respectively. Moreover, the

snapshot corresponding to a progression parameter of 0.5 is defined as the

midpoint conformation, with equal curve lengths to the initial and final

states.

RESULTS

The conformations of the initial, final and midpoint states in

the transition path are shown in Fig. 1, a and b. The ion-con-

ducting pore is located at the symmetry axis of the pentamer.

The radii of the pore along its axis were calculated for these

three states, as shown in Fig. 1 c, using the program HOLE

(42). The radius profiles were calculated based on the coor-

dinates of the Ca atoms only, each being assigned an atomic

radius of 3 Å. Nevertheless, the profiles for the closed and

open conformations share similar trends with those obtained

from all-atom models (5–7). In particular, the open and

closed structures exhibit narrow constrictions near the intra-

and extracellular entrances of the pore, respectively.

However, the narrow region near the intracellular end is

formed by polar and charged residues, and is believed not

to prevent ion conduction (6,7). In contrast, the constriction

region (indicated by the arrows in Fig. 1c) near the extracel-

lular end is formed by bulky hydrophobic residues that may

completely block the pore, and therefore is believed to be the

actual gate of the channel. We note that the pore radii in the

midpoint state (Fig. 1 c) of the transition closely match those

in the closed state throughout the constriction region in the
a

b c

FIGURE 1 Comparison of the closed, open, and

midpoint conformations in the transition path. (a) Top

view from the extracellular side. The helices in one of the

subunits are labeled. (b) Close-up view of two M2 helices

with the extracellular side up. The line represents the

symmetry axis (or the pore axis) of the protein. The arrows

indicate the tilting motion of M2 during the open-to-closed

transition. Molecular images were rendered in VMD (49).

(c) Pore radius along its axis, calculated from the Ca coor-

dinates using the program HOLE (42). The pore axis points

from the intracellular side on the left to the extracellular side

on the right. The two arrows indicate the hydrophobic

region of the pore that serves as the gate for ion blockage.
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extracellular half of the pore, which suggests that the pore is

closed halfway through the transition. The evolution of the

pore radii during the transition is closely related to the orien-

tation and the bending state of helix M2, as will be discussed

later.

Geometric characteristics of each transmembrane helix

(defined in Table 1) were analyzed using the program

TRAJELIX (43) in the Simulaid package. The axis of each

helix was identified for each snapshot along the transition

path. Fig. 2 shows the angles between the helix axes along

the transition path and their initial (open) and final (closed)

states, respectively. The orientations of helices M2 and M3

undergo a larger change (~12�) in comparison to M1 (~5�).
Remarkably, the curves for M2 and M3 closely match

each other, indicating that the axes of these two helices

move in a highly concerted manner during the transition.

The concerted motion of M2 and M3 is also shown by moni-

toring the angles formed by the two helix axes. As shown in

Fig. 3, the angle between M2 and M3 remains relatively

constant along the transition path, with a maximum variation

of less than 1.7�. In contrast, the M1–M2 or M1–M3 angle

varies by ~8� during the transition. The above data thus agree

with the proposed mechanism (6) that M2 and M3 move as

a rigid body in the gating transition and that the movement of

M1 is small compared with M2 and M3.

The rotation angles of each helix around its own axis

during the transition were also calculated using TRAJELIX

(43). The evolution of the helix rotation with respect to the

open or closed conformation is shown in Fig. 4. We find

that the curves are nonmonotonic, indicating that the direc-

tion of the rotation changes during the transition. Neverthe-

less, the magnitude of the rotation for each helix is less than

~6�, which is small in comparison to the ~100� separation in

azimuth angle between adjacent Ca atoms in an a helix.

As mentioned in Methods, the last transmembrane helix,

M4, in each subunit is not included in our model. To

examine the possible effect of this exclusion, we built

another MENM that incorporates M4 (residues 293–316 in

ELIC or 288–311 in GLIC) (5,6) as well as M1–M3, but

not the loop between M3 and M4 due to gaps in the sequence

alignment. The new transition path (not shown) computed

from this MENM is similar to the one with M4 excluded,

confirming that M4 does not play major roles in the gating

transition.

