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ABSTRACT

DEAD-box proteins play specific roles in remodeling
RNA or ribonucleoprotein complexes. Yet,
in vitro, they generally behave as nonspecific RNA-
dependent ATPases, raising the question of what
determines their specificity in vivo. SrmB, one of
the five Escherichia coli DEAD-box proteins,
participates in the assembly of the large ribosomal
subunit. Moreover, when overexpressed, it com-
pensates for a mutation in L24, the ribosomal
protein (r-protein) thought to initiate assembly.
Here, using the tandem affinity purification (TAP)
procedure, we show that SrmB forms a complex
with r-proteins L4, L24 and a region near the
5-end of 23S rRNA that binds these proteins.
In vitro reconstitution experiments show that the
stability of this complex reflects cooperative
interactions of SrmB with L4, L24 and rRNA. These
observations are consistent with an early role of
SrmB in assembly and explain the genetic link
between SrmB and L24. Besides its catalytic core,
SrmB possesses a nhonconserved C-terminal exten-
sion that, we show, is not essential for SrmB
function and specificity. In this regard, SrmB
differs from DbpA, another DEAD-box protein
involved in ribosome assembly.

INTRODUCTION

DEAD-box proteins are widely distributed in nature and
they play important roles in nearly all processes involving
RNA (1). They are characterized by a highly conserved
structure, the ‘helicase core’, containing at least nine
conserved amino acid motifs, most of which are
involved in the binding of the substrates RNA and ATP.
In vitro, they possess a RNA-dependent ATPase activity
and many of them can dissociate short RNA duplexes in
an ATP-dependent manner [[RNA helicase’ activity (1)];
in addition, some DEAD-box proteins have been shown
to displace proteins from RNA, or assist RNA folding or
RNA-RNA annealing (2). In vivo, these proteins are
believed to rearrange RNA or ribonucleoprotein (RNP)
structures. Yet, in no case is this function precisely under-
stood at the molecular level. An intriguing question is how
they are targeted to their correct substrates. Indeed,
despite the high sequence and structure conservation
of the helicase core, individual helicases perform very
specific functions in vivo (2). A well-understood case is
the Escherichia coli RNA helicase DbpA, which is
involved in the assembly of the large (50S) ribosomal
subunit (Sharpe Elles,L. and Uhlenbeck,O.C., personal
communication). This protein only shows ATPase and
RNA helicase activities with RNA substrates carrying a
specific motif, hairpin 92 of 23S rRNA (3,4). This
specificity reflects the fact that DbpA carries a
C-terminal extension that tightly binds this hairpin (5,6).
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However, to date, DbpA is the only DEAD-box protein
exhibiting such RNA specificity. As for others, it has been
postulated and sometimes shown that substrate specificity
is conferred by accessory proteins or cofactors that bind
the helicase and tether it to its site of action (7).

Besides DbpA, two other E. coli DEAD-box proteins
play well-documented roles in the assembly of the
large ribosomal subunit (8). Among them, SrmB was
originally characterized by the fact that its over-
expression suppresses a temperature-sensitive mutation
in ribosomal-protein (r-protein) L[24 (9). Later, we
showed that SrmB co-sediments with 50S precursors;
moreover, its absence leads to a severe deficit of free 50S
subunits and to the accumulation of 40S particles corre-
sponding to incompletely assembled 50S subunits (10).
Among those r-proteins that are missing from the 40S
particle stands L13, which together with L4, 1L.20, L22
and L24 is essential and sufficient for the formation of
the first intermediate during 50S assembly in vitro (11).
On this basis, we suggested that SrmB is required at an
early stage of the 50S assembly (10).

In spite of this in vivo specificity, SrmB shows no
stringent preference for a particular RNA substrate in
vitro, unlike for DbpA. Indeed, a variety of RNAs
including the homopolymers poly(A) and poly(C) stimu-
late its ATPase activity (9,12), and 23S and 16S rRNAs
are equally efficient in this respect [(6) and Ilost,l.,
unpublished data]. Here, we show that in vivo and
in vitro SrmB forms a specific RNP complex with the 5
region of 23S rRNA and two r-proteins, including
L24. These data shed light on the way this ‘nonspecific’
RNA helicase is targeted to its precise physiological
function.

MATERIALS AND METHODS
Bacterial strains and plasmids

The srmB-TAP fusion gene was constructed by fusing
two PCR fragments carrying the srmB ORF plus
212nt  upstream sequences, with the TAP tag
(Supplementary Data). The product was cloned into the
BamHI site of either pCL1920 (13) or pACYCI184.
Reverse PCR from the pCL1920-srmB-TAP plasmid
was used to construct an in-frame deletion of the SrmB
C-terminal extension (Supplementary Data). For TAP
experiments, the BL21(DE3) derivative ENS133AsrmB
(10) carrying the above plasmids were grown in LB con-
taining 50 pg/ml spectinomycin (pCL1920 derivatives) or
30 pg/ml chloramphenicol (pACYC184 derivatives).