Because the energy function defined in Eq. 1 considers the

locality of the residues only in space but not in sequence, one

might be concerned whether the local geometry of the

protein is preserved in the transition path. To investigate

TABLE 1 Residue numbers in ELIC (PDB code 2VL0) (5) and

GLIC (PDB code 3EHZ) (6) for each transmembrane helix

M1 M2 M3

ELIC 201–219 227–250 260–282

GLIC 194–212 220–243 253–275
the issue, we built an MENM based on modified energy

functions in which the spring constants between nearby Ca

atoms (within four residues in sequence) in each helix are

increased 10-fold. This sequence-dependent energy function

is expected to enforce stronger constraints on the local geom-

etry of the transmembrane helices. However, the transition

path (not shown) calculated from the new MENM turns

out to be very similar to the one described above, suggesting

that no large deformation of the local helical structure occurs

in either path, as is also confirmed by a visual inspection of

the transition trajectory.

Despite the well preserved local geometry of the trans-

membrane helices, some moderate bending of the helices

FIGURE 2 Orientation of the helices (M1, M2, and M3) relative to the

open and closed structures. 41 (solid lines) measures the angle of the helix

axis along the transition path relative to the initial open state, and 42 (dashed

lines) relative to the closed state (see inset; note that the solid lines for M3

and M2 overlap with each other so that the latter becomes almost invisible.)

FIGURE 3 Interhelix angles during the transition. At each snapshot the

helix axes for M1, M2, and M3 are identified, and the angles between

M1–M2, M1–M3, and M2–M3 are calculated and plotted in the figure.
Biophysical Journal 97(9) 2456–2463
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can be discerned in the transition trajectory. To quantify the

degree of bending, we calculated the angle between the axes

of the top and bottom halves of each helix. The bending

angles of transmembrane helices M1–M3 along the transi-

tion path are shown in Fig. 5. Interestingly, along the transi-

tion from the open to the closed state, helix M2 first

straightens (with decreasing bending angle) and then bends

again (with increasing bending angle). By visual inspection

of the path from the open to the closed state, we found that

the conformational change in M2 proceeds in two steps.

First, the extracellular half of the helix undergoes an inward

movement toward the center of the pore, resulting in

a straightening of the helix. Then, the intracellular half of

FIGURE 4 Rotation of each transmembrane helix (M1, M2, and M3)

around its own axis during the transition. The rotation angles calculated

with respect to the open and closed conformations are plotted as solid and

dashed lines, respectively.

FIGURE 5 Bending angles for each helix (M1, M2, and M3) during the

transition, defined as the angle between the axes of the top and bottom halves

of the helix.
Biophysical Journal 97(9) 2456–2463
M2 moves away from the center whereas the other half

undergoes very little movement, thus re-introducing a kink

in the closed conformation. Because M2 is the innermost

transmembrane helix and forms the lumen of the ion-con-

ducting pore, the bending in this helix has a nontrivial effect

on the pore radius. Particularly, at the midpoint of the transi-

tion path, the extracellular half of M2 has already moved to

its closed-state position whereas the intracellular half has

remained near its open-state position (Fig. 1 b). The pore-

radius distribution of the midpoint conformation thus

matches that of the closed state in the top part of the pore,

where the hydrophobic gate is located, and that of the open

state in the bottom part (Fig. 1 c).

The MENMs described so far represent the transmembrane

domain (TMD) of the protein only but not the extracellular

domain (ECD), and therefore cannot reveal conformational

changes in the ECD during the gating transition. As discussed

in the Methods section, it is more challenging to incorporate

the ECD in MENMs, due mainly to the poorer sequence simi-

larity between ELIC and GLIC in that domain. However,

single ENMs can be constructed for the entire ELIC or

GLIC protein. These ENMs can then be used to explore the

coupled motions of the ECD as the TMD undergoes the

open-to-closed transition. Specifically, in the ENM, the Ca

protein coordinates ~x can be divided into ~xe and ~xt for the

ECD and TMD, respectively. The Hessian matrix H can be

similarly divided, and the energy function in Eq. 2 can be

expressed as

E ¼ 1

2

�
D~xT

e D~xT
t

� �Hee Het

Hte Htt

	�
D~xe

D~xt

	
: (6)

When~xt is fixed, the~xe that minimizes the energy satisfies

HeeD~xe þ HetD~xt ¼ 0: (7)

Then for any given ~xt, the coordinates ~xe for the ECD can

be determined from Eq. 7. In the following, we force the

TMD coordinates ~xt to follow the transition path ~xðf Þ of

the gating transition, and determine the ECD conformation

~xe that best adapts to the given TMD coordinates according

to Eq. 7.

We constructed an ENM based on the GLIC crystal struc-

ture (6) and obtained a trajectory of the ECD that follows the

given TMD transition path, as described above. As shown in

Fig. 6 a, the most prominent change of the ECD in the

open-to-closed transition is a clockwise rotation around the

symmetry axis when viewed from the extracellular side,

which represents a quaternary twist (7,19) between the ECD

and TMD. As shown in Fig. 6 b, when the TMD is superim-

posed against the ELIC crystal structure, the RMSD for

the ECD is decreasing during the open-to-closed transition,

indicating an increasing resemblance to the closed ELIC

conformation. However, such effect is due mainly to the rota-

tion of the ECD described above, as the RMSD after superim-

posing the ECD does not change much. The largest internal
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conformational changes in the ECD occur in the interface

region next to the TMD, characterized by inward movements

of the ECD loops in that region, following similar motions of

the adjacent helices and loops in the TMD. Such inward

motions also result in a tilt of the ECD subunits that produces

a small outward movement in the distal end of the ECD (Fig. 6

a, left). Analogously, we also constructed an ENM based on

a

b

FIGURE 6 (a) Crystal structures of GLIC (6) and ELIC (5) in open and

closed conformations, respectively, consisting of the extracellular domain

(ECD, upper part) and the transmembrane domain (TMD, lower part).

The TMDs of the two structures are aligned. Each subunit is drawn in

a unique color. The proteins are cut through by a clipping plane that passes

through the symmetry axis (dashed lines). The arrows indicate schematically

the motions involved in the closing or opening transition, revealed by the

ENM/MENM models explained in the text, including a twisting rotation

of the entire ECD, a tilting motion of some helices in the TMD, and a minor

tilt of the ECD subunits. Molecular images were rendered in VMD (49). (b)

Analysis of the open-to-closed transition in GLIC. The RMSDs of the

ECD between each snapshot in the transition path and the GLIC (6) or

ELIC (5) crystal structure are plotted. The dashed lines show the RMSD

values of the ECD when the TMD is superimposed against the crystal struc-

ture, and the solid lines represent the RMSDs after superimposing the ECD

and thus eliminating the relative motion between the ECD and TMD. Resi-

dues constituting the common core (7) of the ECD are used for calculating

the RMSD or superimposition with respect to the ELIC crystal structure.
the ELIC crystal structure (5) and calculated a closed-to-

open transition in ELIC, which exhibits similar motions

(Fig. 6 a, right) including a counterclockwise twist of the

ECD, an outward motion of the interface loops, and a minor

tilt in the ECD with an even smaller magnitude. We note,

however, that although the overall twisting motions between

the ECD and TMD indeed appear plausible (7,19,22), the

coupling between TMD and ECD motions warrants further

examination with the help of atomically detailed models.

DISCUSSION

The gating mechanism of pLGICs has been studied exten-

sively. Based on a medium-resolution structure of the acetyl-

choline receptor solved by electron microscopy (4), it was

hypothesized that helix M2 would undergo a substantial rota-

tion during the opening of the channel, thus moving some

bulky side chains at the constriction region away from the

center of the pore. However, this hypothesis was challenged

by experiments using a novel single-channel proton-transfer

technique (44,45), which suggested that no major rotation of

the transmembrane helices is involved in the transition. The

recent crystal structures (5–7) of prokaryotic pLGICs indeed

did not suggest any significant rotation of the helices

between the open and closed states. Here we find that helix

rotation appears limited to less than ~6�. In contrast, helices

M2 and M3 undergo a more substantial tilting of the axes

(Fig. 2), which has a major effect on the pore radii (Fig. 1 c)

and thus determines the open/closed status of the channel.

In addition to the helix tilting, the bending (Fig. 5) of helix

M2 also plays a role in the gating transition, resulting in

a uniformly narrow pore at the midpoint of the transition

(Fig. 1). Bending of helices has been identified as a major

factor in the gating transition of potassium channels (16,46).