For overexpression purposes, the rp/X gene encoding
L24 was amplified by PCR and cloned into the
pPROEX-HTa expression vector (Invitrogen). Similarly,
the srmB-CBP fusion gene was cloned into Ndel-Xhol
sites of pHL9-pET28a-HisTev (Supplementary Data), a
pET28 derivative kindly provided by H. Le Hir. Plasmid
pET11c-TthL4 encoding Thermus thermophilus L4 was
a gift of M. Garber, Pushchino, Russia. The SrmB
overexpressing plasmid is described elsewhere (12).
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TAP purification

Extracts were routinely prepared from 11 of culture
grown to an ODyggy of ~1 at 30°C. Cells were pelleted,
resuspended in disruption buffer (10mM Tris—HCI
pH 7.5, 100mM NaCl, 0.2mM EDTA, 10% glycerol,
0.5mM DTT) and broken with a French press. After
clarification, the extract was subjected to the two affinity
purification steps (14).

For controlled digestion of the SrmB complex, the
purified complex was first diluted 30 times with
calmodulin binding buffer (14) and CaCl, to restore
binding conditions, then incubated on ice with
0.05-0.5pg/ml of RNase A for 10min, and finally
purified on calmodulin—Sepharose beads.

Protein analysis

Proteins from TAP eluates were concentrated by TCA
precipitation and separated by denaturing polyacrylamide
gel electrophoresis (PAGE). For mass spectrometry,
Coomassie-stained bands were cut out and proteins were
digested overnight by trypsin. Digests were analyzed by
MALDI-TOF and the resulting peptide spectra identified
using MASCOT software (Plate-Forme Spectrométrie de
Masse et Protéomique, Université Paris VI).

RNA analysis

The position of guanines was determined by partial
nuclease T1 digestion. The 0.5- or 0.2-kb RNA fragment
was first purified by urea-PAGE, dephosphorylated with
calf intestinal alkaline phosphatase and 5 labeled with
7-**P ATP. The labeled RNA was further gel purified
and then digested with RNase T1 as in (15). The same
RNA fragment was partially hydrolyzed by alkali to
produce a I-nt ladder. Reaction mixtures were analyzed
on a 10% polyacrylamide-8 M urea gel.

Primer extension was carried out as in (10), using
Superscriptll RNaseH-Reverse Transcriptase (Invitrogen)
and a primer complementary to residues 35-55 of 23S
rRNA. Extension products were separated on 8%
acrylamide-7 M urea gels. Northern blots were prepared
and probed with 5 labeled oligonucleotides as in (10),
except that RNA was separated on 6% acrylamide-7M
urea gels. Radioactive signals were visualized with a
FLA-3000 PhosphorImager (Fuji).

In vitro transcription

Templates for in vitro transcription were amplified by
PCR from plasmid pNO2680, which carries the rrnB
operon (Supplementary Data). After transcription
(RiboMAX System T7 from Promega) and DNase treat-
ment, unincorporated nucleotides were removed by G50
filtration. RNA was then extracted with phenol:chloro-
form and precipitated. Purity was tested on agarose gels.

Purification of SrmB, 1.24 and L4

Proteins SrmB, L4, L24 and SrmB-CBP were over-
expressed in the E. coli B strain BL2I(DE3) after 3h
IPTG induction. SrmB was purified as in (12) except
that the storage buffer was 0.3 M NaCl, 20mM HEPES
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pH 7.5, 10% glycerol, 0.1 mM EDTA, 1mM DTT. The
Hisg-L24 protein was purified as SrmB except that buffers
were supplemented with 6 M urea and the Hisg-tag was
not removed. The storage buffer was either 100 mM
KCl, 20mM HEPES pH 7.5, 10% glycerol, 0.1 mM
EDTA, ImM DTT or 100mM NH4CIl, 20mM HEPES
pH 7.5, 4mM MgCl,.

L4 from T. thermophilus was preferred to the E. coli
protein because of its higher solubility. The two proteins
bind E. coli 23S rRNA similarly (16). Cells overexpressing
TthL4 were sonicated in 900 mM LiCl, 90 mM MgCl,,
50mM Tris—HCI, pH 7.5, 2mM beta-mercaptoethanol,
2mM PMSF and the extract was centrifuged at 15000 g
for 15 min. The supernatant was heated at 65°C for 15 min.
After centrifugation, the L4 protein was purified by
heparin chromatography using a 0.2-2M NaCl gradient
in 50mM Tris—HCI pH 7.5, 20 mM MgCl,. Peak fractions
were >95% pure as judged by denaturing PAGE and used
as such.

Protein SrmB-CBP was first purified on nickel column.
After removing the Hisg tag by TEV digestion, the protein
was further purified on calmodulin affinity resin as
described in (14). Sr mB-CBP was stored in 1.5x PBS con-
taining 10% glycerol, 1 mM Mg acetate and 2mM DTT.

In vitro reconstitution of the SrmB complex

Experiments were performed as in (17) with slight
modifications. Thirty-five picomoles of SrmB-CBP were
mixed with 40-60 pmol of L4, 240pmol of L24 and
40 pmol of spe-RNA or ctrl-RNA in binding buffer (BB-
125) containing 20 mM HEPES pH 7.5, 125mM NaCl,
2mM MgCl,, 2mM CaCl,, ImM DTT, 0.1% NP-40
and 5% glycerol, complemented with 2mM ATP in a
final volume of 60pl. RNA was heated for 5S5min at
70°C in 10mM HEPES pH 7.5, 100mM NaCl and
4mM MgCl, and immediately cooled to 4°C before
addition to the mixture. An aliquot of one-sixth of the
mixture was withdrawn before adding RNA, and used
as the ‘Input’ control in the protein gels. After 30 min at
30°C, 12 pl of calmodulin resin (Stratagene) and 200 pl of
BB-150 (150mM NaCl) were added. After 2h at 4°C
under mild agitation, the resin was washed three times
with 400 pl BB-150 and then eluted with 20mM EGTA
in 30 pul BB-150 for Smin at 30°C. On denaturing PAGE
50% of the eluate was loaded and proteins were visualized
by Coomassie or silver staining. The latter also allows the
visualization of RNA. When stated, BB-125 was comple-
mented with heparin (0.01 pg/ul). Moreover, in some
experiments, ATP has been replaced by ADP in both
BB-125 and BB-150.

Fluorescence anisotropy titrations

Binding of r-proteins to rRNA fragments was performed
as in (16), with a 10% excess of r-proteins over RNA.
SrmB was labeled with Alexa 488 as in (18). Anisotropy
measurements were carried out at 30°C in dilution mode.
Briefly, SrmB-Alexa488 (20nM final) was mixed with
either free rRNA or rRNA/r-proteins complex
(4uM final) in 20mM Tris—HCI, pH 7.5, 150 mM KCI,
2.5mM MgCl,, 1mg/ml bovine serum albumin and

2mM AMP-PNP, a nonhydrolyzable analog of ATP.
The mixture was then serially diluted with the same
buffer containing only 20nM SrmB-Alexa488. Measure-
ments were made at each dilution using a Varian Cary/
Eclipse spectrofluorimeter in polarization mode, and
anisotropy was calculated as in (18). Experiments were
repeated twice with different batches of proteins and
RNAs and yielded indistinguishable results.

Ribosome profile analysis

Extracts of ENSI133AsrmB cells carrying pCL1920
or pCL1920 containing the wild-type srmB-TAP or srmB
AC-TAP gene, were prepared and analyzed as in (10).

RESULTS
Identification of an SrmB RNP complex

To isolate proteins that potentially interact with SrmB, we
employed the TAP method, a technique of choice for
purifying complexes under native conditions (14,19). The
calmodulin binding peptide (CBP) and protein A affinity
tags were fused in-phase to the carboxy-terminus of SrmB
(Figure 1A) and the resulting construct was cloned under
the srmB promoter in either pCL1920 or pACYCI184
plasmids (around 5 and 10-15 copies/cell, respectively).
The resulting plasmids were introduced in an E. coli
B strain deleted for srmB. The SrmB-TAP fusion pro-
tein appears functional in these strains (‘TAP strains’)
since it fully corrected the growth and ribosome
assembly defects associated with the srmB deletion (see
Figure 4C below). In contrast, no correction was observed
with the empty plasmids (‘Control strains’). Since the role
of SrmB in ribosome assembly is most prominent at low
temperature (10), both TAP and control strains were
grown at 30°C for TAP purification.

After the two consecutive affinity chromatography
steps (14), proteins in elution fractions were analyzed by
denaturing PAGE. No obvious difference was noted
whether pCL1920 or pACYC184 derivatives were used.
In many experiments, only three major bands, numbered
1-3, were detected along with the band corresponding to
SrmB (lanes T in Figure 1B, left). These bands were par-
ticularly visible in elution fraction 2, which is most
enriched in proteins, and were absent in fractions from
the control strain (lanes C in Figure 1B). The bands
were excised from the gel, and tryptic digests were
analyzed by MALDI-TOF mass spectrometry. Bands 1
and 3 correspond to 50S r-proteins L4 and L24, respec-
tively. Occasionally, r-proteins L21 and L22 were also
detected in band 3, but western analysis (data not shown)
confirmed that L24 was predominant. The protein(s)
corresponding to band 2 yielded only a few tryptic
peptides, and they could not be identified. Beyond bands
1-3, minor bands were also analyzed and found to
correspond to different r-proteins (data not shown).