Here, helix M2 is bent in both the open and closed states,

but is found to straighten out at the transition midpoint.

Such transient conformational changes can be probed, for

instance, by nuclear magnetic resonance measurements

(26,47), or in single-molecule studies (27). Moreover, struc-

tural and dynamic studies with bound ligands (48) that trap

the intermediate state, or mutations that affect the packing

and bending of the helices, may offer indirect experimental

routes to probe the structural changes.

Electrophysiological recordings of single-channel currents

provide information about the activation barrier and the rate

of the transition between the two states, as well as structural

aspects of the transition state. Purohit et al. (24) and Jha et al.

(25) have reported F-values for the closed-to-open transition

of the acetylcholine receptor (nAChR) for a number of resi-

dues in the M2 helix, obtained by measuring the effects of

mutations on the equilibrium and rate of the closed-to-open

transition. We have examined the structural changes along

the transition path for the residues with the most extreme

F-values. For residues (90 and 120 in 3M2 of nAChR, or

equivalently 239 and 242 in ELIC) with low F~ 0.3 (25),
Biophysical Journal 97(9) 2456–2463
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we plotted their distances (not shown) to the nearby residues

on other helices along the transition path, and found that

most (but not all) of these distances change predominantly

past the midpoint, as the open state is approached. This

late change appears to be consistent with the low measured

F-values. We have also examined some residues (70, 100,
and 140 in 3M2 of nAChR, or 237, 240, and 244 in ELIC)

at the other extreme, F~ 0.6 (25). For these residues, the

distance changes along the transition path exhibit mixed

behavior, some occurring early and others late. Clearly, these

results should not be overinterpreted. On the one hand, the

proteins are different, and some F-values differ even

between different subunits of the nAChR (24,25). On the

other hand, the interpretation of F-values with a relatively

narrow distribution around 0.5 is challenging, even on the

basis of a transition path.

In this study, MENMs (37) were used to construct a

transition path between two native conformations. Some

features of the path, e.g., the sequential movement of the

two halves of helix M2, are inherently nonlinear and thus

cannot be studied easily by linear methods such as normal

mode analysis based on a single ENM. Such details of the

motions (e.g., the nonmonotonic bending of helix M2) and

the sequence of events, as well as the cooperativity of the

structural changes, also cannot be gleaned directly from a

comparison of the native structures. Nevertheless, being

based on a simple energy function at a coarse-grained (back-

bone) level and without an atomistic description of side

chains, the transition path remains of an approximate nature.

In particular, side-chain atoms directly interact with the

substrates in the channel, and their motions are important

to the function of the channel. Moreover, although some

changes in the helix-helix interactions (e.g., the extracellular

ends of M2 are in closer contact with adjacent subunits

during the closing of the channel) can be seen in the

coarse-grained transition path, a complete picture of the in-

terhelical or protein-solvent interface must include the side

chains. Further refinement and additional details of the

conformational transition, in particular with regard to side-

chain motions, may come from all-atom molecular dynamics

simulations.
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receptor at 4Å resolution. J. Mol. Biol. 346:967–989.

5. Hilf, R. J., and R. Dutzler. 2008. X-ray structure of a prokaryotic
pentameric ligand-gated ion channel. Nature. 452:375–379.

6. Hilf, R. J., and R. Dutzler. 2009. Structure of a potentially open state of
a proton-activated pentameric ligand-gated ion channel. Nature.
457:115–118.

7. Bocquet, N., H. Nury, M. Baaden, C. Le Poupon, J. P. Changeux, et al.
2009. X-ray structure of a pentameric ligand-gated ion channel in an
apparently open conformation. Nature. 457:111–114.

8. Perozo, E., D. M. Cortes, P. Sompornpisut, A. Kloda, and B. Martinac.
2002. Open channel structure of MscL and the gating mechanism of
mechanosensitive channels. Nature. 418:942–948.

9. Berneche, S., and B. Roux. 2005. A gate in the selectivity filter of potas-
sium channels. Structure. 13:591–600.

10. Miloshevsky, G. V., and P. C. Jordan. 2007. Open-state conformation of
the KcsA Kþ channel: Monte Carlo normal mode following simula-
tions. Structure. 15:1654–1662.