SrmB, L4 and L24 are all RNA-binding proteins.
To test whether the above complex (the ‘SrmB complex’)
contains RNA, elution fractions shown in Figure 1B (left)
were analyzed on an agarose gel after phenol extraction.
As shown in Figure 1C (left; lane T), a smear with a
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Figure 1. Identification of SrmB partners by TAP purification. (A)
Schematic representation of the SrmB-TAP fusion protein. The TAP
tag consists of a calmodulin-binding peptide (CBP), a TEV cleavage
site (TEV) and the IgG-binding domain of protein A (ProtA). (B)
Visualization of the proteins interacting with SrmB. (Left) Proteins
from crude extracts (‘Extract’, 1/1000 of the sample), after the first
IgG column (‘IgG’, 1/50 of the sample) and from three TAP eluate
fractions (whole sample) were resolved by denaturing PAGE and
stained with Coomassie. C and T stand for Control (empty vector)
and TAP (vector expressing SrmB-TAP protein) strains, respectively.
Left and right panels correspond to two experiments yielding different
protein patterns (see text). (C) Analysis of SrmB-interacting RNA
species. RNA from the same elution fractions as in (B) was separated
on a 1% agarose gel and stained with ethidium bromide. The left and
right panels correspond to the same two experiments as in (B). (D) The
~0.5-kb  RNA species co-eluting with SrmB [(C), left panel]
corresponds to domain I of 23S rRNA. Left, Primer extension (PE)
analysis of the ~0.5-kb RNA. A sequencing ladder (GCAT) obtained
with the same primer from plasmid pNO2680, which carries the rrnB
operon, was run in parallel. The 5-end of mature 23S rRNA (23S
5-end) is indicated. Right, Partial digestion of the ~0.5-kb RNA
with RNase T1, which cleaves 3’ to guanine residues. The digest
(T1), together with a sample of the same RNA after limited alkaline
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prominent band migrating like the 0.5-kb RNA marker
was detected. Extensive treatment of the extract with
RNase A prior to TAP purification eliminated this
pattern, suggesting that it corresponds to RNA.
Moreover, L4 and L24 no longer co-purified with SrmB
under these conditions, indicating that this RNA
participates in the formation or stability of the complex
(Figure S1). Since in vivo SrmB associates with a 50S pre-
cursor (10), the eluted RNA may correspond to fragments
of the 23S rRNA. Consistently, northern blot analysis of
the eluted RNA with a probe corresponding to the full-
length (2.9kb) 23S gene revealed the same pattern as
ethidium bromide (EtBr) staining (data not shown).
After purification, the major ~0.5-kb RNA fragment
was further characterized by primer extension and
RNase T1 footprinting. As shown in Figure 1D (left),
the 5’-end of the fragment corresponded to the 5'-end of
23S rRNA. Moreover, the T1 pattern unambiguously
matched that of the 5 proximal part of 23S rRNA, with
the first readable G corresponding to nucleotide +15
(Figure 1D, right). Thus, the major RNA species
co-purifying with SrmB-TAP extends from nucleotide
(nt) 1 to ca 500 of 23S rRNA, i.e. it corresponds to
domain I of this rRNA (for the boundaries of E. coli
rRNA domains, see http://www.rna.ccbb.utexas.edu).
Incidentally, domain I contains the binding sites for
r-proteins L4 and L24 [(16); see Figure 2D and F].

Whereas many TAP experiments yielded the protein
and RNA profiles shown in the left panels of Figure 1B
and C, other experiments yielded larger RNA species
(up to 2.9kb in Ilength), together with many more
proteins (Figure 1B and C, right panels). Presumably,
this variability can be rationalized as follows. Since
in vivo SrmB associates with a 50S precursor, one would
expect the whole 23S rRNA, together with all proteins
present in the precursor, to be pulled down in these
experiments. However, as no particular precautions were
taken for controlling nucleases, the 23S rRNA is degraded
to variable extent during the TAP procedure, explaining
the different elution profiles: the more extensive the deg-
radation, the smaller the rRNA fragments and the fewer
the r-proteins that are pulled down with SrmB. Extensive
degradation, as exemplified by the left panels of Figure 1B
and C, is particularly useful here since it narrows the
rRNA region and the number of proteins that may
interact directly with SrmB.

Isolation of a minimal SrmB complex

To further narrow the rRNA region and the number of
proteins implicated in SrmB binding, the purified
SrmB-TAP complex was mildly digested with RNase A.
This treatment should remove all rRNA regions that are
not protected by SrmB, and all proteins that bind to these
regions but do not interact directly with SrmB. The
digested product was then re-purified on the calmodulin

hydrolysis (OH), was analyzed by urea—PAGE. The sequence of 23S
rRNA from nucleotide 15 (bottom) to 50 (top) is shown on the right,
with guanine residues (G) facing the corresponding RNase TI
fragments. In this and other figures, dotted, vertical lines mean that
lanes from the same gel have been brought together at this position.
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Figure 2. Characterization of a minimal SrmB complex. (A) The SrmB
complex was treated at 0°C with different RNase A concentrations
[from 0 (=) to 0.5pg/ml] and further purified on a calmodulin
column. The RNA from elution fractions was analyzed as in Figure
1C. (B) The purified ~0.2-kb fragment (0.05 pg/ml RNase A treatment)
was run on a denaturing polyacrylamide gel, transferred to a nylon
membrane and probed with the 5-end-labeled oligonucleotides a-e
(see below). Hybridization signals are indicated by arrows. An in
vitro transcript corresponding to domain I of 23S rRNA was used as
a positive control. (C) The ~0.2-kb RNA species was labeled at its 5
end and digested with RNase T1. The sequence of 23S rRNA from nt
263 (bottom) to nt 291 (top) is shown on the left of the gel, with
guanine residues (G) facing the corresponding RNase T1 fragments.
Note that the sequence at position 264 (marked [G]) is highly hetero-
geneous in E. coli. We assume that G predominates in the E. coli B
strain used here, like in E. coli 0157:H7 but unlike in E. coli K12. (D)
Secondary structure of E. coli 23S rRNA domain I. Regions comple-
mentary to the probes a—e used in the northern blot analysis (B) are
highlighted. The fragment resulting from mild RNase A treatment of
the SrmB complex is surrounded in red. Nucleotides that, based on
biochemical evidence (16), interact with L4 (319-322) and L24 (298—
301 and 337-338) are shown as circles and triangles, respectively. (E)
Protein content of the SrmB complex after mild RNase treatment. (+)
0.05pg/ml RNase A. (—) control without RNase. The previously
identified bands 1-3 (Figure 1B) are indicated. (F) Part of the structure
of the E. coli ribosome (PDB2aw4) showing nt 200-400 of 23S rRNA
(yellow) together with L4 (blue) and L24 (purple).

column (SrmB retains the CBP after TAP purifica-
tion), and analyzed for its RNA and protein content.
Whatever the RNase A concentration in the range
0.05-0.5 pg/ml, the ~0.5-kb RNA fragment was converted
into a ~0.2-kb fragment (Figure 2A). After purification by
urea-PAGE, this fragment was probed on a northern blot
with oligonucleotide probes complementary to different
regions of domain I (Figure 2D). An in vitro transcript
encompassing domain I was run in parallel as a control.
Whereas the ~0.2-kb species hybridized with probes b
(192214 nt), ¢ (240-259nt) and d (312-331 nt), no signal
was detected with probes a (128—147 nt) and e (409—428 nt)
(Figure 2B). Thus, the ~0.2- kb product corresponds
to the central region of domain I. Using oligonucleotide
¢ for primer extension, its 5’ extremity was mapped to
nucleotide 198 (data not shown). Therefore, the
fragment spans nt 198 to ~400 of 23S rRNA. To further
confirm this localization with a different technique, the
~0.2-kb product was labeled at its 5'-end and partially
digested with RNase T1, as above. The profile of the
digest unambiguously matched the succession of Gs in
the central region of domain I. This is illustrated on
Figure 2C, where a part of the gel is aligned with the
23S sequence from G263 to G291.

The protein composition of the partially digested SrmB
complex showed that, compared with the undigested
control, the number and amount of minor proteins were
greatly reduced, resulting in a complex containing essen-
tially SrmB, L4 and L24 (compare lanes ‘—’and ‘+’
on Figure 2E). In particular, band 2 was no longer
detected. Mass spectrometry confirmed the identity
of the r-proteins. Of note, the binding sites for L4 and
L24 both lie within the 0.2-kb RNA fragment [(16);
Figure 2D], and they are in close proximity in the
3D-structure of the ribosome (Figure 2F).

Thus, the minimal SrmB complex comprises r-proteins
L4 and L24 and a small rRNA fragment encompassing
their binding sites. It must be relatively stable as it with-
stood TAP purification, incubation with RNase A, and
finally an additional TAP purification step.

In vitro reconstitution of the SrmB complex

Next, we tested whether the minimal SrmB complex can
be reconstituted in vitro from purified components. To this
end, the method of Ballut ez al. (17) was used. Briefly, the
SrmB-CBP fusion protein was incubated with its potential
partners and then affinity purified on calmodulin beads.
Eventual complexes were visualized by electrophoresis, as
in the last step of the TAP protocol. Proteins SrmB-CBP,
L4 and L24 were purified as described in ‘Materials and
methods’ section. A fragment of 23S rRNA (‘spe-RNA’;
185-399 nt), very close to the fragment contained in the
minimal SrmB complex but slightly extended at its 5'-end
to facilitate transcription by T7 RNA polymerase, was
synthesized in vitro; another 23S fragment of similar size
(‘ctrl-RNA’; 1-214nt) was also prepared as a control.
In the presence of spe-RNA, both L4 and L24 coeluted
with SrmB (Figure 3A, lanes 2 or 5). Silver staining
revealed also yellowish, multidisperse bands between
SrmB and L4 that correspond to eluted spe-RNA
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Figure 3. Reconstitution of the SrmB complex in vitro. (A-C) Proteins SrmB-CBP, L4 and L24 were mixed together with a 215nt rRNA fragment
encompassing the L4 and L24 binding sites (spe-RNA) or a control fragment of similar size (ctrl-RNA). SrmB-CBP was then affinity purified, and
the eluate was analysed by PAGE. The ‘Input’ samples (upper panels) correspond to aliquots (20%) that were withdrawn prior to RNA addition,
whereas ‘elution’ samples (lower) correspond to 50% of the eluates. The composition of each mix is shown above the corresponding lane. Positions
of SrmB-CBP (SrmB), L4 and L24 are shown by arrows. Blue and brownish backgrounds in (A) and (C) correspond to Coomassie or silver staining
of the same gels. The stars shown in (B) pinpoint traces of L4 and 124 that are recovered in the control lacking SrmB-CBP. (D) Fluorescence
anisotropy assays. The fluorescent anisotropy of Alexa-SrmB is plotted versus the concentrations of (I+1I) or 16S RNA, with or without added

r-proteins L4, L24 or L20 (‘RNP’ or ‘RNA’, respectively).

(Figure 3A, right), as confirmed by EtBr staining (data not
shown). Although L4 and (particularly) L24 were present
in molar excess over SrmB—CBP in the input, the three
proteins eluted in nearly stoichiometric amounts, as
judged from densitometry of the Coomassie-stained gels.
Elution patterns were identical whether ATP or ADP was
present in the incubation and washing buffers (compare
lanes 1-3 and 4-6 in Figure 3A; given the low ATPase
activity of SrmB, only a small fraction of the input ATP
is hydrolyzed during the assay). Importantly, no r-proteins
or RNA were eluted in the absence of SrmB-CBP,
demonstrating the specificity of the procedure (Figure
3A, lanes 3 and 6).