11. Gervasio, F. L., M. Parrinello, M. Ceccarelli, and M. L. Klein. 2006.
Exploring the gating mechanism in the ClC chloride channel via
metadynamics. J. Mol. Biol. 361:390–398.

12. Tang, Y., G. Cao, X. Chen, J. Yoo, A. Yethiraj, et al. 2006. A finite
element framework for studying the mechanical response of macromol-
ecules: application to the gating of the mechanosensitive channel MscL.
Biophys. J. 91:1248–1263.

13. Anishkin, A., and S. Sukharev. 2004. Water dynamics and dewetting
transitions in the small mechanosensitive channel MscS. Biophys. J.
86:2883–2895.

14. Vasquez, V., M. Sotomayor, J. Cordero-Morales, K. Schulten, and
E. Perozo. 2008. A structural mechanism for MscS gating in lipid
bilayers. Science. 321:1210–1214.

15. Kong, Y., Y. Shen, T. E. Warth, and J. Ma. 2002. Conformational
pathways in the gating of Escherichia coli mechanosensitive channel.
Proc. Natl. Acad. Sci. USA. 99:5999–6004.

16. Tieleman, D. P., I. H. Shrivastava, M. R. Ulmschneider, and M. S. San-
som. 2001. Proline-induced hinges in transmembrane helices: possible
roles in ion channel gating. Proteins. 44:63–72.

17. Gullingsrud, J., and K. Schulten. 2003. Gating of MscL studied by
steered molecular dynamics. Biophys. J. 85:2087–2099.

18. Jeon, J., and G. A. Voth. 2008. Gating of the mechanosensitive channel
protein MscL: the interplay of membrane and protein. Biophys. J.
94:3497–3511.

19. Taly, A., M. Delarue, T. Grutter, M. Nilges, N. Le Novere, et al. 2005.
Normal mode analysis suggests a quaternary twist model for the nico-
tinic receptor gating mechanism. Biophys. J. 88:3954–3965.

20. Henchman, R. H., H. L. Wang, S. M. Sine, P. Taylor, and J. A. McCam-
mon. 2005. Ligand-induced conformational change in the alpha7 nico-
tinic receptor ligand binding domain. Biophys. J. 88:2564–2576.

21. Cheng, X., B. Lu, B. Grant, R. J. Law, and J. A. McCammon. 2006.
Channel opening motion of alpha7 nicotinic acetylcholine receptor as
suggested by normal mode analysis. J. Mol. Biol. 355:310–324.

22. Cheng, X., I. Ivanov, H. Wang, S. M. Sine, and J. A. McCammon. 2009.
Molecular-dynamics simulations of ELIC-a prokaryotic homologue of
the nicotinic acetylcholine receptor. Biophys. J. 96:4502–4513.

23. Yi, M., H. Tjong, and H. X. Zhou. 2008. Spontaneous conformational
change and toxin binding in alpha7 acetylcholine receptor: insight
into channel activation and inhibition. Proc. Natl. Acad. Sci. USA.
105:8280–8285.

24. Purohit, P., A. Mitra, and A. Auerbach. 2007. A stepwise mechanism
for acetylcholine receptor channel gating. Nature. 446:930–933.

25. Jha, A., P. Purohit, and A. Auerbach. 2009. Energy and structure of
the M2 helix in acetylcholine receptor-channel gating. Biophys. J.
96:4075–4084.

Zhu and Hummer



2463
26. Baker, K. A., C. Tzitzilonis, W. Kwiatkowski, S. Choe, and R. Riek.
2007. Conformational dynamics of the KcsA potassium channel
governs gating properties. Nat. Struct. Mol. Biol. 14:1089–1095.

27. Shimizu, H., M. Iwamoto, T. Konno, A. Nihei, Y. C. Sasaki, et al. 2008.
Global twisting motion of single molecular KcsA potassium channel
upon gating. Cell. 132:67–78.

28. Best, R. B., Y. G. Chen, and G. Hummer. 2005. Slow protein conforma-
tional dynamics from multiple experimental structures: the helix/sheet
transition of arc repressor. Structure. 13:1755–1763.

29. Levy, Y., S. S. Cho, T. Shen, J. N. Onuchic, and P. G. Wolynes. 2005.
Symmetry and frustration in protein energy landscapes: a near degen-
eracy resolves the Rop dimer-folding mystery. Proc. Natl. Acad. Sci.
USA. 102:2373–2378.