Thus, in vitro, SrmB forms a quaternary, apparently
stoichiometric complex with L4, L24 and spe-RNA.
Within this complex, L4 and L24 presumably interact spe-
cifically with their binding sites on spe-RNA (16); as for
SrmB, it might either interact directly with its partners or
simply binds nonspecifically to spe-RNA. To test for
direct interactions between SrmB and the two r-proteins,
these experiments were repeated with ctrl-RNA, which
should bind L4 and L24 loosely if at all. Under these
conditions, some L4 and trace amounts of L24 still
co-purified with SrmB; oddly, however, small amounts
of r-proteins were also detected in the control lacking
SrmB (stars in Figure 3B). Presumably, in the absence of
their specific RNA target, the highly basic r-proteins stick
nonspecifically to the calmodulin beads, from which they
can subsequently be eluted. To obviate this problem, the
experiment was repeated in the presence of heparin, a
highly charged anionic polymer that can challenge
RNA-binding proteins. Heparin (0.01 ug/ml) largely
diminished (Figure 3C, Coomassie staining) but did not
abrogate (Figure 3C, silver staining) the co-elution of L4
and L24 with SrmB. In contrast, L4 or L24 were no longer

detectable in the control. Of note, no ctrl-RNA was
detected in the eluate, suggesting that any interaction
of ctr-lRNA with SrmB is eliminated by heparin.
Consistently, the same elution pattern was observed in
the absence of ctrl-RNA (data not shown).

These latter results support the existence of direct,
RNA-independent interactions between SrmB on one
hand, L4 and L24 on the other. Yet, the yield of eluted
r-proteins was higher in the presence of spe-RNA
(compare Figure 3A with 3B and C). This fact may
explain why, in crude extracts, extensive RNase treat-
ment apparently abrogates the coelution of SrmB and
r-proteins (Figure S1). Reciprocally, the yield of spe-
RNA co-eluting with SrmB was consistently higher in
the presence of r-proteins than in their absence (compare
lanes 1 and 4 to lanes 2 and 5, respectively, in Figure 3A,
silver stain). Thus, spe-RNA and L4+ L24 reinforce the
binding of each other to SrmB.

To further document these interactions, we turned to
fluorescence anisotropy. This technique allows monitoring
the progressive titration of a fluorescent protein with a
ligand (18), provided the binding of the latter hinders
the rotation of the fluorophore. For this experiment,
spe-RNA was replaced by a 1.3-kb fragment covering
domains 1 and II of 23S rRNA (subsequently called
‘T+1II RNA’). In addition to L4 and L24, this longer
fragment is known to bind r-protein L20 (18), thus
permitting additional controls. A 1.5-kb transcript corre-
sponding to 16S rRNA (‘16S RNA’) was used as a
nonspecific control. SrmB, labeled at its N-terminus with
the Alexa488 fluorophore, was incubated with various
concentrations of these two RNAs, and anisotropy was
measured. Under the conditions used, a plateau was not
reached even at concentrations as high as 4 uM (I +1I) or
16S RNA (Figure 3D). The addition of L4 and L24 to 16S
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Figure 4. The C-terminal extension of SrmB is dispensable for ribosome assembly. (A) SrmB-specific residues are essentially located within the
helicase core. Upper frame: alignment of the E. coli SrmB (444 amino acids) with orthologs from representatives of four distant orders of gamma-
proteobacteria. Vertical bars indicate identical residues. Besides E. coli K12 (Enterobacteriales), selected representatives were Vibrio vulnificus CMCP6
(Vibrionales), Pseudoalteromonas haloplanktis TACI125 (Alteromonadales), Aeromonas hydrophila ATCC7966 (Aeromonadales) and Haemophilus
influenzae Rd KW20 (Pasteurellales) (the pattern remains largely invariant upon changing representatives within the same orders). Orthologs
were identified by their high BLAST scores and aligned with CLUSTALW to the E. coli protein. Shown above the panel is the helicase DEAD-
box core, assumed to extend down to amino acid 368, after a predicted alpha-helix that is conserved in known structures of DEAD-box proteins. The
start of the AC truncation is indicated by an open triangle. Lower frame: same as upper frame, except that SrmB was aligned with the four other
E. coli DEAD-box proteins: identity in this case is largely restricted to the DEAD-box motifs [horizontal bars; see (1)]. (B) Same as [(A), upper
frame], except that orthologs of DbpA were aligned. The bacteria used for alignment are the same as in (A), except that Haemophilus influenzae,
which lacks a DbpA ortholog (8) was replaced by Pseudomonas aeruginosa PAO1 (Pseudomonadales). The DbpA orthlogs used here (457-462 amino
acids) are much closer in length than the SrmB orthologs (407-444 residues), due to the homogeneous size of their C-terminal extensions. (C) AsrmB
cells transformed with either pCL1920 or its derivatives carrying the wild-type or srmB AC-TAP gene, were grown at 30°C. Ribosome profiles show
the 30S and 50S subunits, 70S ribosomes (free couples and monosomes), polysomes, as well as the aberrant 40S particles. The AsrmB ribosome
assembly defect (deficit of 50S subunits and accumulation of 40S particles) is fully corrected by the wild-type and AC proteins. (D) Deletion of the
SrmB C-terminal extension weakens the SrmB complex. (a) Proteins co-eluting with wild-type and truncated SrmB during TAP purification were
analysed as in Figure 1B. Previously identified bands 1-3 (see Figure 1B) are indicated. (b) Crude extracts and eluates from cells expressing wild-type
or truncated SrmB were analyzed by western blotting using L4 and L24 antibodies. (¢) RNA co-eluting with wild-type and truncated SrmB was
visualized as in Figure 1C, except that a 6% polyacrylamide-urea gel stained was used.

RNA did not change this situation; in contrast, with I+ 11
RNA, anisotropy increased markedly and reached a
plateau well below 4 uM RNA. This effect was specific
to L4+ 124, since the addition of L20 or L24 alone had
no effect, whereas 1.4 alone had but a modest effect
(Figure 3D and data not shown). Altogether, these
results confirm that the simultaneous presence of L4,
L24 and an RNA fragment carrying their binding sites,
creates a new interaction with SrmB that does not occur
when any of these three molecules is missing.

The carboxy-terminal extension of SrmB is not
essential to its function

As noted in the ‘Introduction’ section, the unique
C-terminal extension of DbpA is essential to its specificity.
Since SrmB also possesses a C-terminal extension, we
tested whether it plays a similar role. An alignment of
the E. coli SrmB sequence with orthologs from four
distant orders of y-proteobacteria revealed many identical
residues (Figure 4A, upper frame) that are not conserved
among unrelated DEAD-box proteins (e.g. the five E. coli
DEAD-box proteins; Figure 4A, lower frame). However,
most of these SrmB-specific residues lie within the helicase

core: except for the presence of lysine stretches, the
C-terminal extension shows very little conservation
(Figure 4A, upper frame), and it is quite variable in
length. In contrast, the C-terminal extension of DbpA is
well conserved in length and sequence (Figure 4B). To
assess the importance of the C-terminal extension of
SrmB, an in-phase deletion (named AC) was constructed
in the srmB-TAP gene, retaining the TAP sequence but
removing the last 60 amino acids of SrmB (Figure 4A).
This truncated protein was tested for its functionality in
ribosome assembly. The ribosome profiles of the AsrmB
strain expressing either the wild-type or truncated proteins
were identical, i.e. the AC protein fully complements the
AsrmB defect (Figure 4C).

The AC and wild-type proteins were then purified in
parallel with the TAP protocol. In contrast with the
wild-type SrmB, no r-proteins co-eluting with the AC
protein could be detected by Coomassie staining (Figure
4Da) or western analysis (Figure 4Db). Consistently, only
a small amount of RNA co-eluted with the AC mutant
(Figure 4Dc). However, northern analysis showed that
this RNA still corresponds to the central region of
domain I (data not shown). A plausible interpretation is



that the SrmB complex can still form but with a reduced
stability, so that most of it does not survive the TAP pro-
cedure (‘Discussion’ section).

DISCUSSION

Although the E. coli ribosome can be assembled in vitro
from purified components, assembly is far more efficient
in vivo (20). Among the factors responsible for this differ-
ence stand nonribosomal proteins that transiently assist
assembly (21). The DEAD-box RNA helicase SrmB was
among the first such protein identified (10), but the basis
for its specificity, as well as its exact role in assembly,
remains obscure. A major finding from this work is that
SrmB interacts specifically with a RNP complex located
near the 5'-end of 23S rRNA.

The SrmB complex

Using the TAP purification procedure coupled with a mild
RNase A treatment, we have shown that in cell extracts,
SrmB associates with r-proteins L4 and L24 and a 0.2-kb
fragment from domain I of 23S rRNA that encompasses
the binding sites of these two proteins (Figure 2D and F).
We propose that SrmB binds specifically to this region of
23S rRNA in vivo. The quaternary complex, referred to as
the ‘minimal SrmB complex’, can be reconstituted in vitro
from isolated components, indicating that its formation
does not require additional factors (Figure 3A). Of note,
L4, L24 and domain I are presumably among the first
components of the 50S subunit to assemble together.
The 5 proximal domain I is the first 23S domain to be
synthesized, and biochemical and electron microscopy
work indicates that in vitro L24 binds to this domain
without the help of other proteins, thereby initiating the
cooperative assembly process (20,22). Thus, L24 may be
the first protein to bind 23S rRNA in vivo. As for L4, it
belongs (like L24) to a group of five proteins that are
essential and sufficient for the formation of the first in
vitro assembly intermediate (20). Altogether, these data
suggest that the binding of SrmB to its specific target
occurs soon after the onset of 23S synthesis, consistent
with the proposed early role of SrmB in 50S subunit
assembly (10).