30. Zuckerman, D. M. 2004. Simulation of an ensemble of conformational
transitions in a united-residue model of calmodulin. J. Phys. Chem. B.
108:5127–5137.

31. Koga, N., and S. Takada. 2001. Roles of native topology and chain-
length scaling in protein folding: a simulation study with a Go-like
model. J. Mol. Biol. 313:171–180.

32. Tirion, M. M. 1996. Large amplitude elastic motions in proteins from
a single-parameter, atomic analysis. Phys. Rev. Lett. 77:1905–1908.

33. Song, G., and R. L. Jernigan. 2006. An enhanced elastic network model to
represent the motions of domain-swapped proteins. Proteins. 63:197–209.

34. Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin,
et al. 2001. Anisotropy of fluctuation dynamics of proteins with an
elastic network model. Biophys. J. 80:505–515.

35. Tama, F., M. Valle, J. Frank, and C. L. Brooks, 3rd. 2003. Dynamic
reorganization of the functionally active ribosome explored by normal
mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci.
USA. 100:9319–9323.

36. Zheng, W., B. R. Brooks, and D. Thirumalai. 2006. Low-frequency
normal modes that describe allosteric transitions in biological nanoma-
chines are robust to sequence variations. Proc. Natl. Acad. Sci. USA.
103:7664–7669.

37. Zheng, W., B. R. Brooks, and G. Hummer. 2007. Protein conforma-
tional transitions explored by mixed elastic network models. Proteins.
69:43–57.

Open/Closed Transition of pLGICs
38. Maragakis, P., and M. Karplus. 2005. Large amplitude conformational

change in proteins explored with a plastic network model: adenylate

kinase. J. Mol. Biol. 352:807–822.

39. Miyashita, O., J. N. Onuchic, and P. G. Wolynes. 2003. Nonlinear elas-

ticity, proteinquakes, and the energy landscapes of functional transitions

in proteins. Proc. Natl. Acad. Sci. USA. 100:12570–12575.

40. Chu, J. W., and G. A. Voth. 2007. Coarse-grained free energy functions

for studying protein conformational changes: a double-well network

model. Biophys. J. 93:3860–3871.

41. Franklin, J., P. Koehl, S. Doniach, and M. Delarue. 2007. MinAction-

Path: maximum likelihood trajectory for large-scale structural transi-

tions in a coarse-grained locally harmonic energy landscape. Nucleic
Acids Res. 35:477–482.

42. Smart, O. S., J. G. Neduvelil, X. Wang, B. A. Wallace, and

M. S. Sansom. 1996. HOLE: a program for the analysis of the pore

dimensions of ion channel structural models. J. Mol. Graph. 14:354–

360, 376.

43. Mezei, M., and M. Filizola. 2006. TRAJELIX: a computational tool for

the geometric characterization of protein helices during molecular

dynamics simulations. J. Comput. Aided Mol. Des. 20:97–107.

44. Cymes, G. D., Y. Ni, and C. Grosman. 2005. Probing ion-channel pores

one proton at a time. Nature. 438:975–980.

45. Cymes, G. D., and C. Grosman. 2008. Pore-opening mechanism of the

nicotinic acetylcholine receptor evinced by proton transfer. Nat. Struct.
Mol. Biol. 15:389–396.

46. Jiang, Y., A. Lee, J. Chen, M. Cadene, B. T. Chait, et al. 2002. The open

pore conformation of potassium channels. Nature. 417:523–526.

47. Chill, J. H., J. M. Louis, C. Miller, and A. Bax. 2006. NMR study of the

tetrameric KcsA potassium channel in detergent micelles. Protein Sci.
15:684–698.

48. Lange, A., K. Giller, S. Hornig, M. F. Martin-Eauclaire, O. Pongs, et al.

2006. Toxin-induced conformational changes in a potassium channel

revealed by solid-state NMR. Nature. 440:959–962.

49. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molec-

ular dynamics. J. Mol. Graph. 14:37–38.
Biophysical Journal 97(9) 2456–2463


	Gating Transition of Pentameric Ligand-Gated Ion Channels
	Introduction
	Methods
	Mixed elastic network models
	System setup

	Results
	Discussion
	References