The specificity of SrmB for one particular region of 23S
rRNA in vivo contrasts with its absence of specificity
in vitro in the absence of other proteins (‘Introduction’
section). The reconstitution assay has pinpointed one
cause for this specificity: the two proteins L4 and L24
interact directly with SrmB, presumably via protein—
protein contacts (Figure 3B and C). The capacity of the
two r-proteins to specifically bind both SrmB and a RNA
fragment encompassing their binding sites (spe-RNA),
explains why SrmB binds L4+ 124 and spe-RNA syner-
gistically, as shown by reconstitution experiments and
anisotropy assays (Figure 3). Indeed, the two r-proteins
can bridge SrmB and spe-RNA, thus tightening the
binding of SrmB to this particular RNA; conversely,
spe-RNA can bridge SrmB and the two r-proteins, thus
reinforcing their interaction. Altogether, the existence of
these cooperative interactions seems sufficient to explain
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the stability of the SrmB complex. As judged by
anisotropy measurements, the simultaneous presence of
both r-proteins is needed for this stability, though L4
may have some effect on its own (Figure 3D).

Interestingly, the in vitro interaction of SrmB with its
partners is the same whether ADP or ATP is present
(Figure 3A), suggesting that SrmB remains tethered to
its binding site upon ATP hydrolysis. That SrmB can
bind RNA in the presence of either ATP or ADP is not
inconsistent with its helicase activity: simply, in the two
situations, RNA must interact differently with the
RNA-binding track within the active site. RhlE, another
E. coli DEAD-box helicase, also binds RNA with similar
affinities in the ATP- and ADP-bound states (12).

When overexpressed, SrmB can suppress a temperature-
sensitive L.24 mutation (rp/X19) that decreases .24 affinity
for 23S rRNA (9,23). Conversely, the deletion of srmB
considerably aggravates the rp/X79 phenotype (10).
Our results suggest a plausible explanation for these
genetic links. As expected for an initiator protein, the
wild-type L24 protein can bind its rRNA target without
any assistance (16); however, this may not hold true for
the mutant. We speculate that SrmB, by bridging L4 and
L24, helps bringing the mutated L24 to its TRNA site
at the time L4 binds to its own site. By eliminating
the bridge, the deletion of SrmB would then reinforce
the rp/X19 phenotype; conversely, its overexpression
would alleviate this phenotype by stabilizing the
L4-SrmB-L24-rRNA interaction.

Role of SrmB C-terminal extension

Our results show that the C-terminal extension of SrmB is
not essential for ribosome assembly in vivo (Figure 4C),
but yet that it is important for the formation or for
the stability of the SrmB complex (Figure 4D). It seems
very unlikely that these two functions of SrmB can be
dissociated, i.e. that SrmB can act on the nascent
ribosome without being tethered to it by the SrmB
complex. We therefore propose that, in vivo, SrmB
lacking the C-terminal extension (AC) still forms the
SrmB complex, but that the complex is not stable
enough to survive the TAP purification. Consistent with
this view, northern analysis shows that the small amount
of RNA co-cluting with AC (Figure 4Dc) still corresponds
to the central region of domain I, as expected if complex
formation had occurred. As for the C-terminal region, it
has been shown that the deletion of the last 51 amino acids
reduces markedly the affinity of SrmB for RNA, as judged
by a higher K, in ATPase assays (Bizebard,T., personal
communication). Thus, this highly basic, lysine-rich region
might stabilize the complex by interacting nonspecifically
with rRNA. Consistent with a nonspecific role, it carries
no phylogenetically conserved residues that might be
implicated in the specific recognition of partners
(Figure 4A).

According to this view, the residues important for
specific interactions of SrmB with L4 and L.24 would be
located within the DEAD-box core, not within the
C-terminal extension. This situation differs from that of
DbpA, in which the C-terminal extension, by binding a
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particular RNA motif, is responsible for specificity
(‘Introduction’ section). This difference is consistent with
phylogenetic comparisons, which show many conserved
residues in the C-terminal extension of DbpA, whereas
for StmB conservation is limited to the core (Figure 4A
and B). Beyond SrmB and DbpA, other cases are known
where either the helicase core or its extensions are respon-
sible for specificity. Similar to DbpA, the yeast DEAD-
box related proteins Prpl6 and Prp2 use nonconserved
extensions to recognize their site of action, the spliceo-
some (24,25). In contrast, the interaction of eIF4AIIl
with its protein partners within the exon-junction
complex involves residues that are mainly located within
the core (26). Interestingly, several of these residues
are conserved amongst elF4IIIA orthologs (26). It will
be interesting to determine whether, similarly, those
residues that are conserved amongst SrmB orthologs
(Figure 4A) participate in the interaction with L4 and L.24.

CONCLUSION

Although this work shows that SrmB binds a
ribonucleoparticle near the 5 extremity of 23S rRNA, it
gives no clue on what it does once there. A search for 23S
rRNA mutations that suppress the AsrmB phenotype—
these mutations are expected to affect SrmB targets—
pinpoint several sites downstream of domain I
(Proux,F., Dreyfus,M. and Iost,I., unpublished data).
The tethering of SrmB near the 5-end of 23S rRNA
would allow it to interact with these targets as soon as
they form. Conceivably, SrmB may use ATP hydrolysis
to actively rearrange the structure of these targets, as often
assumed for DEAD-box proteins. However, because
SrmB is an inefficient ATPase in vitro (12), we consider
another scenario: like for eIF4AIIl in the exon-junction
complex, SrmB may simply clamp its RNA-binding track
on the target RNA in an ATP-dependent manner,
transiently stabilizing RNA structure. Its low ATPase
activity would then reflect the need for stabilizing
these structures long enough to match the kinetics of
ribosome assembly.
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